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Introducing the weak para-f-structure on a smooth (2n+ s)-dimensional man-

ifold allows us to take a fresh look at the geometry of the para-f-structure by A.Bucki

and A.Miernowski and find new applications. We demonstrate this by generalizing some
known results on para-f-manifolds.
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Introduction

Totally geodesic foliations have the simplest extrinsic geometry of the leaves and
appear in Riemannian geometry, e.g., in the theory of g-foliations, as kernels of degenerate
tensors, see [1, 6]. We are motivated by the problem of finding structures on manifolds,
which lead to totally geodesic foliations and Killing vector fields, see [5]. A well-known
source of totally geodesic foliations is the para-f -structure on a smooth manifold M2n+p,
defined using (1,1)-tensor field f satisfying f3 = f and having constant rank 2n, see [3, 7].
The paracontact geometry (a counterpart to the contact geometry) is a higher dimensional
analog of almost product (p = 0) and almost paracontact (p = 1) structures [4]. A para-f -
structure with p = 2 arises on hypersurfaces in almost contact manifolds, e.g., [2]. Interest
in para-Sasakian manifolds is due to their connection with para-Kähler manifolds and their
role in mathematical physics. If there exists a set of vector fields ξ1, . . . , ξp with certain
properties, then M2n+p is said to have a para-f -structure with complemented frames. In
this case, the tangent bundle TM splits into three complementary subbundles: ±1-eigen-
distributions for f composing a 2n-dimensional distribution f(TM) and a p-dimensional
distribution ker f (the kernel of f).

In [9], we introduced the “weak” metric structures that generalize an f -structure and
a para-f -structure, and allow us to take a fresh look at the classical theory. In [8], we
studied geometry of the weak f -structure and its satellites that are analogs of K- S- and C-
manifolds. In this paper, using a similar approach, we study geometry of the weak para-f -
structure and its important cases related to a pseudo-Riemannian manifold endowed with
a totally geodesic foliation. A natural question arises: how rich are weak para-f -structures
compared to the classical ones? We study this question for weak analogs of para-K-, para-S-
and para-C- structures. The proofs of main results use the properties of new tensors, as
well as the constructions required in the classical case. The theory presented here can be
used to deepen our knowledge of pseudo-Riemannian geometry of manifolds equipped with
distributions.
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1. Preliminaries

Here, we describe “weak” metric structures generalizing certain classes of para-f -
manifolds and discuss their properties. A weak para-f -structure on a smooth manifold
M 2n+p is defined by a (1, 1)-tensor field f of rank 2n and a nonsingular (1, 1)-tensor field
Q satisfying, see [9],

f3 − fQ = 0, Q ξ = ξ (ξ ∈ ker f). (1)

If ker f = {X ∈ TM : f(X) = 0} is parallelizable, then we fix vector fields ξi (1 ≤ i ≤ p),
which span ker f , and their dual one-forms ηi. We get a weak almost para-f -structure (a
weak almost paracontact structure for p = 1), see [9],

f2 = Q−
∑

i
ηi ⊗ ξi, ηi(ξj) = δij . (2)

By (2), f(TM) =
⋂

i ker η
i and f(TM) is f -invariant., i.e., fX ∈ f(TM), X ∈ f(TM).

Thus, f(TM) is invariant for Q. A weak almost f -structure is called normal if the following
tensor (known for Q = idTM , e.g., [6]) is zero:

N (1)(X,Y ) = [f, f ](X,Y )− 2
∑

i
dηi(X,Y ) ξi. (3)

The Nijenhuis torsion of f and the exterior derivative of ηi are given by

[f, f ](X,Y ) = f2[X,Y ] + [fX, fY ]− f [fX, Y ]− f [X, fY ], X, Y ∈ XM , (4)

dηi(X,Y ) = (1/2) {X(ηi(Y ))− Y (ηi(X))− ηi([X,Y ])}, X, Y ∈ XM . (5)

If there exists a pseudo-Riemannian metric g such that

g(fX, fY ) = −g(X,QY ) +
∑

i
ηi(X) ηi(Y ), X, Y ∈ XM , (6)

then (f,Q, ξi, η
i, g) is called a metric weak para-f -structure, M(f,Q, ξi, η

i, g) is called a
metric weak para-f -manifold, and g is called a compatible metric. Putting Y = ξi in (6) and
using (1), we get g(X, ξi) = ηi(X), thus, f(TM)⊥ ker f and {ξi} is an orthonormal frame
of ker f .

We can rewrite (4) in terms of the Levi-Civita connection ∇ (of g) as

[f, f ](X,Y ) = (f∇Y f −∇fY f)X − (f∇Xf −∇fXf)Y. (7)

Proposition 1.1. (a) For a weak almost para-f -structure the following hold:

f ξi = 0, ηi ◦ f = 0, ηi ◦Q = ηi (1 ≤ i ≤ p), [Q, f ] = 0.

(b) For a metric weak almost para-f -structure, we get

g(fX, Y ) = −g(X, fY ), g(QX,Y ) = g(X,QY ). (8)

Proof. (a) By (1) and (2), f2ξi = 0. Applying (1) to fξi, we get fξi = 0. To show ηi ◦f = 0,
note that ηi(f ξi) = ηi(0) = 0, and we get ηi(fX) = 0 for X ∈ f(TM). Next, using (2) and
f(Qξi) = f ξi = 0, we get

f3X = f(f2X) = f QX −
∑

i
ηi(X) fξi = f QX,

f3X = f2(fX) = QfX −
∑

i
ηi(fX) ξi = QfX

for any X ∈ f(TM). This and [Q, f ] ξi = 0 provide [Q, f ] = Qf − fQ = 0.
(b) By (6), the restriction Q| f(TM) is self-adjoint. This and (1) provide (8b) – the

symmetry of Q. For any Y ∈ f(TM) there is Ỹ ∈ f(TM) such that fY = Ỹ . From (2) and

(6) with X ∈ f(TM) and Ỹ we get

g(fX, Ỹ ) = g(fX, fY )
(6)
= −g(X,QY )

(2)
= −g(X, f2Y ) = −g(X, fỸ ),

and the skew-symmetry of f , see (8a), follows. □
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Remark 1.1. If we assume that the symmetric tensor Q is positive definite, then f(TM) de-
composes into the sum of two n-dimensional subbundles: f(TM) = D+⊕D−, corresponding
to positive and negative eigenvalues of f , and in this case we get TM = D+ ⊕D− ⊕ ker f .

Definition 1.1. A metric weak para-f -structure is called a weak para-K-structure if it is
normal and the fundamental 2-form Φ(X,Y ) = g(X, fY ) is closed, i.e., dΦ = 0. We define
two subclasses of weak para-K-manifolds as follows: weak para-C-manifolds if dηi = 0 for
any i, and weak para-S-manifolds if

dηi = Φ, 1 ≤ i ≤ p. (9)

Omitting the normality condition, we get the following: a metric weak para-f -structure is
called (i) a weak almost para-S-structure if (9) is valid; (ii) a weak almost para-C-structure
if Φ and ηi are closed forms.

For p = 1, weak para-C- and weak para-S- manifolds reduce to weak para-cosymplectic
manifolds and weak para-Sasakian manifolds, respectively. Recall the formulas with the Lie
derivative £Z in the Z-direction and X,Y ∈ XM :

(£Zf)X = [Z, fX]− f [Z,X], (10)

(£Z ηj)X = Z(ηj(X))− ηj([Z,X]), (11)

(£Z g)(X,Y ) = Z(g(X,Y ))− g([Z,X], Y )− g(X, [Z, Y ])

= g(∇X Z, Y ) + g(∇Y Z,X). (12)

The following tensors are known in the theory of para-f -manifolds, e.g., [6]:

N
(2)
i (X,Y ) = (£fX ηi)Y − (£fY ηi)X

(5)
= 2 dηi(fX, Y )− 2 dηi(fY,X), (13)

N
(3)
i (X) = (£ξif)X

(10)
= [ξi, fX]− f [ξi, X], (14)

N
(4)
ij (X) = (£ξi η

j)X
(11)
= ξi(η

j(X))− ηj([ξi, X]) = 2 dηj(ξi, X). (15)

Define the difference tensor Q̃ = Q− idTM (vanishing on a para-f -structure). By the above,

Q̃ ξi = 0 and [Q̃, f ] = 0.

Remark 1.2. Let M 2n+p(φ,Q, ξi, η
i) be a framed weak para-f -manifold. Consider the

product manifold M̄ = M2n+p ×Rp, where Rp is a Euclidean space with a basis ∂1, . . . , ∂p,
and define tensor fields f̄ and Q̄ on M̄ putting

f̄(X,
∑

ai∂i)=(fX −
∑

aiξi,
∑

ηj(X)∂j), Q̄(X,
∑

ai∂i)=(QX,
∑

ai∂i).

Then f̄ 2 = −Q̄. The tensors N (i) appear when we use the integrability [f̄ , f̄ ] = 0 of f̄ to
express the normality of a weak almost para-f -structure.

2. The geometry of a metric weak para-f-structure

Here, we study the geometry of the characteristic distribution ker f , supplement the
sequence of tensors (3) and (13)–(15) with a new tensor N (5) and calculate the covariant
derivative of f on a metric weak para-f -structure.

A distribution D ⊂ TM is totally geodesic if and only if ∇XY +∇Y X ∈ D for any
vector fields X,Y ∈ D – this is the case when any geodesic of M that is tangent to D at
one point is tangent to D at all its points. Any integrable and totally geodesic distribution
determines a totally geodesic foliation. A foliation, whose orthogonal distribution is totally
geodesic, is called a Riemannian foliation. For example, a foliation is Riemannian if it is
invariant under isometries generated by Killing vector fields. Note that X = X⊤ + X⊥,
where X⊤ is the projection of the vector X ∈ TM onto f(TM), and X⊥ =

∑
i η

i(X) ξi.
The next statement generalizes [6, Proposition 3], i.e., Q = idTM .
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Proposition 2.1. Let a metric weak para-f -structure be normal. Then the distribution

ker f is totally geodesic, the tensors N
(3)
i and N

(4)
ij vanish and

N
(2)
i (X,Y ) = ηi([Q̃X, fY ]). (16)

Proof. Assume N (1) = 0. Taking ξi instead of Y and using (4), we get

0 = [f, f ](X, ξi)− 2
∑

j
dηj(X, ξi)ξj = f2[X, ξi]− f [fX, ξi]− 2

∑
j
dηj(X, ξi)ξj . (17)

For the scalar product of (17) with ξj , using f ξi = 0, we get

dηj(ξi, ·) = 0; (18)

hence, N
(4)
ij = 0, see (15). Next, combining (17) and (18), we get 0 = [f, f ](X, ξi) =

f2[X, ξi]− f [fX, ξi] = f (£ξif)X. Applying f and using (2) and ηi ◦ f = 0, we achieve

0 = f2(£ξif)X = Q(£ξif)X −
∑

j
ηj([ξi, fX]) ξj . (19)

Further, (18) and (5) yield

0 = 2 dηj(fX, ξi)=(fX)(ηj(ξi))−ξi(η
j(fX))−ηj([fX, ξi]) = ηj([ξi, fX]). (20)

Since Q is non-singular, from (19)–(20) we get £ξif = 0, i.e, N
(3)
i = 0, see (14). Replacing

X by fX in our assumption N (1) = 0 and using (4) and (5), we get

0 = g([f, f ](fX, Y )− 2
∑

j
dηj(fX, Y ) ξj , ξi)

= g([f2X, fY ], ξi)− (fX)(ηi(Y )) + ηi([fX, Y ]), 1 ≤ i ≤ p. (21)

Using (2) and [fY, ηj(X)ξi] = (fY )(ηj(X))ξi + ηj(X)[fY, ξi], we rewrite (21) as

0=ηi([QX, fY ])−
∑

ηj(X) ηi([ξj , fY ]) + fY (ηi(X))− fX(ηi(Y )) + ηi([fX, Y ]).

Since (20) gives ηi([fY, ξj ]) = 0, the above equation becomes

ηi([QX, fY ]) + (fY )(ηi(X))− (fX)(ηi(Y )) + ηi([fX, Y ]) = 0. (22)

Finally, combining (22) with (13), we get (16). Using the identity

£ξi = ιξi d+ d ιξi , (23)

from (18) and ηi(ξj) = δij we obtain £ξi η
j = d(ηj(ξi)) + ιξi dη

j = 0. On the other hand,

by (11) we have (£ξi η
j)X = g(X,∇ξi ξj) + g(∇X ξi, ξj), X ∈ XM . Symmetrizing this and

using £ξi η
j = 0 and g(ξi, ξj) = δij yield

∇ξi ξj +∇ξj ξi = 0, (24)

thus, the distribution ker f is totally geodesic. □

Recall the co-boundary formula for exterior derivative d on a 2-form Φ,

dΦ(X,Y, Z) = (1/3)
{
X Φ(Y,Z) + Y Φ(Z,X) + Z Φ(X,Y )

−Φ([X,Y ], Z)− Φ([Z,X], Y )− Φ([Y,Z], X)
}
. (25)

The following result generalizes [6, Proposition 4].

Theorem 2.1. On a weak para-K-manifold the vector fields ξ1, . . . , ξp are Killing and the
following is valid:

∇ξi ξj = 0, 1 ≤ i, j ≤ p; (26)

thus, the distribution ker f is integrable and defines a totally geodesic Riemannian foliation
with flat leaves.
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Proof. By Proposition 2.1, the distribution ker f is totally geodesic, see (24), and N
(3)
i =

£ξif = 0. Using ιξiΦ = 0 and condition dΦ = 0 in the identity (23), we get £ξiΦ = 0. By
direct calculation we get the following:

(£ξi Φ)(X,Y ) = (£ξi g)(X, fY ) + g(X, (£ξif)Y ). (27)

From (27) we obtain (£ξi g)(X, fY ) = 0. To show £ξi g = 0, we will examine (£ξi g)(fX, ξj)
and (£ξi g)(ξk, ξj). Using £ξi η

j = 0, we get

(£ξi g)(fX, ξj) = (£ξi η
j)fX − g(fX, [ξi, ξj ]) = −g(fX, [ξi, ξj ]) = 0.

Next, using (24), we get (£ξi g)(ξk, ξj) = −g(ξi,∇ξk ξj +∇ξj ξk) = 0. Thus, ξi is a Killing
vector field, i.e., £ξig = 0. By dΦ(X, ξi, ξj) = 0 and (25) we obtain g([ξi, ξj ], fX) = 0, i.e.,
ker f is integrable. From this and (24) we get ∇ξk ξj = 0; thus, the sectional curvature is
K(ξi, ξj) = 0. □

Theorem 2.2. For a weak almost para-S-structure, we get N
(2)
i =N

(4)
ij = 0 and

(N (1)(X,Y ))⊥ = 2 g(X, fQ̃Y ) ξ̄ ; (28)

moreover, N
(3)
i vanishes if and only if ξi is a Killing vector field.

Proof. Applying (9) in (13) and using skew-symmetry of f we get N
(2)
i = 0. Equation (9)

with Y = ξi yields dηj(X, ξi) = g(X, f ξi) = 0 for any X ∈ XM ; thus, we get (18), i.e.,

N
(4)
ij = 0. Using (9) and

g([f, f ](X,Y ), ξi) = g([fX, fY ], ξi) = −2 dηi(fX, fY ) = −2Φ(fX, fY )

for all i, we also calculate

(1/2) g(N (1)(X,Y ), ξi) = −dηi(fX, fY )− g(
∑

j dη
j(X,Y ) ξj , ξi)

= −Φ(fX, fY )− Φ(X,Y ) = g(X, (f3 − f)Y ) = g(X, Q̃fY ),

that proves (28). Using (9) in the equality (£ξi dη
j)(X,Y ) = ξi(dη

j(X,Y ))−dηj([ξi, X], Y )−
dηj(X, [ξi, Y ]), and using (12), we obtain for all i, j

(£ξi dη
j)(X,Y ) = (£ξi g)(X, fY ) + g(X, (£ξif)Y ). (29)

Since £V = ιV ◦ d+ d ◦ ιV , the exterior derivative d commutes with the Lie-derivative, i.e.,
d ◦£V = £V ◦ d, and as in the proof of Theorem 2.1, we get that dηi is invariant under the
action of ξi, i.e., £ξi dη

j = 0. Therefore, (29) implies that ξi is a Killing vector field if and

only if N
(3)
i = 0. □

Theorem 2.3. For a weak almost para-C-structure, we get N
(2)
i = N

(4)
ij = 0, N (1) = [f, f ],

and (26) is valid; thus, the distribution ker f is tangent to a totally geodesic foliation with

the sectional curvature K(ξi, ξj) = 0. Moreover, N
(3)
i = 0 (1 ≤ i ≤ p) if and only if each ξi

is a Killing vector field.

Proof. By (13) and (15) and dηi = 0, the tensors N
(2)
i and N

(4)
ij vanish. Moreover, by (3)

and (29), respectively, the tensor N (1) coincides with [f, f ], and N
(3)
i = £ξif (1 ≤ i ≤

p) vanish if and only if each ξi is a Killing vector. From the equalities 3 dΦ(X, ξi, ξj) =
g([ξi, ξj ], fX) and 2 dηk(ξj , ξi) = g([ξi, ξj ], ξk) and conditions dΦ = 0 and dηi = 0 we obtain
[ξi, ξj ] = 0, 1 ≤ i, j ≤ p. Next, from dηi = 0 and the equality 2 dηi(ξj , X) + 2 dηj(ξi, X) =
g(∇ξi ξj +∇ξj ξi, X) we obtain (24): ∇ξi ξj +∇ξj ξi = 0. From the above we get (26). □

The following assertion generalizes [6, Proposition 1].
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Proposition 2.2. For a metric weak para-f -structure we get

2 g((∇Xf)Y,Z) = −3 dΦ(X, fY, fZ)− 3 dΦ(X,Y, Z)

− g(N (1)(Y, Z), fX) +
∑

i(N
(2)
i (Y,Z)ηi(X)

+ 2 dηi(fY,X)ηi(Z)− 2 dηi(fZ,X)ηi(Y )) +N (5)(X,Y, Z),

where a skew-symmetric w.r.t. Y and Z tensor N (5)(X,Y, Z) is defined by

N (5)(X,Y, Z) = (fZ) (g(X, Q̃Y ))− (fY ) (g(X, Q̃Z)) + g([X, fZ], Q̃Y )

− g([X, fY ], Q̃Z) + g([Y, fZ]− [Z, fY ]− f [Y,Z], Q̃X).

Proof. Using the skew-symmetry of f , one can compute

2 g((∇Xf)Y,Z) = X g(fY, Z)+(fY ) g(X,Z)−Z g(X, fY ) + g([X, fY ], Z)

+ g([Z,X], fY )− g([fY, Z], X) +X g(Y, fZ) + Y g(X, fZ)

− (fZ) g(X,Y ) + g([X,Y ], fZ) + g([fZ,X], Y )− g([Y, fZ], X). (30)

Using (6), we obtain

g(X,Z) = −Φ(fX,Z)− g(X, Q̃Z) +
∑

i

(
ηi(X) ηi(Z) + ηi(X) ηi(Q̃Z)

)
= −Φ(fX,Z) +

∑
i
ηi(X) ηi(Z)− g(X, Q̃Z). (31)

By the skew-symmetry of f and using (31) six times, (30) can be written as

2 g((∇Xf)Y, Z) = X Φ(Y, Z) + (fY )
(
− Φ(fX,Z) +

∑
i
ηi(X) ηi(Z)

)
− (fY ) g(X, Q̃Z)− Z Φ(X,Y )

+ Φ([X, fY ], fZ) +
∑

i
ηi([X, fY ])ηi(Z)− g([X, fY ], Q̃Z) + Φ([Z,X], Y )

− Φ([fY, Z], fX)−
∑

i
ηi([fY, Z]) ηi(X) + g([fY, Z], Q̃X) +X Φ(Y,Z)

+ Y Φ(X,Z)− (fZ)
(
− Φ(fX, Y ) +

∑
i
ηi(X) ηi(Y )

)
+ (fZ)g(X, Q̃Y )

+ Φ([X,Y ], Z) + g(f [−fZ,X], fY ) +
∑

i
ηi([fZ,X])ηi(Y )− g([fZ,X], Q̃Y )

+ g(f [Y, fZ], fX)−
∑

i
ηi([Y, fZ]) ηi(X) + g([Y, fZ], Q̃X).

We also have

g(N (1)(Y,Z), fX) = g(f2[Y, Z] + [fY, fZ]− f [fY, Z]− f [Y, fZ], fX)

= −g(f [Y,Z], Q̃X) + g([fY, fZ]− f [fY, Z]− f [Y, fZ]− [Y,Z], fX).

From this and (25) we get the required result. □

Remark 2.1. For particular values of the tensor N (5) we get

N (5)(X, ξi, Z) = −N (5)(X,Z, ξi) = g(N
(3)
i (Z), Q̃X),

N (5)(ξi, Y, Z) = g([ξi, fZ], Q̃Y )− g([ξi, fY ], Q̃Z),

N (5)(ξi, Y, ξj) = N (5)(ξi, ξj , Y ) = 0. (32)

The following corollary of Proposition 2.2 and Theorem 2.2 generalizes well-known
results with Q = idTM .

Corollary 2.1. For a weak almost para-S-structure we get

2 g((∇Xf)Y,Z) = −g(N (1)(Y, Z), fX) + 2 g(fX, fY ) η̄(Z)

− 2 g(fX, fZ) η̄(Y ) +N (5)(X,Y, Z), (33)
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where η̄ =
∑

i η
i. In particular, taking x = ξi and then Y = ξj in (33), we get

2 g((∇ξif)Y,Z) = N (5)(ξi, Y, Z), 1 ≤ i ≤ p, (34)

and (26); thus, the characteristic distribution is tangent to a totally geodesic foliation with
the sectional curvature K(ξi, ξj) = 0.

Proof. By Theorem 2.2, we have dηi = Φ and N
(2)
i = N

(4)
ij = 0. Invoking (9) and using

Theorem 2.2 and Proposition 2.2, we get (33). From (34) with Y = ξj we get g(f∇ξi ξj , Z) =
0, thus ∇ξi ξj ∈ ker f . Also, ηk([ξi, ξj ]) = −2 dηk(ξi, ξj) = −2 g(ξi, fξj) = 0; hence, [ξi, ξj ] =
0, i.e., ∇ξi ξj = ∇ξj ξi. Finally, from g(ξj , ξk) = δjk, using the ξi-derivation and the above
equality, we get ∇ξi ξj ∈ f(TM). This and ∇ξi ξj ∈ ker f prove (26). □

3. The tensor field h

Here, we apply for a weak almost para-S-manifold the tensor field h = (h1, . . . , hp),

where hi = 1
2N

(3)
i = 1

2£ξif . By Theorem 2.2, hi = 0 if and only if ξi is a Killing field.
First, we calculate

(£ξif)X
(10)
= ∇ξi(fX)−∇fXξi−f(∇ξiX−∇X ξi)=(∇ξif)X−∇fXξi+f∇Xξi. (35)

For X = ξi in (35), using g((∇ξif) ξj , Z) = 1
2N

(5)(ξi, ξj , Z) = 0, see (34) and (26), we get
hi ξj = 0. The following result generalizes the fact that for an almost para-S-structure, each
tensor hi is self-adjoint and commutes with f .

Proposition 3.1. For a weak almost para-S-structure, the tensor hi and its conjugate h∗
i

satisfy

g((hi − h∗
i )X,Y ) = (1/2)N (5)(ξi, X, Y ), (36)

∇ ξi = Q−1f h∗
i − f, (37)

hif + f hi = −(1/2)£ξiQ̃. (38)

Proof. (i) The scalar product of (35) with Y , using (34), gives

g((£ξif)X,Y ) = N (5)(ξi, X, Y ) + g(f∇X ξi −∇fX ξi, Y ). (39)

Similarly,

g((£ξif)Y,X) = N (5)(ξi, Y,X) + g(f∇Y ξi −∇fY ξi, X). (40)

Using (13) and (fX)(ηi(Y ))− (fY )(ηi(X)) ≡ 0 (this vanishes if X or Y equals ξj and also

for X and Y in f(TM)), we get N
(2)
i (X,Y ) = ηi([fY,X] − [fX, Y ]). Thus, the difference

of (39) and (40) gives 2 g((hi − h∗
i )X,Y ) = N (5)(ξi, X, Y ) − N

(2)
i (X,Y ). From this and

N
(2)
i = 0 (see Theorem 2.2) we get (36).

(ii) From Corollary 2.1 with Y = ξi, we find

g((∇Xf)ξi, Z)=− (1/2)g(N (1)(ξi, Z), fX)−g(fX, fZ)+(1/2)N (5)(X, ξi, Z). (41)

Note that 1
2N

(5)(X, ξi, Z) = g(hiZ, Q̃X), see (32). By (4) with Y = ξi, we get

[f, f ](X, ξi) = f2[X, ξi]− f [fX, ξi] = fN
(3)
i (X). (42)

Using (6), (10) and (42), we calculate

g([f, f ](ξi, Z), fX) = g(f2 [ξi, Z]− f [ξi, fZ], fX) = −g(f(£ξif)Z, fX)

= g((£ξif)Z,QX)−
∑

j
ηj(X) ηj((£ξif)Z). (43)
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From (9) we have g([X, ξi], ξk) = 2 dηk(ξi, X) = 2Φ(ξi, X) = 0. By (26), we get g(∇X ξi, ξk) =
g(∇ξiX, ξk) = −g(∇ξiξk, X) = 0 for X ∈ f(TM), thus

g(∇X ξi, ξk) = 0, X ∈ TM, 1 ≤ i, k ≤ p. (44)

Using (35), we get

2 g((∇ξif)Y, ξj)
(34)
= N (5)(ξi, Y, ξj)

(32)
= 0. (45)

From (35), (44) and (45) we obtain

g((£ξif)X, ξj) = −g(∇fX ξi, ξj) = 0. (46)

Since f ξi = 0, we find

(∇Xf) ξi = −f ∇X ξi. (47)

Thus, combining (41), (43) and (46), gives

−g(f ∇Xξi, Z) = g(X,QZ)−g(hiZ,QX)−
∑

j η
j(X)ηj(Z)+g(hiZ, Q̃X)

= g(hiZ,X) + g(X,QZ)−
∑

j η
j(X) ηj(Z) + g(hiZ, Q̃X). (48)

Replacing Z by fZ in (48) and using (2), (44) and f ξi = 0, we achieve (37): g(Q∇X ξi, Z) =
g((fQ− hif)Z,X) = g(f(h∗

i −Q)X,Z).

(iii) Using (2), we get f∇ξif + (∇ξif)f = ∇ξi (f
2) = ∇ξiQ̃−∇ξi(

∑
j η

j ⊗ ξj), where

∇ξi(
∑

j η
j ⊗ ξj) = 0 by (26). From the above and (35), we get (38):

2(hif + fhi)X = f(£ξif)X + (£ξif)fX = f(∇ξif)X + (∇ξif)fX

+ f2∇X ξi −∇f2X ξi = [Q̃X, ξi]− Q̃ [X, ξi] = −(£ξiQ̃)X.

We used (26) and (44) to show
∑

j

(
g(∇X ξi, ξj) ξj − g(X, ξj)∇ξj ξi

)
= 0. □

Remark 3.1. For a weak almost para-S-structure, we get 2 g(hiX, ξj) = −g(∇fX ξi, ξj) = 0
by (45); thus, f(TM) is hi-invariant; moreover, h∗

i ξj = 0.

The next statement follows from Propositions 2.1 and 2.2.

Corollary 3.1. For a weak para-K-structure, we have

2 g((∇Xf)Y, Z) =
∑

i

(
2 dηi(fY,X) ηi(Z)− 2 dηi(fZ,X) ηi(Y )

+ ηi([Q̃Y, fZ]) ηi(X)
)
+N (5)(X,Y, Z).

In particular, using (36), gives 2 g((∇ξi f)Y,Z) = ηi([Q̃Y, fZ]) for 1 ≤ i ≤ p.

4. The rigidity of a para-S-structure

Here, we prove the rigidity theorem for para-S-manifolds.

Proposition 4.1. For a weak para-S-structure we get

g((∇Xf)Y, Z) = g(QX,Z) η̄(Y )− g(QX,Y ) η̄(Z) + 1
2N

(5)(X,Y, Z)

−
∑

j η
j(X)

(
η̄(Y ) ηj(Z)− ηj(Y ) η̄(Z)

)
. (49)

Proof. Since N (1) = 0, by Corollary 2.1, we get (49). □

Remark 4.1. Using Y = ξi in (49), we get f∇Xξi = −f2X − 1
2 (N

(5)(X, ξi, ·))♭, which
generalizes the equality ∇X ξi = −fX for a para-S-structure, e.g., [6].

It was shown in [9] that a weak almost para-S-structure with positive partial Ricci
curvature can be deformed to an almost para-S-structure.
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Theorem 4.1. A metric weak para-f -structure is a weak para-S-structure if and only if it
is a para-S-structure.

Proof. Let (f,Q, ξi, η
i, g) be a weak para-S-structure. Since N (1) = 0, by Proposition 2.1,

we get N
(3)
i = 0. By (32), we then obtain N (5)(· , ξi, · ) = 0. Recall that Q̃X = QX −X

and ηj(Q̃X) = 0. Using the above and Y = ξi in (49), we get

g((∇Xf) ξi, Z) = g(QX,Z)− ηi(QX) η̄(Z) +
∑

j
ηj(X)

(
ηj(Z)− δji η̄(Z)

)
= g(QX⊤, Z) +

∑
j
ηj(Z)

(
ηj(QX)− ηi(QX)

)
−

∑
j
ηj(Z)

(
ηj(X)− ηi(X)

)
= g(QX⊤, Z) +

∑
j
ηj(Z)

(
ηj(Q̃X)− ηi(Q̃X)

)
= g(QX⊤, Z). (50)

Using (47), we rewrite (50) as g(∇X ξi, fZ) = g(QX⊤, Z). By the above and (2), we find
for all i,

g(∇X ξi + fX, f Z) = 0. (51)

Since f is skew-symmetric, applying (49) with Z = ξi in (7), we obtain

g([f, f ](X,Y ), ξi) = g([fX, fY ], ξi) = g((∇fXf)Y, ξi)− g((∇fY f)X, ξi)

= g(QfY,X)− g(QfY, ξi) η̄(X)− g(QfX, Y ) + g(QfX, ξi) η̄(Y ). (52)

Recall that [Q, f ] = 0 and f ξi = 0. Thus, (52) yields g([f, f ](X,Y ), ξi) = 2 g(QX, fY ).
From this, using the definition of N (1), we get

g(N (1)(X,Y ), ξi) = 2 g(Q̃X, fY ). (53)

From N (1) = 0 and (53) we get g(Q̃X, fY ) = 0 (X,Y ∈ XM ); thus, Q̃ = 0. □

For a weak almost para-S-structure all ξi are Killing if and only if h = 0, see The-
orem 2.2. The equality h = 0 holds for a weak para-S-structure since it is true for a
para-S-structure, see Theorem 4.1.

Corollary 4.1. For a weak para-S-structure, ξ1, . . . , ξp are Killing vector fields; moreover,
ker f defines a Riemannian totally geodesic foliation.

5. The characteristic of a weak para-C-structure

Here, we show that a weak para-f -structure with parallel tensor f reduces to a weak
para-C-structure, Recall that ∇X ξi = 0 holds on para-C-manifolds.

Proposition 5.1. Let (f,Q, ξi, η
i, g) be a weak para-C-structure. Then

2 g((∇Xf)Y,Z) = N (5)(X,Y, Z). (54)

Using (54) with Y = ξi and (2), we get g(∇X ξi, QZ) = − 1
2N

(5)(X, ξi, fZ).

Proof. Using Theorem 2.3, from Proposition 2.2 we get

2 g((∇Xf)Y,Z) = −g([f, f ](Y,Z), fX) +N (5)(X,Y, Z). (55)

From (55), using condition [f, f ] = 0 we get (54). □

Theorem 5.1. A metric weak para-f -structure with ∇f = 0 and condition [ξi, ξj ]
⊥ = 0 is

a weak para-C-structure with N (5) = 0.
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Proof. Using condition ∇f = 0, from (7) we obtain [f, f ] = 0. Hence, from (3) we get
N (1)(X,Y ) = −2

∑
i dη

i(X,Y ) ξi, and from (7) with Y = ξi we obtain

∇fX ξi − f ∇X ξi = 0, X ∈ XM . (56)

By (25), 3 dΦ(X,Y, Z) = g((∇Xf)Z, Y ) + g((∇Y f)X,Z) + g((∇Zf)Y,X); hence, using
condition ∇f = 0 again, we get dΦ = 0. Next,

N
(2)
i (Y, ξj) = −ηi([fY, ξj ]) = g(ξj , f∇ξiY ) = 0.

Setting Z = ξj in Proposition 2.2, and using ∇f = 0 and the properties

dΦ = 0, N
(2)
i (Y, ξj) = 0, N (1)(X,Y ) = −2

∑
i
dηi(X,Y ) ξi,

we find 0 = 2 dηj(fY,X)−N (5)(X, ξj , Y ). By (32) and (56),

N (5)(X, ξj , Y ) = g([ξj , fY ]− f [ξj , Y ], Q̃X) = g(∇fY ξj − f ∇Y ξj , Q̃X) = 0;

hence, dηj(fY,X) = 0. From this and g([ξi, ξj ], ξk) = 2 dηk(ξj , ξi) = 0 we get dηj = 0. By

the above, N (1) = 0. Thus, (f,Q, ξi, η
i, g) is a weak para-C-structure. Finally, from (54)

and condition ∇f = 0 we get N (5) = 0. □

Corollary 5.1. A normal metric weak para-f -structure with ∇f = 0 is a weak para-C-
structure with N (5) = 0.

Proof. By N (1)=0, we get dηi=0, ∀i. As in Theorem 5.1, we get dΦ = 0. □

Example 5.1. Let M be a 2n-dimensional smooth manifold and f̃ : TM → TM an
endomorphism of rank 2n such that ∇f̃ = 0. To construct a weak para-C-structure on
M×Rp, take any point (x, t1, . . . , tp) and set ξi = (0, d/dti), η

i = (0, dti), f(X,Y ) = (f̃X, 0)

and Q(X,Y ) = (f̃ 2X, Y ), where X ∈ TxM and Y =
∑

i Y
iξi ∈ Rp

t . Then (2) holds and
Theorem 5.1 can be used.

6. Conclusions

It was shown that the weak para-f -structure is a useful tool for studying totally
geodesic foliations and Killing vector fields. We proved that a weak para-S-structure is a
para-S-structure (the rigidity theorem) and that a weak para-f -structure with parallel tensor
f reduces to a weak para-C-structure.
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