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STABILIZER IN RESIDUATED LATTICES

A. Borumand Saeid1, N. Mohtashamnia2

In this paper we introduce the notion of (right and left) stabilizer in resid-
uated lattices, we state and prove some theorems which determine the relationship
between this notion and all types of filters in residuated lattices. After that we
construct quotient of residuated lattices via stabilizer and study its properties.

Keywords: Residuated lattices, (Implicative, Positive implicative, Fantastic, Boolean,
Obstinate) Filter, Gödel algebra, MV -algebra, (right and left) stabilizer.

1. Introduction

A commutative integral residuated bounded lattice is an algebraic structure
(A,∧,∨, ∗,→, 0, 1) such that (A,∧,∨, 0, 1) is a bounded lattice, (A, ∗, 1) is a com-
mutative monoid and, for all a, b, c ∈ A,

a ≤ b → c if and only if a ∗ b ≤ c.
Commutative integral residuated bounded lattices have been studied extensively
and include important classes of algebras such as BL-algebras, introduced by Hájek
as the algebraic counterpart of Basic Logic [8], and MV -algebras, the algebraic
setting for Lukasiewicz propositional logic (we refer to the monograph [5] for a
detailed treatment of MV -algebras). In Y. Zhu et al(2009) introduced the notion of
implicative(Boolean) filter and fantastic filter of residuated lattice.

Now, in this note we introduce the notions of (left, right) stabilizer of X and
(left, right) stabilizer of X with respect to Y , for subsets X and Y of A. We show
that right stabilizer of X is a filter but is not true for left and also right stabilizer
of X with respect to Y is a filter. Then we study some properties of them.

2. Preliminaries

Definition 2.1. [15] An algebra (A,∧,∨, ∗,→, 0, 1) of type < 2, 2, 2, 2, 0, 0 >
is called residuated lattice if satisfies:

(LR1) (A,∧,∨, 0, 1) is a bounded lattice,
(LR2) (A, ∗, 1) is a commutative monoid,
(LR3) ∗ and → form an adjoint pair i.e, c ≤ a → b if and only if a ∗ c ≤ b, for

all a, b, c ∈ A.
A residuated lattice, A is called a Gödel algebra if x2 = x ∗ x = x, for all x ∈ A
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and residuated lattice, A is called an MV -algebra if ¬(¬x) = x or equivalently
(x → y) → y = (y → x) → x, for all x, y ∈ A, where ¬x = x → 0.

Lemma 2.2. [8] In each residuated lattice A, the following relations hold for
all x, y, z ∈ A:
(1) x ∗ (x → y) ≤ y,
(2) x ≤ (y → (x ∗ y)),
(3) x ≤ y iff x → y = 1,
(4) x → (y → z) = y → (x → z),
(5) If x ≤ y, then y → z ≤ x → z and z → x ≤ z → y,
(6) y ≤ (y → x) → x,
(7) y → x ≤ (z → y) → (z → x),
(8) x → y ≤ (y → z) → (x → z),
(9) x ≤ y implies x ∗ z ≤ y ∗ z,
(10) 1 → x = x, x ≤ y → x, x ∗ y ≤ x ∧ y,
(11) x ∗ ¬x = 0,
(13) x ∗ y = 0 iff x ≤ ¬y and x ≤ y implies ¬y ≤ ¬x,
(14) x → y ≤ (x ∗ z) → (y ∗ z),
(15) x ∗ (y → z) ≤ y → (x ∗ z),
(16) (y → z) ∗ (x → y) ≤ (x → z),
(17) x ≤ ¬¬x, ¬1 = 0, ¬0 = 1, ¬¬¬x = ¬x, ¬¬x ≤ ¬x → x
(18) ¬¬(x ∗ y) = ¬¬x ∗ ¬¬y,
(19) x = ¬¬x ∗ (¬¬x → x),
(20) if ¬¬x ≤ ¬¬x → x, then ¬¬x = x,
(21) x → ¬y = y → ¬x = ¬¬x → ¬y = ¬(x ∗ y),
(22) x ∨ y = [(x → y) → y] ∧ [(y → x) → x],
(23) x → y = y → x = 1 iff x = y, x → 1 = 1, 0 → x = 1,
(24) x → y ≤ (x ∗ z) → (y ∗ z),
(25) (a ∨ b) → x = (a → x) ∧ (b → x),
(26) (x ∗ y) → z = x → (y → z).

For any residuated lattice A, B(A) denotes the Boolean algebra of all comple-
mented elements in L(A) (hence B(A) = B(L(A))).

Proposition 2.3. [14] For e ∈ A, the following are equivalent:
(i) e ∈ B(A),
(ii) e ∗ e = e and e = ¬¬e,
(iii) e ∗ e = e and ¬e → e = e,
(iv) e ∨ ¬e = 1,
(v) (e → x) → e = e, for every x ∈ A.

Definition 2.4. [14] A filter of a residuated lattice A is a nonempty subset
F of A such that for all a, b ∈ A, we have:

(1) a, b ∈ F implies a ∗ b ∈ F ,
(2) a ∈ F and a ≤ b imply b ∈ F .

An alternative definition for a filter F of a residuated lattice A is the following:
(1) 1 ∈ F ,
(2) for all x and y in A: if x, x → y ∈ F , then y ∈ F .

The set of all filters of A is denoted by F.
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Definition 2.5. [14] A proper filter M of a residuated lattice A is called
maximal (or ultrafilter) if it is not properly contained in any other proper filter of
A.

Definition 2.6. [14] Let A be a residuated lattice and F be a filter of A. F
is called a prime filter if x ∨ y ∈ F implies x ∈ F or y ∈ F .
Let A be a residuated lattice and F be a filter of A. F is a prime filter iff (x → y) ∈ F
or (y → x) ∈ F , for all x, y ∈ A.

Theorem 2.7. [14] Let F be a filter of a residuated lattice A. Define:

x ≡F y iff x → y ∈ F and y → x ∈ F.

Then ≡F is a congruence relation on A.
The set of all congruence classes is denoted by A/F , i.e., A/F := {[x]|x ∈ A},

where [x] = {y ∈ A|x ≡F y}.
Defines •,→,⊓,⊔ on A/F , as follows:

[x] • [y] = [x ∗ y],
[x] → [y] = [x → y],
[x] ⊓ [y] = [x ∧ y],
[x] ⊔ [y] = [x ∨ y],
Therefore (A/F,⊓,⊔, •,→, [1], [0]) is a residuated lattice which is called quotient
residuated lattice with respect to F .

Definition 2.8. [2] A nonempty subset F of A is called:
A Boolean filter of A if F is a filter of A and x ∨ (¬x) ∈ F ,
An implicative filter of A if 1 ∈ F and x → (y → z) ∈ F and x → y ∈ F imply

that x → z ∈ F ,
A positive implicative filter of A if 1 ∈ F and x → ((y → z) → y) ∈ F and

x ∈ F imply y ∈ F ,
A fantastic filter of A if 1 ∈ F and z → (y → x) ∈ F and z ∈ F imply

((x → y) → y) → x ∈ F ,
An obstinate filter of A if and only if be a proper filter and x, y ̸∈ F imply

x → y ∈ F and y → x ∈ F ,
for all x, y, z ∈ A.

3. Stabilizer in residuated lattice

From now on (A,∧,∨, ∗,→, 0, 1) or simply A is a residuated lattice unless
otherwise specified.

Definition 3.1. Let X,Y are non-empty subset of A. We define:

X∗
R = {a ∈ A : a → x = x,∀x ∈ X},

X∗
L = {a ∈ A : x → a = a,∀x ∈ X},

X∗
R and X∗

L are called right and left stabilizer of A and denote stabilizer of X by
X∗ = X∗

R ∩X∗
L.

We define stabilizer of X with respect to Y or (X,Y )∗ = (X,Y )∗R ∩ (X,Y )∗L where:

(X,Y )∗R = {a ∈ A : (a → x) → x ∈ Y,∀x ∈ X},
(X,Y )∗L = {a ∈ A : (x → a) → a ∈ Y,∀x ∈ X}.
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Example 3.2. Let A = {0, a, b, c, 1}, where 0 < a < b < c < 1. Define on A
the following operations:

∗ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 1 1
c 0 b b 1 1
1 0 a b c 1

Then (A,∧,∨, ∗,→, 0, 1) is a residuated lattice. Then {b}∗R = {x ∈ A : x →
b = b} = {1, c} and {b}∗L = {x ∈ A : b → x = x} = {1, 0}. Therefore {b}∗ = {1}.
The other side we have ({a}, {b})∗R = {x ∈ A : (x → a) → a = b} = {b} and
({a}, {b})∗L = {x ∈ A : (a → x) → x = b} = {b}. Hence ({a}, {b})∗ = {b}.

Proposition 3.3. Let A be a residuated lattice and X,Y ⊆ A. Then:
(1) If X ⊆ Y , then Y ∗ ⊆ X∗,
(2) A∗ = {1} and {1}∗ = A,
(3) X∗ =

∩
{{x}∗ : x ∈ X},

(4) If h : A → A be a homomorphism and a ∈ A, then h({a}∗) ⊆ {h(a)}∗.

Proof.(1) Let a ∈ Y ∗ = Y ∗
R ∩ Y ∗

L . Then a → x = x and x → a = a, for all
x ∈ Y . Since X ⊆ Y , we have a → x = x and x → a = a for all x ∈ X, that is
a ∈ X∗.

(2) Let a ∈ A∗, hence a → b = b and b → a = a, for all b ∈ A. If we suppose
b = a, then 1 = a → a = a. Therefore a = 1 and A∗ ⊆ {1}.

On the other hand we can say 1 → b = b and b → 1 = 1, for all b ∈ A. Then
1 ∈ A∗. Therefore A∗ = {1}. Let a ∈ A, we can say a ∈ {1}∗, since 1 → a = a
and a → 1 = 1. Then A ⊆ {1}∗. On the other hand we have {1}∗ ⊆ A. Therefore
{1}∗ = A.

(3)a ∈ X∗ if and only if a → x = x and x → a = a, for all x ∈ X if and only
if a ∈ {x}∗, for all x ∈ X.

(4) Let a ∈ A, h : A → A be a homomorphism and y ∈ h({a}∗). Then there
exists x ∈ {a}∗ such that y = h(x). Hence x → a = a and a → x = x and since
h is a homomorphism we get h(x) → h(a) = h(a) and h(a) → h(x) = h(x), that is
y = h(x) ∈ {h(a)}∗.�

Theorem 3.4. Let A be a residuated lattice and X ⊆ A. Then X∗
R is a filter

of A.
Proof. Since 1 → x = x, for all x ∈ X, we have 1 ∈ X∗

R. Now let a, a → b ∈ X∗
R,

then a → x = x and (a → b) → x = x, for all x ∈ X and so by Lemma 2.2 we get:
b → x ≤ (a → b) → (a → x) = a → ((a → b) → x) = a → x = x and

x ≤ b → x. Then b → x = x, for all x ∈ X.�
The following example we show that not every X∗

L is a filter of A and we will
check the relationship between (X∗

L)
∗
L , X∗

L and (X∗
R)

∗
R , X∗

R.
Example 3.5. Let A = {0, a, b, c, 1}. Define on A the following operations:
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∗ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Easily we can check that (A,∧,∨, ∗,→, 0, 1) is a residuated lattice. Then {b}∗L =
{x ∈ A : b → x = x} = {a, 1}, but {a, 1} is not a filter because a ≤ c and a ∈ {b}∗L
but c ̸∈ {b}∗L.

Now, if X = {b}, then we see {b}∗L ̸= ({b}∗L)∗L and {b}∗R ̸= ({b}∗R)∗R since
{b}∗L = {a, 1} and ({b}∗L)∗L = {b, 1} and {b}∗R = {a, 1} and ({b}∗R)∗R = {c, b, 1}.

Also, in the following example we show that X∗
L is not a filter whenever X is

a filter of A.
Example 3.6. Let A = {0, a, b, c, 1}. Define on A the following operations:

→ 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

∗ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

Then we can see that A is a residuated lattice. It is clear that F = {1, c} is a filter
of A, but F ∗

L = {1, a, b} is not a filter of A.
Corollary 3.7. Let A be a residuated lattice and X ⊆ A. Then A/X∗

R =
{[b] : b ∈ A} where [b] = {a ∈ A : (a → b) ∗ (b → a) → x = x,∀x ∈ X}.

Theorem 3.8. Let F and G be filters of residuated lattice A. Then (F,G)∗R
is a filter of A.

Proof. Let F and G be filter of residuated lattice A. Then 1 ∈ (F,G)∗R, since
(1 → x) → x = 1 ∈ G, for all x ∈ F and if there exist a, b ∈ A such that a ≤ b and
a ∈ (F,G)∗R, we will have (a → x) → x ∈ G and (a → x) → x ≤ (b → x) → x, for
all x ∈ F . Hence (b → x) → x ∈ G, for all x ∈ F . Then (F,G)∗R is a filter of A.�

In Example 3.5, we can see F = {1, a, c} and G = {1} are filters of A, but
(F,G)∗L = {y ∈ A : (x → y) → y ∈ G,∀x ∈ F} = {1, b} is not a filter of A.

By the following example we show that the condition F and G be filters of A
in Theorem 3.8 is necessary.
Example 3.9. Let A = {0, a, b, 1}. Define on A the following operation ∗, → :
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∗ 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

Easily we can check that (A,∧,∨, ∗,→, 0, 1) is a residuated lattice. Then in A,
{0} and {b, 1} are not filters and also ({0}, {b, 1})∗R = {0, b, 1} and ({b, 1}, {0})∗R = ∅
are not filters.

Theorem 3.10. Let A be a residuated lattice, F , G filters of A and X, Y ,
Xi and Yi for all i ∈ I, subsets of A such that ∩i∈IXi ̸= ∅ and ∩i∈IYi ̸= ∅. Then

(1) If (X,Y )∗L = A or (X,Y )∗R = A, then X ⊆ Y ,
(2) (F, Y )∗L = (F, Y )∗R = A iff F ⊆ Y ,
(3) (F, F )∗ = A,
(4) X∗

R ⊆ (X,G)∗R( hence X∗
R ⊆ (X,X∗

R)
∗
R) and X∗

L ⊆ (X,G)∗L,
(5) IfXi ⊆ Xj and Yi ⊆ Yj , then (Xj, Y i)∗R ⊆ (Xi, Y j)∗R and (Xj, Y i)∗L ⊆ (Xi, Y j)∗L.
Hence (Xj, Y i)∗ ⊆ (Xi, Y j)∗,
(6) (X, {1})∗R = X∗

R and (X, {1})∗L = X∗
L. Hence (X, {1})∗ = X∗,

(7) ({1}, G)∗R = A and ({1}, G)∗L = A. Hence ({1}, G)∗ = A,
(8) (X,∩Y i)∗R ⊆ ∩(X,Y i)∗R and (X,∩Y i)∗L ⊆ ∩(X,Y i)∗L. Hence (X,∩Y i)∗ ⊆
∩(X,Y i)∗,
(9) If x ∈ ∩{Yi}∗R, then x ∈ {∩Yi}∗R and ∩{Yi}∗L ⊆ {∩Yi}∗L,
(10)

∩
(Xi, Yi)

∗
R = (∩Xi,∩Yi)∗R, for all i ∈ I,

(11)
∪
(Xi, Yi)

∗
R ⊆ (∩Xi,∪Yi)∗R, for all i ∈ I,

(12) (∪Xi,∪Yi)∗R ⊆ (∩Xi,∪Yi)∗R, for all i ∈ I,
(13) Let a ∈ X∗

R. Then an ∈ X∗
R, for all n ∈ N ,

(14) F ̸= ∩{a}∗R and F ̸= ∩{a}∗L, where a ∈ F ,
(15) F ⊆ ∪{a}∗R = A and F ⊆ ∪{a}∗L = A, where a ∈ F .

Proof. (1) Let (X,Y )∗R = A. Since 0 ∈ A we have 0 ∈ (X,Y )∗R and so
x = (0 → x) → x ∈ Y , for all x ∈ X, that is X ⊆ Y . Let (X,Y )∗L = A and
x ∈ X ⊆ A. Thus x ∈ (X,Y )∗L and (x → x) → x ∈ Y . Therefore x ∈ Y .
(2) Let F ⊆ Y and a ∈ A, x ∈ F and F be a filter. Thus x ∈ Y . Since x ≤ (a →
x) → x, we get that (a → x) → x ∈ Y . Thus a ∈ (F, Y )∗R. Similarly a ∈ (F, Y )∗L.
The converse is clear by (1).
(3) It is clear by (2), since F is a filter and F ⊆ F .
(4) Let a ∈ X∗

L. Then x → a = a, for all x ∈ X. Since G is a filter (x → a) → a =
a → a = 1 ∈ G, that is a ∈ (X,G)∗L. Similarly X∗

R ⊆ (X,G)∗R become apparent.
(5) Let x ∈ (Xj , Yi)

∗
L. Then (a →)x → x ∈ Yi, for all a ∈ Xj and so (a →

x) → x ∈ Yj , for all x ∈ Xi. Hence a ∈ (Xi, Yj)
∗
L. We can Similarly prove

(Xj , Yi)
∗
R ⊆ (Xi, Yj)

∗
R. Hence (Xj , Yi)

∗ ⊆ (Xi, Yj)
∗,

(6) Let a ∈ (X, {1})∗L. Then (x → a) → a ∈ {1}, for all x ∈ X, that is x → a ≤ a.
Hence x → a = a, for all x ∈ X and so a ∈ X∗

L. Hence (X, {1})∗L ⊆ X∗
L.

Conversely, let a ∈ X∗
L. Then x → a = a, for all x ∈ X and so (x → a) → a = 1, for

all x ∈ X. Hence (X, {1})∗L ⊆ X∗
L. We can Similarly prove (X, {1})∗R = X∗

R. Hence
(X, {1})∗ = X∗.
(7) Let a ∈ A. Since G is a filter, we have (1 → a) → a = 1 ∈ G, hence a ∈ ({1}, G)∗L



Stabilizer in residuated lattices 71

and A = ({1}, G)∗L. We have ({1}, G)∗R = A. Therefore ({1}, G)∗ = A.
(8) Let a ∈ (X,∩Yi)∗L. Then (x → a) → a ∈ ∩Yi, for all x ∈ X. Hence x ∈ ∩(X,Yi)

∗
L.

Hence (X,∩Yi)∗ ⊆ ∩(X,Yi)
∗.

(9) Let x ∈ ∩{Yi}∗R where i ∈ I. Then x ∈ {Yi}∗R, for all i ∈ I, then x → yi = yi, for
all yi ∈ Yi, hence x → t = t, for all t ∈ ∩Yi. Therefore we conclude that x ∈ {∩Yi}∗R.
(10) x ∈

∩
(Xi, Yi)

∗
R, where i ∈ I iff x ∈ (Xi, Yi)

∗
R, for all i ∈ I iff (x → y) → y ∈ Yi,

for all y ∈ Xi and i ∈ I iff (x → y) → y ∈ ∩Yi, for all y ∈ ∩Xi iff x ∈ (∩Xi,∩Yi)∗R.
(11) Let x ∈

∪
(Xi, Yi)

∗
R. Then there exists i ∈ I such that x ∈ (Xi, Yi)

∗
R. Hence

there exists i ∈ I such that for all y ∈ Xi, (x → y) → y ∈ Yi. Therefore we have
(x → y) → y ∈ ∪Yi, for all y ∈ ∩Xi and x ∈ (∩Xi,∪Yi)∗R, for all i ∈ I.
(12) Let y ∈ (∪Xi,∪Yi)∗R. Then ∀x ∈ ∪Xi, (y → x) → x ∈ ∪Yi. Hence ∀x ∈ ∩Xi,
(y → x) → x ∈ ∪Yi.
(13) Let a ∈ X∗

R. Then a → x = x, for all x ∈ A, hence a2 → x = a → (a → x) =
a → x = x. Therefore a2 ∈ X∗

R, since a2 → x = x. Now, let an−1 ∈ X∗
R. Then

an−1 → x = x, for all x ∈ A, hence an → x = a → (an−1 → x) = a → x = x.
Therefore an ∈ X∗

R. By induction we have an ∈ X∗
R, for all n ∈ N .

(14) Let a ∈ F . Then a → a = 1 ̸= a, hence a ̸∈ {a}∗R. Therefore a ̸∈ ∩{a}∗R, where
a ∈ F . On other hand if x ∈ ∩{a}∗R, where a ∈ F and x ∈ F , we can say x → a = a,
for all a ∈ F . If x ∈ F , we have a ∈ F such that x = a. Hence 1 = x → a = a and
F ̸= {1}, which is contradiction. We clearly prove F ̸= ∩{a}∗L, where a ∈ F .
(15) Let F be a filter of A. ∪{a}∗R = ∪{a}∗L = A, where a ∈ F , since 1 ∈ F and
1 → x = x, x → 1 = 1, for all x ∈ A. Then ∪{a}∗R = ∪{a}∗L = A. �

Theorem 3.11. (1) Let X ⊆ A and 0 ∈ X∗
L. Then Ds(X) = {x ∈ X : ¬x =

0} = X,
(2) Ds(A) = ({0}, {1})∗R = {0}∗R,
Proof. (1) Let X ⊆ A and 0 ∈ X∗

L. Then x → 0 = ¬x = 0, for all x ∈ X. Hence
Ds(X) = X.

(2) x ∈ {0}∗R iff ¬x = x → 0 = 0 iff x ∈ Ds(A) iff ¬¬x = 1 iff (x → 0) → 0 ∈
{1} iff x ∈ ({0}, {1})∗R.

In the following theorem we give relationship between stabilizer and Boolean
center

Theorem 3.12. (1) Let {¬a}∗L ⊆ B(A). Then ¬a ∈ {{¬a}∗L}∗R, ,
(2) Let {a}∗R ⊆ B(A). Then a ∈ {¬x : x ∈ {a}∗R}∗L,
(3) X∗

R ⊆ B(X) iff X∗
R ⊆ X∗

L and X∗ = X∗
R,

(4) Let B(A) = {0, 1}, {1} ̸= X. Then X∗ = {1},
(5) Let a ∈ B(A), then ¬a ∈ {¬a}∗R.

Proof. (1) Let x ∈ {¬a}∗L. Then ¬x → x = x and by hypothesis ¬a → x = x.
Therefore ¬a ∈ {{¬a}∗L}∗R.
(2) Let x ∈ {a}∗R. Since {a}∗R ⊆ B(A), we can say ¬x → x = x and ¬x → a = a.
Then a ∈ {¬x : x ∈ {a}∗R}∗L.
(3) Let a ∈ X∗

R ⊆ B(X), then we have a → x = x and (a → x) → a = a, for all
x ∈ X. Hence x → a = a, for all x ∈ X, then a ∈ X∗

L and X∗ = X∗
R,

Conversely, let a ∈ X∗
R, then a → x = x, for all x ∈ X. Hence (a → x) → a = x →

a = a, for all x ∈ X thus a ∈ B(X).
(4) By (3) we have X∗

R ⊆ X∗ ⊆ {0, 1}. X∗ is proper filter since {1} ̸= X, then
X∗ = {1}. Hence X∗ = {1}. �
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Proposition 3.13. Let X ⊆ A and a, b ∈ A. Then:
(1) a/X∗

R = 1/X∗
R iff a ∈ X∗

R, hence a/X∗
R ̸= 1/X∗

R iff a ̸∈ X∗
R,

(2) a/X∗
R = 0/X∗

R iff ¬a ∈ X∗
R,

(3) If X∗
R is proper and a/X∗

R = 0/X∗
R, then a ̸∈ X∗

R,
(4) a/X∗

R ≤ b/X∗
R iff a → b ∈ X∗

R,
(5) 0 ̸∈ (X,X∗

R)
∗
R iff (X,X∗

R)
∗
R ̸= X∗

R be a proper filter of A,
(6) a/X∗ ∈ X∗

R/X
∗ iff a ∈ X∗

R,
(7) (X/X∗)∗R = X∗

R/X
∗.

Proof. We only prove (5), (6) and (7) since the other cases are clear.
(5) Let 0 ̸∈ (X,X∗

R)
∗
R. It is clear that (X,X∗

R)
∗
R is a proper filter of A, in contrary,

let (X,X∗
R)

∗
R = X∗

R. Then (X,X∗
R)

∗
R/X

∗
R is not a proper filter of A, thus there

exists a ∈ (X,X∗
R)

∗
R such that 0/X∗

R = a/X∗
R, by (2) we get that ¬a ∈ X∗

R. Since
X∗

R ⊆ (X,X∗
R)

∗
R, we have ¬a ∈ (X,X∗

R)
∗
R. Hence a ∗ ¬a = 0 ∈ (X,X∗

R)
∗
R, which is a

contradiction.
Conversely, let (X,X∗

R)
∗
R ̸= X∗

R be proper filter of A. It is clear that 0 ̸∈ (X,X∗
R)

∗
R.

(6) a/X∗ ∈ X∗
R/X

∗ iff there exists y ∈ X∗
R such that a/X∗ = y/X∗ iff there exists

y ∈ X∗
R such that (a → y) ∗ (y → a) ∈ X∗ ⊆ X∗

R. By Lemma 2.2 (a → y) ∗ (y →
a) ≤ (y → a). Hence y → a ∈ X∗

R. Therefore a ∈ X∗
R,

(7) Let a ∈ (X/X∗)∗R. Then (a → x)/X∗ = x/X∗, for all x/X∗ ∈ X/X∗, hence
∀x ∈ X, (a → x) → x ∈ X∗ ⊆ X∗

R, then ((a → x) → x) → x = x, for all x ∈ X, By
Lemma 2.2, a → x = x, for all x ∈ X. Therefore a ∈ X∗

R and a/X∗ ∈ X∗
R/X

∗.
Conversely, let a/X∗ ∈ X∗

R/X
∗. Then a ∈ X∗

R and by definition a → x = x,
for all x ∈ X. Hence a/X∗ → x/X∗ = x/X∗, for all x/X∗ ∈ X/X∗. Therefore
a ∈ (X/X∗)∗R. �

Corollary 3.14. ({an}, {
∪

y})∗L = {y ∈ A : an ≤ y, ∃n ≥ 1}.
Proof. y ∈ ({an}, {

∪
y})∗L iff ((an) → y) → y = y iff ∃n ≥ 1 such that (an) → y = 1

iff an ≤ y, for some n ≥ 1. �
Let 1 ̸= a ∈ Reg(A) = {a ∈ A : ¬¬a = a}, then we can say a ̸∈ A∗ = {1}.
In the following example we show that a ̸∈ A∗ dose not imply a ∈ Reg(A).

Example 3.15. Consider A in Example 3.5 It is clear that b ̸∈ A∗, since b ̸∈ A∗
L

but ¬¬b = b and b ∈ Reg(A).
Theorem 3.16. Let X ⊆ A and x ∈ X∗

R. Then ¬¬x ∈ X∗
R.

Proof. Let X ⊆ A and x ∈ X∗
R. By lemma 2.2 x ≤ ¬¬x, then for all a ∈ A,

¬¬x → a ≤ x → a = a and a ≤ ¬¬x → a. Hence for all a ∈ A, ¬¬x → a = a.
Therefore ¬¬x ∈ X∗

R.�
In the following example we show that the converse of above theorem is not

correct.
Example 3.17. Consider A in Example 3.2, it is clear that ¬¬a = 1 ∈ {b}∗R,

but a ̸∈ {b}∗R = {1, b, c}.
Corollary 3.18. Let X ⊆ A and ¬¬(¬¬x → x) = 1, for all x in residuated

lattice A ( Glivenko residuated lattice ). Then X∗
R ⊆ Ds(A).

Proof. Let x ∈ X∗
R. By Theorem 3.16, ¬¬x ∈ X∗

R. Then (¬¬x → x) = 1, hence
¬¬x = 1. Therefore ¬x = 0 and x ∈ Ds(A). �

4. Relationship between the stabilizer and filters

Theorem 4.1. Let X ⊆ A and F be a filter of A such that F ⊆ X∗
R and

a/F ∈ X∗
R/F . Then (a → x) → x ∈ F , for all x ∈ X.
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Proof. Let a/F ∈ X∗
R/F . Then there exists b ∈ X∗

R such that a/F = b/F .
Hence (b → a)∗ (a → b) ∈ F ⊆ X∗

R. Since b → a ∈ X∗
R and b ∈ X∗

R we have a ∈ X∗
R.

Then a → x = x, for all x ∈ X. Therefore (a → x) → x = 1 ∈ F . �
Theorem 4.2. Let X ⊆ A and X∗

R be a fantastic filter of A, such that
(A,X∗

R)
∗
R ̸= ∅. Then (A,X∗

R)
∗
R ⊆ (A,X∗

R)
∗
L.

Proof. At first, we prove if F be a fantastic filter of A and for all x, y ∈ A,
(x → y) → y ∈ F , we will have (y → x) → x ∈ F .

Let ¬x ∈ F implies x ∈ F and (x → y) → y ∈ F , for all x, y ∈ A. Take y = 0,
therefore ¬¬x = (x → 0) → 0 ∈ F . Then we can say x ∈ F . By Lemma 2.2, we
have x ≤ (y → x) → x. Therefore (y → x) → x ∈ F .
By hypothesis we know F is a fantastic filter of A. Then 1 → (0 → ¬x) = 1 ∈ F
implies (((¬x → 0) → 0) → x ∈ F , for all x, y ∈ A. Hence ¬x → x ∈ F . If ¬x ∈ F ,
then x ∈ F and therefore (y → x) → x ∈ F .
Now, by hypothesis we know (A,X∗

R)
∗
R ̸= ∅, then there exists a ∈ (A,X∗

R)
∗
R. Hence

(a → x) → x ∈ X∗
R, for all x ∈ X. Therefore (x → a) → a ∈ X∗

R, since X∗
R is a

fantastic filter. Then a ∈ (A,X∗
R)

∗
L . �

Theorem 4.3. Let F,G be filters of A and F be an obstinate filter of A.
Then (G,F )∗R is an obstinate filter of A.

Proof. We know (G,F )∗R is a filter of A. If x, y ̸∈ (G,F )∗R we can say
(x → a) → a ̸∈ F , for all a ∈ G and (y → b) → b ̸∈ F , for all b ∈ G. By Lemma 2.2
we have x ≤ (x → a) → a and y ≤ (y → b) → b, then x, y ̸∈ F . F is an obstinate
filter thus x → y ∈ F and y → x ∈ F . Then x → y = ((x → y) → y) → y ∈ F and
y → x = ((y → x) → x) → x ∈ F , for all x ∈ G. Therefore (G,F )∗R is an obstinate
filter, since x → y, y → x ∈ (G,F )∗R. �

Theorem 4.4. Let F,G be filters of A and F be a Boolean filter. Then
(G,F )∗R is a Boolean filter of A.

Proof. We have to prove x∨¬x ∈ (G,F )∗R, for all x ∈ A. Since F is a Boolean
filter we have x∨¬x ∈ F , for all x ∈ A. On the other hand we have x ≤ (x → a) → a
and ¬x ≤ (¬x → a) → a, for all a ∈ G and we have;

x ∨ ¬x ≤ (x → a) → a ∨ (¬x → a) → a,

≤ ((x → a) ∧ (¬x → a)) → a,

= ((x ∨ ¬x) → a) → a ∈ F.

Therefore ¬x ∨ x ∈ (G,F )∗R, for all a ∈ G. �
Theorem 4.5. Let X ⊆ A. Then Max(A/X∗) = {N/X∗ : N ∈ Max(A)}.
Proof. It is clear that F(A/X∗) = {F/X∗ : F ∈ F(A)}. Let N ∈ F(A)

such that X∗ ⊆ N . Then N ∈ Max(A) iff N ̸= A and N ⊆ F , ( N = F , since
N is maximal filter of A), for all F ∈ F(A)\{A} iff N/X∗ = F/X∗. Therefore
N/X∗ ⊆ F/X∗ (hence N/X∗ = F/X∗) for all F/X∗ ∈ F(A/X∗)\{A/X∗}, iff
N/X∗ ∈ Max(A). �

Theorem 4.6. {x}∗R is a prime filter, for all x ∈ A.
Proof. Let a, b ∈ A such that a∨ b ∈ {x}∗R and a, b ̸∈ {x}∗R. Then a → x ̸= x

and b → x ̸= x, hence x < a → x and x < b → x. Since a ∨ b ∈ {x}∗R, then we get
that x = (a ∨ b) → x = (b → x) ∧ (a → x) < x, which is a contradiction. �
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5. Conclusion

In this paper, we introduced the notion of a (right and left) stabilizer and the
stabilizer of X with respect to Y in a residuated lattice. Moreover, we presented a
characterization and many important properties of the stabilizer and prove X∗

L is
filter of A, but X∗

R is not a filter of A. Finally, the relationship between the stabilizer
and filters (dense element, B(X)) in residuated lattices are studied.
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