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A NONLINEAR SECOND-ORDER HYPERBOLIC DIFFUSION
SCHEME FOR IMAGE NOISE REDUCTION

Tudor BARBU!

This article describes a novel nonlinear second-order PDE model for image
filtering. The proposed denoising model is based on a second-order hyperbolic
equation and provides effective detail-preserving image noise removal results. The
well-posedness of this nonlinear PDE scheme is then investigated in this paper. A
finite-difference based explicit numerical approximation scheme is constructed next
for our continuous model. Our successfully performed denoising experiments are
then described.
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1. Introduction

A high number of nonlinear partial differential equation (PDE) based
models have been introduced in the last quarter of century to tackle some
traditionally engineering problems, such as image denoising and restoration. They
have important advantages over the conventional image filters and linear PDE-
based approaches [1], such as overcoming the blurring effect, preserving edges
and other image details, and having the localization property.

The vast majority of the nonlinear PDE schemes for image enhancement
have a parabolic character [2]. We could mention here the anisotropic diffusion
models inspired by the well-known Perona-Malik denoising scheme [2,3] and the
variational PDE algorithms derived from the influential TV Denoising model [2,
4-6]. We also provided numerous nonlinear PDE-based image restoration
approaches in the past, which use parabolic diffusion equations [7-9].
Unfortunately, the second-order nonlinear parabolic generate the undesired
staircasing, or blocky, effect [10].

Numerous nonlinear diffusion-based denoising techniques that alleviate
this blocky effect have been proposed in recent years. The nonlinear fourth-order
PDE-based models, such as those inspired by You-Kaveh [11] or LLT [12]
schemes, remove successfully the staircasing effect [13]. We also developed some
effective fourth-order diffusion-based techniques that provide satisfactory
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denoising results [14]. The disadvantage of the most 4" order PDE-based
smoothing methods is that they are usually affected by other unintended effects,
like blurring or speckle noise.

So, we consider hyperbolic diffusion-based denoising solutions that would
overcome these undesired effects which destroy the image details. We developed
linear second-order hyperbolic PDE models for image denoising, as modified
Gaussian kernels, which were disseminated in some published papers [15] or
papers being under consideration.

Our linear hyperbolic PDE-based techniques provide satisfactory noise
reduction results, execute very fast, and also have the localization property [16],
which means the solution is propagating with finite speed. Unfortunately they are
still affected by blurring effect, therefore we consider their improvement in that
direction. Thus, we can non-linearize the linear hyperbolic diffusion methods to
obtain that improvement.

Such a nonlinear second-order hyperbolic PDE-based image noise removal
technique is proposed in this article. Our novel PDE model is described in the
next section, and a rigorous mathematical treatment on its well-posedness is
performed in the third section. An explicit numerical approximation scheme based
on the finite-difference method is proposed in the fourth section. Our successfully
image denoising experiments and the performed method comparison are discussed
in the fifth section. Our paper finalizes with a conclusions section and a list of
references.

2. Second-order hyperbolic PDE-based denoising model

In this section we consider a PDE-based image noise reduction scheme
that uses a second-order nonlinear hyperbolic diffusion model. The proposed PDE
model is composed of a 2" order hyperbolic equation and several boundaries
conditions:
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where the parameters y,7 € (0,1], a € (0,0.4], Q c R? and u, represents
the initial noisy image.
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The edge-stopping function &, of this PDE model must be properly

modeled. We construct it in the following form that depends on the current state
of the image u through a diffusivity conductance parameter modeled as a function,

k (u):
B
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where f € (1,17 ], and the function k& () is modeled by using some statistics of

£, :[0,0) > [0,00), &, (5) =

2)

the gradient of the evolving image, as follows:
k() = & - p(|Vul) - v - ord (u) 3)

where ¢ € (23 ], v € (0,1), ord(u) € {I,...,N} returns the order of the current
state of u in the evolving image sequence, and 4 ( ) represents the averaging

(mean) operator.

The mathematical model given by (1) — (3) is constructed as an improved
and nonlinear version of a past linear hyperbolic PDE model for image denoising
proposed by us [15]. That linear PDE-based approach reduces successfully the
Gaussian noise but cannot overcome completely the blurring effect. Given its
nonlinear character, achieved by replacing a constant with a function of gradient

magnitude éu(IVu”) the PDE-based technique described here would provide a

much better deblurring.
A mathematical treatment of this second-order hyperbolic PDE model is

provided in the next section. The proper selection of function &, and the well-
posedness of this nonlinear PDE scheme will be rigorously investigated.

3. Mathematical investigation of the hyperbolic scheme

First, we analyze if the diffusivity function £, provided by (2) is properly
modeled for an effective restoration [2,3,8]. Thus, the considered function is

positive, since &, (s) = 0,Vs = 0. Also, it is monotonically decreasing, because
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therefore we obtain
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£ (s,)= £ < £ =£,(s).

Sy ’ Sy B ’ Sy
(k u)j +k(u)ln(k(u)J (k u)J +k(u)ln(k(u)]

This function converges to 0, because lim &, (s)=0. So, ¢

u

represents a good edge-stopping function for the PDE model (1), leading to
satisfactory image denoising results.

The well-posedness of our hyperbolic model is another problem that has to
be investigated. Thus, the PDE given by (1) is equivalent to the next equation:

0%u
ot?

where EL,'(S)z &, ('\/S_)VS > 0.

The PDE model (4) accepts solutions if some certain conditions are met.
Thus, we must have &, (s )> 0 thatleadsto &, (s )> 0 , a condition that is

satisfied. Also, &, must satisfy a bounding condition, that is

Vu||2)+ a(u—uo)zo 4)

ou ~
+n? ==~ div
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FK > 0:&,(s)< K(s>+s+1)Vs>0 5)

If this condition is also satisfied, then there is a solution to (1) in some generalized
sense, according to [17]. The relation given by (5) is equivalent to

§u(s)= s SK(S2+S+1)

N ’ N
(k(u)J + k(u)ln(k(u)j

which leads to K > s

) s Y s
(s + s+ 1(““)] + k(u)ln(k(u)J

such a K value exists for any s > 0, therefore (5) holds. In fact, in [17,18] it is
proved the existence and uniqueness of a solution u = u (¢, x), such that:

. Of course,

we L’0,7:H)(Q) %ELZ((O,T)XQ) (6)

where H , represents the standard Sobolev space [18]. Our nonlinear hyperbolic
diffusion-based model has also the localization property [16], its unique and weak
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solution propagating with finite speed. Besides the past linear model, the insights
of our PDE denoising scheme draw also from this localization property. Because
the PDE solution propagates with finite speed, the evolving image will remain
quite close to the initial one. This solution is numerically approximated by the
consistent PDE discretization scheme proposed in the following section.

4. Numerical approximation algorithm

We develop a consistent numerical approximation algorithm for our
continuous model given by (1) - (3), which converges fast to the unique solution
of its nonlinear second-order hyperbolic diffusion equation. The proposed
numerical discretization scheme is based on the well-known finite-difference
method [19]. Thus, we use a space grid size of 4 and a time step A¢. We quantize
the space and time coordinates as follows:

x=ih,y=jh,t=nAt,Vie{0,l,.,1},je{0,l,.,Jhne{0l., N} (7)
The main equation of this nonlinear hyperbolic PDE model,
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The equation (8) is then discretized, by using the finite differences [19], as
following:

/4 Sy (“VL‘”) Viu+ Ol(u —u, ) =0, can be written as:
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We may consider the parameter values 2 = 1 and Az =1, therefore (9)
leads to the following explicit numerical approximation scheme:
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where fu(\/(u”(i+l,j)—u”(i—l,j))2 + (u"(i,j+1)—u”(i,j—1))2j is computed

by applying (2) and (3), u° (i, j) = u, (i, j) and n > 0.

Our iterative filtering scheme receives an initial [/ x J | degraded image as
input and applies repeatedly the procedure given by (10), for each n e {l,.., N }
This numerical approximation algorithm is consistent to the PDE model provided
by (1), converging quite fast to an approximation of its solution, representing the

optimal image denoising, u"*'.

5. Experiments

The proposed nonlinear hyperbolic PDE-based noise removal approach
was tested on numerous degraded images. The USC-SIPI database, containing 4
volumes, was the main collection used in our experiments. These tests were
performed on Volume 2 (A4erials) of USC-SIPI, composed of 38 images of
[512><512] and [1024x1024] sizes, Volume 3 (Miscellaneous), containing 44
images of [256x256], [512x512] and [1024x1024] sizes, and Volume 4
(Sequences), containing 69 images of [256>< 256] and [512><512] sizes. The images
were corrupted with various levels of Gaussian noise, which were generated by
considering various values for the # (mean) and o (variance) parameters.

Our denoising model not only removes successfully the image noise, but
also preserves the important details, such as the image boundaries. It also
overcomes the undesired image effects, like image blurring effect, staircase
(blocky) effect and speckle noise. We have identified on a trial and error basis the
following set of PDE model’s parameter values that provide optimal image
denoising results:

y=23,7=158=12,0=012,6=08,v=02,At=1, h=1,N =19 (11)

One can observe that the number of iterations N is quite low, which means
the proposed filtering scheme runs fast enough. The execution time is around 0.5
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seconds. Our filtering results are influenced by the power of noise. If the Gaussian
noise parameters, /# and o, are increased, the image will degrade much more

and the denoising process will require a higher number of iterations, N, which
means a greater time cost. The restoration result is also influenced by this number
of iterations. An N value exceeding the number of steps related to the optimal
denoising would produce a further degradation of the evolving image.

The performance of our image enhancement method was assessed by
using measures like Structural Similarity Image Metric (SSIM), Peak Signal-to-
Noise Ratio (PSNR) and Norm of Error (NE) Image. The performed method
comparisons show that our nonlinear hyperbolic diffusion-based technique
outperforms both the classic and PDE-based image enhancement approaches,
producing higher SSIM values than those filtering solutions. This denoising
method provides a considerably better image noise removal than well-known 2D
conventional filters [1], such as Average, 2D Gaussian, and Wiener filters. Unlike
these classic denoising schemes, the proposed hyperbolic model overcomes also
the image blurring effect, preserving successfully the essential features, like image
edges. Our nonlinear diffusion technique outperforms also the linear PDE-based
denoising algorithms [15], providing an improved denoising and avoiding the
undesired effects. We found it performs slighty better than the LLMMSE filter
developed by Lee in 1980 [20].

Many state-of-the-art nonlinear PDE-based noise removal methods are
also outperformed by our denoising scheme. This 2" order hyperbolic diffusion-
based model achieves much better denoising results than some popular second-
order anisotropic diffusion-based schemes, such as Perona-Malik model [3], TV
Denoising [4] and Weickert diffusion [2]. Also, it executes faster than these
methods and, unlike them, do not generate staircasing effect [10]. Also, the
described second-order PDE noise reduction technique outperforms some
influential nonlinear fourth-order diffusion based techniques, like You-Kaveh
scheme [11] or LLT [12]. The hyperbolic diffusion model removes successfully
not only the blurring effect, but also the unintended speckle noise, that are often
generated by the fourth-order PDE denoising models. Our iterative scheme runs
much faster than those corresponding to the 4th-order PDE-based approaches.
Method comparisons and restoration results are described in the next table and
figure. As one can see in Table 1, the proposed model gets higher SSIM values
than conventional filters, second-order and fourth-order PDE-based algorithms,
and even the LLMMSE — Lee filter with a [3 x 3] noise estimation window.

Table 1
The SSIM values corresponding to several image filtering techniques
Filter This Avg. 2D LLMMSE | Perona- TV You-
model Gaussian filter Malik Denoising Kaveh
SSIM | 0.6342 | 0.5625 0.5498 0.6239 0.6183 0.5857 0.6014
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a) Original image b) Degraded image ¢} Our hyperbaolic PDE model

e) 2D Gaussian filter

e

h) TV Denoising

Fig. 1. Gaussian noise removal provided by various filtering techniques

The image enhancement results produced by these denoising techniques
are displayed in Fig. 1. Original [51 2 % 512] Lena image is displayed in (a), while
the image affected by Gaussian noise with parameters x# = 0.21 and o* = 0.02 is
displayed in (b). The image denoising in (c), provided by our nonlinear PDE
model looks better than the smoothing achieved by the [3 x 3] 2D filters from (d)
- (f) (Average, Gaussian, LLMMSE), Perona-Malik scheme (g), TV denoising (h)
and You-Kaveh algorithm (i). One can also see that the unintended image effects,
which are still present in the figures (d) - (i), are completely removed in the (c)
figure.
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6. Conclusions

We have proposed a novel nonlinear hyperbolic PDE-based image noise
removal technique in this article. The effective second-order hyperbolic diffusion
model proposed here may be viewed as a nonlinear and improved variant of our
past linear PDE denoising scheme [15].

Also, besides the linear PDE methods, our approach described here
outperforms the most popular classic two-dimensional filters [1] and both second-
order and fourth-order nonlinear diffusion-based methods [2-14]. It removes a
greater amount of Gaussian noise and preserves better the boundaries and other
image details. Our hyperbolic technique overcomes the blurring effect, generated
by the conventional filters and fourth-order PDE-based models, and reduces
considerably the staircasing effect that affects the most anisotropic diffusion
models [10]. It also avoids successfully the speckle noise, often generated by the
nonlinear 4" - order diffusion schemes [11-13].

A mathematical treatment has been also provided for this proposed PDE
denoising scheme. The proper modeling of its diffusivity function and its well-
posedness is investigated in this paper. We have also constructed a robust and
fast-converging finite-difference based numerical discretization scheme that is
consistent to our nonlinear PDE model.

We also intend to further improve this nonlinear hyperbolic PDE image
noise removal scheme. Thus, we are going to investigate other diffusivity
functions for this model. We also consider transforming it into a possible more
performant fourth-order PDE denoising scheme, as part of our future research in
the image enhancement domain.
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