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EFFECT OF MECHANICAL AND GEOMETRICAL 

PROPERTIES ON DYNAMIC BEHAVIOR OF 

ASYMMETRICAL COMPOSITE SANDWICH BEAM WITH 

VISCOELASTIC CORE 

Yacine KARMI1, Youcef KHADRI2, Sabiha TEKILI3, Ali DAOUADJI4, 

El Mostafa DAYA5 

This paper presents an approach to the analysis of free and forced vibrations 

of strengthened sandwich beam with viscoelastic core and composite coats by 

considering geometrical asymmetry. A higher-orde theory is used considering 

longitudinal and rotational inertias as well as the asymmetry of sandwich beam. The 

formulation of the equation of motion is carried out by Hamilton principle. A 

comparative study to validate the proposed numerical approach is performed 

comparing the obtained results with other findings. Moreover, a parametric analysis 

is carried out with different configurations of the sandwich beams in order to 

analyze the influence of different parameters on the dynamic behavior. The analysis 

highlighted from the study of fiber orientation influence on dynamic behavior, that 

the structure damping can be improved by adopting a better composite 

configuration. However, the obtained results from the thickness ratio effect showed 

that the sandwich structure has more dissipative capacity for low values of 

viscoelastic thickness and it is more efficient for asymmetrical sandwich beam.  

Keywords: vibration; sandwich; viscoelastic material; composite; loss factor; 

finite element. 

1. Introduction

In recent decades, viscoelastic materials have undergone a great evolution 

in several fields such as civil engineering, aeronautics, and in the automobile 

industry, because of their specific mechanical properties. Viscoelastic materials 

attenuate structural vibrations generated from various dynamic loadings, the 

damping is provided to the structure through of its property of passing from a 

slight rigid state (rubbery state) into a rigid state (glassy state). The first studies on 

sandwich structures with viscoelastic core have been carried out by Kerwin [1] 

and Ungar et al [2], in these studies an analytical expression of the loss factor as a 

function of the structure characteristics was employed. Other analytical models 

were proposed by Ungar [3], Yu [4] to characterize damping properties of 

viscoelastic sandwich beams based on previous studies [1-2]. Then, DiTaranto [5] 

defined an equation describing the damping properties (damped pulsation, loss 

factor) taking into account different boundary conditions. However, vibration 
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analysis of sandwich beam with a constant modulus of viscoelastic core has been 

widely investigated. Rao [6] used Hamilton energetic principle to formulate the 

governing equation of vibration motion. In addition, several numerical approaches 

based on finite element method were assumed for composite structures 

considering more complex geometries. The authors used several kinematic models 

describing the displacement field of three layers [7-9]. Recently, kinematic 

models consist of describing the layer-by-layer displacement field in order to 

improve accuracy, leading to zigzag-type model that combine at the same time the 

kinematic models of Rao [6] and Reddy [10]. Arikoglu and Ozkol [11] studied the 

dynamic behavior of three-layer composite beam with a viscoelastic core using 

the differential transformation method (DTM) to solve governing equation of 

motion obtained by Hamilton principle. Irazu and Elejabarrieta [12] analyzed the 

design parameters influence on the dynamic properties of thin sandwich beams 

with different types of viscoelastic layers and metallic skins using bandwidth 

method. Daya and Potier-Ferry [13] employed the asymptotic numerical method 

for the eigenvalue problem characterizing the free vibration of viscoelastic 

sandwich beams taking into account the frequency dependence of the viscoelastic 

core. Daya et al [14] applied a nonlinear theory to study the dynamic responses of 

sandwich beams with viscoelastic core. Bilasse et al [15] have used the 

Diamant approach to solve the eigenvalue problem in order to analyze the linear 

and nonlinear vibration of viscoelastic sandwich beams. However, Other 

researchers have used a constraining layer in viscoelastic sandwich beams to 

improve the structure damping. This type of structure named Passive Constrained 

Layer Damping “PCLD” is studied by Cai et al [16], in this work, an analytical 

approach is proposed to examine the dynamic response using the Lagrange energy 

method. The model of Mead and Markus [17] was used to describe the kinematic 

relationships between the three layers. In the same line, an analytical approach 

have proposed by Cai et al [18] to analysis the vibratory responses for a composite 

beam with a viscoelastic core layer using an active treatment Active Constrained 

Layer Damping (ACLD), which the elastic constraining layer in the PCLD 

principle is replaced by a piezoelectric layer in order to improve the energy 

dissipation. Arvin et al [19] presented a higher order theory of sandwich with 

composite faces and viscoelastic core, transverse displacements are considered 

independent for both face layers and a linear variation along the viscoelastic layer 

depth.  

However, very few researchers have focused on the impact of mechanical 

and geometrical properties on the dynamic behavior of passive damped structures, 

when in fact this is very important in the conception of structures with viscoelastic 

core. The present paper is focused on dynamic behavior of asymmetrical 

viscoelastic sandwich beams with different mechanical and geometrical 

configurations under a dynamic point load. A higher theory is used for the 
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asymmetrical sandwich composite beam with viscoelastic core and composite 

face, where the longitudinal and rotational inertias are considered. In addition, the 

theory of Euler-Bernoulli is applied to the faces and Timoshenko theory to the 

viscoelastic core [20].  

2. Mathematical Formulation 

The dynamic behavior of asymmetric PCLD sandwich beam (figure1) is 

carried out in the context of small deformations. The assumptions considered by 

Karmi et al [21] and Tekili et al[22] are modified to take into account the effect of 

longitudinal and rotational inertia as well as the asymmetry of the sandwich. The 

displacement field beam is given by Rao's zigzag model [9] based on the first-

order deformation theory, where Euler-Bernoulli’s theory is applied to the 

composite sandwich faces and Timoshenko's theory to the viscoelastic core. 

 
 

Fig.1. Asymmetric sandwich beam configuration and deformation 

where u0i is the longitudinal displacement at the middle plane of ith layer. h1, h2 

and h3 represent the thickness of the upper, central and lower layers, respectively. 

w is the transverse displacement of sandwich, β is the rotation of the normal of the 

central layer. On the basis of the researches of references [21-22] and considering 

the new assumptions of the asymmetrical sandwich beam, the application of the 

variational formulation to the Hamilton’s principle yields the governing equation 

of motion:  
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where Si  refers the cross-section area of the ith layer, Ni and Mi  correspond to the 

normal force and the bending moment in the ith layer and T is the shear force in 

the viscoelastic layer, which are given by: 
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where Ei and Ii  denote the Young’s modulus and the quadratic moment of the 

cross section of the ith layer respectively, E2*(ω) and υ2 are the frequency 

dependent Young's modulus and the poisson’s ratio of the viscoelastic layer 

respectively.  

Because of the asymmetry of the sandwich beam, the longitudinal 

displacements at the middle plane of the face layers are different and can be 

expressed as a function of the displacements at the middle plane of the central 

layer by :  
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3. Finite element discretization 

The discretization of the equation of motion Eq.(16) by the finite element 

method and the expression of displacement field as a function of the nodal 

displacements Ue make it possible to form the elementary behavior matrices. 

2; ;  with   i=1  , 
T
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Nw, Nu and Nβ are the interpolation functions. An element with two nodes is used 

in this study, the number of degrees of freedom is four (the longitudinal 

displacement u, the transverse displacement w, the rotation of the normal of the 

central layer β and the rotation θ = dw⁄dx.  

The elementary matrix system that describes the vibratory behavior of the 

sandwich beam can be obtained by replacing Eqs. (1-4) into Eq.(1), the following 

expression is obtained:  
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where[M]e, [K]e and {F}e are the elementary mass matrix, stiffness matrix and 

nodal force vector expressed by: 
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with Le is the element length, the global matrix system describing the vibratory 

behavior of the sandwich beam after the assembly of the elementary matrices is 

written in the form: 

     M U K U F+ =     (9) 

where [M], [K] and {F} are respectively the mass matrix, the stiffness matrix and 

the global nodal force vector. This equation can be solved using harmonic balance 

method. In order to study the free vibration and establish the modal basis, it is 

required to solve the eigenvalue problem that can be determined using the QR  

method combined to the asymptotic numerical method implemented with Matlab 

code [21].  

4. Results and discussions   

In the following sections, the dynamic behavior of viscoelastic sandwich 

beams is studied using several models of configuration presented in figure 1.  

Firstly, comparative studies are carried out to validate the proposed numerical 

approach. Next, dynamic responses of the sandwich beams are examined under a 

harmonic point load in the form: 

( ) ( )0 0, i tP x t P x x e = −    (10) 

with δ is the Dirac distribution, P0 is the force magnitude and x0 is the position of 

the force, where x0={L, L/2}for cantilever and simply supported beams, 

respectively. Different beam configurations such as fiber orientation of the face 

layers and thickness ratio are studied to evaluate their effects on dynamic 

behavior. The model of viscoelastic behavior is considered with the frequency 

independent viscoelastic modulus Eq.(11), this model is widely used to study the 

viscoelastic behavior. 

( )02 1 ηcE E i= +     (11) 

with E0 is the modulus of delayed elasticity and ηc is the viscoelastic loss factor. 
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4.1. Results and validation 

The obtained results for a cantilever sandwich beam with viscoelastic core 

placed between two isotropic elastic layers are compared with those obtained by 

Arvin et al [19]. The mechanical and geometrical properties of the viscoelastic 

sandwich beam are given in table 1. 
Table1  

Mechanical and geometrical properties of the viscoelastic sandwich [19] 
 Upper face Viscoelastic core Lower face 

Young's modulus (Pa) E1=7.03×1010 E0=2.097×106 E3=7.03×1010 

Poisson's ratio υ υ1=0.3 υ2=0.49 υ3=0.3 

Density (Kg/m3) Ρ1=2770  Ρ2=970  ρ3=2770 

Thickness (mm) h1=1.52 h2=0.127 h3=1.52 

Length (mm); Width (mm) L=177.8 ×10-3; l=12.7×10-3 

The damping properties corresponding to the first five modes are reported 

in table 2. By comparison, it can be seen that the obtained results are very close 

with those obtained by Arvin et al [19]. The precision of the results is illustrated 

by the residual error R(U, λ)=‖([K]-ω2 [M])U‖ where R<0.5×10-3, which approves 

the effectiveness of the proposed approach. 
Table 2  

Natural frequencies and loss factor for cantilever sandwich  

  Proposed formulation Arvin et al [19]  

ηc mode ω (Hz) η R (U, λ) ×10-3 f (Hz) η 

0.3 

1 65.016 0.0812 0.3315 64.985  0.08181   

2 300.31 0.0706 0.4310 299.47  0.07230  

3 749.78 0.0485 0.3553 749.77  0.04642  

4 1408.3 0.0275 0.4875 1404.1  0.02681 

5 2295.5 0.0125 0.4309 2276.5 0.01725 

In this section, the dynamic responses of sandwich beams with Passive 

Constrained Layer Damping “PCLD” under a harmonic point load are 

investigated, where the properties of the sandwich are presented in table 3. 
Table 3 

Mechanical and geometrical properties of the PCLD sandwich with viscoelastic core[16] 
 Upper face Viscoelastic core Lower face 

Young's modulus (Pa) E1 =49×109 E2=2G(1+υ2) E3=70×109 

Shear Modulus (MPa) 
Soft 

/ 
G=0.895 + 1.3067i 

/ 
Hard G=9.89 + 14.4394i 

Poisson's ratio υ υ1=0.3 υ2=0.49 υ3=0.3 

Density (Kg⁄m3) ρ1 =7500  ρ2=1000  ρ3=2110  

Thickness (mm) h1=2  h2=1  h3=4  

Length (m); Width (m) L=0.4; l=0.03 

The frequency responses of displacement obtained by solving Eq. (9) of 

the considered sandwich beam are compared with the responses obtained by Cai 

et al [16], the responses are compared for both soft and hard viscoelastic core 

models and for a cantilever beam. The obtained responses by the analytical 
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approach of reference [16] and with the proposed finite element approach at the 

tip of the beam are illustrated in Figs. 2. 

 
Fig.2. Comparison of frequency responses of the sandwich beam with viscoelastic core between 

present approach and the analytical approach of the reference [16] "a-hard core; b-soft core" 

It can be seen that the natural frequencies obtained by Cai and al [16] are 

underestimated compared to the proposed approach results obtained for two 

models of the hard and soft viscoelastic core. In addition, the amplitudes of the 

frequency responses at resonant frequencies of reference [16] for the hard-core are 

lower than the corresponding results of the present study even at low frequencies. 

On the other hand, the amplitudes obtained by the proposed approach for the 

second soft-core model are lower than those obtained by Cai and al [16]. 

4.2. Parametric study 

The effects of different beam configuration parameters such as the fiber 

orientation of the face layers θ, the thickness ratio h/H and the asymmetry of 

sandwich beam on dynamic behavior are analyzed considered in this parametric 

study. The mechanical and geometrical properties of the considered sandwich 

beam strengthened by composite coats are given in table 4 and figure 1. 
Table 4  

Mechanical and geometrical properties of the strengthened sandwich with viscoelastic core 

 Upper composite / Lower Face Viscoelastic core 

Young's modulus (Pa) E11=98×109; E22=7.998×109; G12=5.69×109 E0=7.037×105×(2(1+υ2)) 

Poisson's ratio υ υ3= υ1=0.28 υ2=0.49 

Density (Kg⁄m3) ρ1=ρ3=1520 ρ2=970 

Thickness(m) h1=H-h; h3=2h1; H=12×10-3 h2=3h 

Length(m); Width (m) L=0.6; l=0.02 

 

4.2.1. Effect of fiber orientation 

The natural frequencies ω(Hz) and structural loss  factor η of the 

cantilever sandwich beam corresponding to the first three modes with ηc=0.6 and 

h/H = 0.1 and for different fiber orientation are illustrated in figure 3. It can be 
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observed that the natural frequencies reach maximum values for 0°, 50° and 60° 

orientations and they reach low values for the other orientation. Conversely, the 

loss factor values of the structure reach maximum values for orientations that are 

different at θ = 0 °, 50 ° and 60°.These results show the benefits provided by 

viscoelastic materials even for low frequency values. 

 
Fig.3. Variations of natural frequencies and loss factors for the first three modes of the simply 

supported sandwich beam obtained for different values of fiber orientation ((a) natural frequency; 

(b) loss factor) 
The frequency responses of the transverse displacement at the middle and 

the tip of simple supported and cantilever beams respectively are shown in figure 

4. The obtained results show that the frequency ranges for the 30° and 90° 

configurations are less dispersed compared to the 0 ° and 60 ° configurations. 

However, the amplitude peaks for configurations with θ =30 ° and θ =90 ° are 

higher compared to those obtained for θ =0° and θ =60° in particular the first 

peak. The same conclusions for the cantilever beam have been drawn. 

 
Fig.4. Comparison of frequency responses of the sandwich beam obtained for different values of 

fiber orientation θ ((a) simply supported; (b) cantilever beam) 

4.2.2. Effect of thickness ratio 

The variations of natural frequencies and loss factor as a function of the 

thickness ratio h/H corresponding to the first three modes with ηc=0.6 and 0=0° 
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are illustrated in figure 5. These results illustrate that the frequencies are inversely 

proportional to the thickness ratios h/H, which means that the natural frequencies 

decrease when the thickness ratio increases. However, the loss factor variation is 

proportional to the thickness ratio, which the loss factors reach large values 

implying an increase in the structural damping with low frequencies. 

 
Fig.5.Variations of natural frequencies and loss factors for the first three modes of the simply 

supported sandwich beam obtained for different values of thickness ratio h/H ((a) natural 

frequency; (b) loss factor) 

The frequency responses of the sandwich beam with viscoelastic core 

considered in table 4 are shown in figure 6 for both conditions simply supported 

and cantilever beams. The obtained results show that the amplitudes of the 

frequency response for h/H = 0.1 are much smaller. Moreover, it is noticed that 

the natural frequencies obtained for h/H=0.6 and h/H=0.8 corresponding to the 

first three eigenmodes are less dispersed by comparing the results with those 

obtained for h/H=0.1 and h/H =0.3. This means that the frequencies decrease with 

the increase in the thickness of the viscoelastic layer inducing high amplitudes.  

 
Fig.6. Comparison of frequency responses of the sandwich beam obtained for different values of 

h/H ((a) simply supported; (b) cantilever beam) 

4.2.3. Effect of sandwich asymmetry 

In this section, the effect of the asymmetry of sandwich beam with 

viscoelastic core is studied by varying the thickness of the bottom layer with 
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respect to the top layer by keeping the overall thickness of the sandwich beam 3H 

constant  (figure (1)). The natural frequency and loss factor variations for the first 

three modes and for a cantilever beam are shown in figure 7. It is very clear that 

natural frequencies are inversely proportional to the thickness ratio for h3/h1<1 

whereas they become proportional to the thickness ratio for h3/h1>1. This means 

that the natural frequencies increase when the thickness of the bottom layer is 

strictly different from that of the top layer, the highest natural frequencies are 

obtained for h3/h1=0.1 and h3/h1=9 and the lowest value is obtained for h3/h1=0.1. 

Reciprocally, the loss factor is proportional to the variation of the thickness ratio 

for h3/h1<1 and inversely proportional for h3/h1>1, where highest value is obtained 

for h3/h1=1. 

 
Fig.7. Variations of natural frequencies and loss factors for the first three modes of the cantilever 

sandwich beam obtained for different values of thickness ratio h3/h1 ((a) natural frequency; (b) loss 

factor) 

In order to evaluate the effect of asymmetry on the dynamic behavior of 

the sandwich beam under dynamic load, the different frequency responses are 

obtained and presented in figure 8.  It can be seen that the increase of thickness 

ratio h3/h1 caused a shift of the amplitude peaks of different responses due to the 

variation of natural frequencies. The largest shift of amplitude peaks for the 

simply supported beam is obtained with the configuration h3/h1=0.25 and h3/h1=3 

corresponding to the natural frequencies ω=227 and ω=208, respectively, while 

the smallest shift is obtained for h3/h1=1 corresponding to the lowest natural 

frequency ω=159. It can also be observed that the peak amplitudes are very close 

for different thickness values because of the interaction between reduced stiffness 

and improved damping. The same remarks have been noticed for the cantilever 

sandwich beam. Given that the lowest frequencies are the most critical for the 

structure, it is evident that the structure has better performance when it becomes 

asymmetrical.   
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Fig.8. Comparison of frequency responses of the sandwich beam obtained for different values of 

thickness ratio h3/h1 ((a) simply supported; (b) cantilever beam) 

5. Conclusions 

 In this work, a higher order theory was used to study frequency responses 

of asymmetric sandwich beams with viscoelastic core by considering the 

longitudinal and rotational inertias. An evaluation of the damping of sandwich 

beams with viscoelastic materials strengthened by composite coats has been 

carried out using an improved numerical approach based on the finite element 

method, which has been validated by comparison with other research results. In 

the face of the lack of research investigating the optimization of the configuration 

of passive damping treatment by viscoelastic layer, in this research, the different 

mechanical and geometrical properties as well as the asymmetry of the sandwich 

beam that affect the dynamic behavior have been properly examined in order to 

find an optimal configuration providing a high damping ability. 

From the obtained results, the following conclusions can be drawn: 

- The natural frequencies reach high values for θ = 0°, θ = 50° and θ = 60° 

while they reach low frequency values for configurations with θ = 90° and θ = 

30°. However, the amplitude peaks of the frequency responses for 30° and 90° 

configurations are higher compared to those obtained for 0° and 60°, in 

particular for the first peaks. 

- The natural frequencies are inversely proportional to the thickness ratio. 

Therefore, the amplitudes of the peaks are proportional to this ratio. 

- The natural frequencies increase when the sandwich beam becomes 

asymmetrical, which caused a shift of the amplitude peaks of different 

responses.  

This analysis shows that the loss of stiffness due to the fiber orientation of 

the face layers, which is possibly the main cause of the increase of amplitudes of 

dynamic responses. In addition, the obtained results reflect the high damping 

proprieties of the structure when the thickness of the viscoelastic core layer 
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becomes thinner. However, the structure is more efficient and resistant to dynamic 

load when the thickness of the bottom layer is different from that of the top layer.  
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