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EFFECT OF MECHANICAL AND GEOMETRICAL
PROPERTIES ON DYNAMIC BEHAVIOR OF
ASYMMETRICAL COMPOSITE SANDWICH BEAM WITH
VISCOELASTIC CORE

Yacine KARI\/IIl, Youcef KHADRIZ, Sabiha TEK|L|3, Ali DAOUADJ|4,
El Mostafa DAYA?®

This paper presents an approach to the analysis of free and forced vibrations
of strengthened sandwich beam with viscoelastic core and composite coats by
considering geometrical asymmetry. A higher-orde theory is used considering
longitudinal and rotational inertias as well as the asymmetry of sandwich beam. The
formulation of the equation of motion is carried out by Hamilton principle. A
comparative study to validate the proposed numerical approach is performed
comparing the obtained results with other findings. Moreover, a parametric analysis
is carried out with different configurations of the sandwich beams in order to
analyze the influence of different parameters on the dynamic behavior. The analysis
highlighted from the study of fiber orientation influence on dynamic behavior, that
the structure damping can be improved by adopting a better composite
configuration. However, the obtained results from the thickness ratio effect showed
that the sandwich structure has more dissipative capacity for low values of
viscoelastic thickness and it is more efficient for asymmetrical sandwich beam.

Keywords: vibration; sandwich; viscoelastic material; composite; loss factor;
finite element.

1. Introduction

In recent decades, viscoelastic materials have undergone a great evolution
in several fields such as civil engineering, aeronautics, and in the automobile
industry, because of their specific mechanical properties. Viscoelastic materials
attenuate structural vibrations generated from various dynamic loadings, the
damping is provided to the structure through of its property of passing from a
slight rigid state (rubbery state) into a rigid state (glassy state). The first studies on
sandwich structures with viscoelastic core have been carried out by Kerwin [1]
and Ungar et al [2], in these studies an analytical expression of the loss factor as a
function of the structure characteristics was employed. Other analytical models
were proposed by Ungar [3], Yu [4] to characterize damping properties of
viscoelastic sandwich beams based on previous studies [1-2]. Then, DiTaranto [5]
defined an equation describing the damping properties (damped pulsation, loss
factor) taking into account different boundary conditions. However, vibration
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analysis of sandwich beam with a constant modulus of viscoelastic core has been
widely investigated. Rao [6] used Hamilton energetic principle to formulate the
governing equation of vibration motion. In addition, several numerical approaches
based on finite element method were assumed for composite structures
considering more complex geometries. The authors used several kinematic models
describing the displacement field of three layers [7-9]. Recently, kinematic
models consist of describing the layer-by-layer displacement field in order to
improve accuracy, leading to zigzag-type model that combine at the same time the
kinematic models of Rao [6] and Reddy [10]. Arikoglu and Ozkol [11] studied the
dynamic behavior of three-layer composite beam with a viscoelastic core using
the differential transformation method (DTM) to solve governing equation of
motion obtained by Hamilton principle. Irazu and Elejabarrieta [12] analyzed the
design parameters influence on the dynamic properties of thin sandwich beams
with different types of viscoelastic layers and metallic skins using bandwidth
method. Daya and Potier-Ferry [13] employed the asymptotic numerical method
for the eigenvalue problem characterizing the free vibration of viscoelastic
sandwich beams taking into account the frequency dependence of the viscoelastic
core. Daya et al [14] applied a nonlinear theory to study the dynamic responses of
sandwich beams with viscoelastic core. Bilasse et al [15] have used the
Diamant approach to solve the eigenvalue problem in order to analyze the linear
and nonlinear vibration of viscoelastic sandwich beams. However, Other
researchers have used a constraining layer in viscoelastic sandwich beams to
improve the structure damping. This type of structure named Passive Constrained
Layer Damping “PCLD” is studied by Cai et al [16], in this work, an analytical
approach is proposed to examine the dynamic response using the Lagrange energy
method. The model of Mead and Markus [17] was used to describe the kinematic
relationships between the three layers. In the same line, an analytical approach
have proposed by Cai et al [18] to analysis the vibratory responses for a composite
beam with a viscoelastic core layer using an active treatment Active Constrained
Layer Damping (ACLD), which the elastic constraining layer in the PCLD
principle is replaced by a piezoelectric layer in order to improve the energy
dissipation. Arvin et al [19] presented a higher order theory of sandwich with
composite faces and viscoelastic core, transverse displacements are considered
independent for both face layers and a linear variation along the viscoelastic layer
depth.

However, very few researchers have focused on the impact of mechanical
and geometrical properties on the dynamic behavior of passive damped structures,
when in fact this is very important in the conception of structures with viscoelastic
core. The present paper is focused on dynamic behavior of asymmetrical
viscoelastic sandwich beams with different mechanical and geometrical
configurations under a dynamic point load. A higher theory is used for the
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asymmetrical sandwich composite beam with viscoelastic core and composite
face, where the longitudinal and rotational inertias are considered. In addition, the
theory of Euler-Bernoulli is applied to the faces and Timoshenko theory to the
viscoelastic core [20].

2. Mathematical Formulation

The dynamic behavior of asymmetric PCLD sandwich beam (figurel) is
carried out in the context of small deformations. The assumptions considered by
Karmi et al [21] and Tekili et al[22] are modified to take into account the effect of
longitudinal and rotational inertia as well as the asymmetry of the sandwich. The
displacement field beam is given by Rao's zigzag model [9] based on the first-
order deformation theory, where Euler-Bernoulli’s theory is applied to the
composite sandwich faces and Timoshenko's theory to the viscoelastic core.

Fig.1. Asymmetric sandwich beam configuration and deformation
where uoi is the longitudinal displacement at the middle plane of ith layer. hy, h,
and hs represent the thickness of the upper, central and lower layers, respectively.
w is the transverse displacement of sandwich, £ is the rotation of the normal of the
central layer. On the basis of the researches of references [21-22] and considering
the new assumptions of the asymmetrical sandwich beam, the application of the
variational formulation to the Hamilton’s principle yields the governing equation
of motion:
[oTIdt = (5U 5K — oW )dt =
T Nou,, + Ny ou, , +Nou, , +Mow, +M,08, + Mow  +T (6w, + ) =0 (1)
J;O +p,S,U,8U, + p;S,l,8U, + p,S,0,8U, +( p,S, + p,S, + P;S; ) WEW—P (X, t) Sw
where S; refers the cross-section area of the ith layer, Nj and M; correspond to the
normal force and the bending moment in the ith layer and T is the shear force in
the viscoelastic layer, which are given by:
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N; = ESU M, =Elw,  fori=13

S,
2+ 0,) Ex(@)(B+w,) (2
where Ei and Ii denote the Young’s modulus and the quadratic moment of the
cross section of the ith layer respectively, E>*(w) and v, are the frequency
dependent Young's modulus and the poisson’s ratio of the viscoelastic layer
respectively.

Because of the asymmetry of the sandwich beam, the longitudinal
displacements at the middle plane of the face layers are different and can be
expressed as a function of the displacements at the middle plane of the central
layer by :

N, = E;(a))SZUZ’X; M, = E;(w)lzﬁ,x; T

h,  how h,  how
U01=U0+—ﬂ——— ;U03=U0——ﬂ+—— (3)
2 2 0Ox 2 2 0OX

3. Finite element discretization

The discretization of the equation of motion Eq.(16) by the finite element
method and the expression of displacement field as a function of the nodal
displacements Ue make it possible to form the elementary behavior matrices.

w=NU,;U=NU,;B=NU, withU,=(U, g w, ) i=1,2 (4)
Nw, Nu and N are the interpolation functions. An element with two nodes is used
in this study, the number of degrees of freedom is four (the longitudinal
displacement u, the transverse displacement w, the rotation of the normal of the
central layer £ and the rotation 0 = dw/dx.

The elementary matrix system that describes the vibratory behavior of the
sandwich beam can be obtained by replacing Egs. (1-4) into Eq.(1), the following
expression is obtained:

[MT'U. +[KT'U, ={F}’ 5)
where[M]®, [K]® and {F}® are the elementary mass matrix, stiffness matrix and
nodal force vector expressed by:

[MT (5.4 03) J;*[[NJ[Nu]+“7{[NJ[Nﬂ]jdx+hz (p5.-p5) [, ([N, T [N.]) o
“(psh-psh)[) ([T IND)ax-Z(osh +psn) [ ([N..T [, ])ox
cr (ot e psh) (NI INLT) o (o) ] (0T [T

+(ES, +ES, + Elsl)j: (IN,.T [N,.])ax (6)
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with L® is the element length, the global matrix system describing the vibratory

behavior of the sandwich beam after the assembly of the elementary matrices is
written in the form:

[M]U +[K]U ={F} ©)
where [M], [K] and {F} are respectively the mass matrix, the stiffness matrix and
the global nodal force vector. This equation can be solved using harmonic balance
method. In order to study the free vibration and establish the modal basis, it is
required to solve the eigenvalue problem that can be determined using the QR

method combined to the asymptotic numerical method implemented with Matlab
code [21].

4. Results and discussions

In the following sections, the dynamic behavior of viscoelastic sandwich
beams is studied using several models of configuration presented in figure 1.
Firstly, comparative studies are carried out to validate the proposed numerical
approach. Next, dynamic responses of the sandwich beams are examined under a
harmonic point load in the form:

P(xt)=Ps(x—x,)e" (10)
with ¢ is the Dirac distribution, Pg is the force magnitude and Xo is the position of
the force, where xo={L, L/2}for cantilever and simply supported beams,
respectively. Different beam configurations such as fiber orientation of the face
layers and thickness ratio are studied to evaluate their effects on dynamic
behavior. The model of viscoelastic behavior is considered with the frequency

independent viscoelastic modulus Eq.(11), this model is widely used to study the
viscoelastic behavior.

E, =E,(1+in,) (12)
with Eog is the modulus of delayed elasticity and n is the viscoelastic loss factor.
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4.1. Results and validation

The obtained results for a cantilever sandwich beam with viscoelastic core
placed between two isotropic elastic layers are compared with those obtained by
Arvin et al [19]. The mechanical and geometrical properties of the viscoelastic
sandwich beam are given in table 1.

Tablel
Mechanical and geometrical properties of the viscoelastic sandwich [19]
Upper face | Viscoelastic core | Lower face

Young's modulus (Pa) E1=7.03x10%° | Ep=2.097x105 E3=7.03x10%
Poisson's ratio v 01=0.3 12=0.49 1v3=0.3
Density (Kg/m®) P,=2770 P,=970 p3=2770
Thickness (mm) h;=1.52 h,=0.127 hs=1.52
Length (mm); Width (mm) L=177.8 x103; 1=12.7x10°

The damping properties corresponding to the first five modes are reported
in table 2. By comparison, it can be seen that the obtained results are very close
with those obtained by Arvin et al [19]. The precision of the results is illustrated
by the residual error R(U, 2)=I([K]-w? [M])Ul where R<0.5x10-, which approves
the effectiveness of the proposed approach.

Table 2
Natural frequencies and loss factor for cantilever sandwich
Proposed formulation Arvin et al [19]
Nc | mode | w (Hz) n R (U ) x10% | f(Hz) n
1 65.016 | 0.0812 | 0.3315 64.985 | 0.08181
2 300.31 | 0.0706 | 0.4310 299.47 | 0.07230
0.3 3 749.78 | 0.0485 | 0.3553 749.77 | 0.04642
4 1408.3 | 0.0275 | 0.4875 1404.1 | 0.02681
5 2295.5 | 0.0125 | 0.4309 2276.5 | 0.01725

In this section, the dynamic responses of sandwich beams with Passive
Constrained Layer Damping “PCLD” under a harmonic point load are

investigated, where the properties of the sandwich are presented in table 3.
Table 3
Mechanical and geometrical properties of the PCLD sandwich with viscoelastic core[16]

Upper face | Viscoelastic core | Lower face

Young's modulus (Pa) E1 =49x10° | E;=2G(14vyp) Es=70x10°
Soft G=0.895 + 1.3067i

Shear Modulus (MPa) Hard / G=9.890 + 14 43941 /
Poisson's ratio v 01=0.3 12=0.49 13=0.3
Density (Kg/m?®) p1 =7500 p2=1000 p3=2110
Thickness (mm) h;=2 h,=1 hs=4
Length (m); Width (m) L=0.4; 1=0.03

The frequency responses of displacement obtained by solving Eq. (9) of
the considered sandwich beam are compared with the responses obtained by Cai
et al [16], the responses are compared for both soft and hard viscoelastic core
models and for a cantilever beam. The obtained responses by the analytical
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approach of reference [16] and with the proposed finite element approach at the
tip of the beam are illustrated in Figs. 2.

—k—ref [16] 102+ —h—ref [16] |-
—— Proposed —— Proposed

Displacement (m)
Displacement (m)

0 100 200 300 400 500 600 0 100 200 300 400 500 600
w (Hz) w (Hz)

Fig.2. Comparison of frequency responses of the sandwich beam with viscoelastic core between
present approach and the analytical approach of the reference [16] "a-hard core; b-soft core™

It can be seen that the natural frequencies obtained by Cai and al [16] are
underestimated compared to the proposed approach results obtained for two
models of the hard and soft viscoelastic core. In addition, the amplitudes of the
frequency responses at resonant frequencies of reference [16] for the hard-core are
lower than the corresponding results of the present study even at low frequencies.
On the other hand, the amplitudes obtained by the proposed approach for the
second soft-core model are lower than those obtained by Cai and al [16].

4.2. Parametric study

The effects of different beam configuration parameters such as the fiber
orientation of the face layers 0, the thickness ratio h/H and the asymmetry of
sandwich beam on dynamic behavior are analyzed considered in this parametric
study. The mechanical and geometrical properties of the considered sandwich
beam strengthened by composite coats are given in table 4 and figure 1.

Table 4
Mechanical and geometrical properties of the strengthened sandwich with viscoelastic core
Upper composite / Lower Face Viscoelastic core

Young's modulus (Pa) | E11=98x10°% E2=7.998x10°% G1,=5.69x10° | E=7.037x10%%(2(1+v2))

Poisson's ratio v v3=01=0.28 12=0.49

Density (Kg/m?3) p1=p3=1520 p2=970

Thickness(m) hi=H-h; hs=2h;; H=12x10"3 h,=3h

Length(m); Width (m) L=0.6; 1=0.02

4.2.1. Effect of fiber orientation

The natural frequencies w(Hz) and structural loss factor 5 of the
cantilever sandwich beam corresponding to the first three modes with #.=0.6 and
h/H = 0.1 and for different fiber orientation are illustrated in figure 3. It can be
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observed that the natural frequencies reach maximum values for 0°, 50° and 60°
orientations and they reach low values for the other orientation. Conversely, the
loss factor values of the structure reach maximum values for orientations that are
different at 6 = 0 °, 50 ° and 60°.These results show the benefits provided by
viscoelastic materials even for low frequency values.
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Fig.3. Variations of natural frequencies and loss factors for the first three modes of the simply
supported sandwich beam obtained for different values of fiber orientation ((a) natural frequency;
(b) loss factor)

The frequency responses of the transverse displacement at the middle and
the tip of simple supported and cantilever beams respectively are shown in figure
4. The obtained results show that the frequency ranges for the 30° and 90°
configurations are less dispersed compared to the 0 ° and 60 ° configurations.
However, the amplitude peaks for configurations with 8 =30 ° and ¢ =90 ° are
higher compared to those obtained for & =0° and # =60° in particular the first
peak. The same conclusions for the cantilever beam have been drawn.
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Fig.4. Comparison of frequency responses of the sandwich beam obtained for different values of
fiber orientation 6 ((a) simply supported; (b) cantilever beam)

4.2.2. Effect of thickness ratio

The variations of natural frequencies and loss factor as a function of the
thickness ratio h/H corresponding to the first three modes with #.=0.6 and 0=0°

800 1000 1200 1400 200 400 600
w (Hz)

200 400 600 1600
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are illustrated in figure 5. These results illustrate that the frequencies are inversely
proportional to the thickness ratios h/H, which means that the natural frequencies
decrease when the thickness ratio increases. However, the loss factor variation is
proportional to the thickness ratio, which the loss factors reach large values
implying an increase in the structural damping with low frequencies.
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Fig.5.Variations of natural frequencies and loss factors for the first three modes of the simply
supported sandwich beam obtained for different values of thickness ratio h/H ((a) natural
frequency; (b) loss factor)

The frequency responses of the sandwich beam with viscoelastic core
considered in table 4 are shown in figure 6 for both conditions simply supported
and cantilever beams. The obtained results show that the amplitudes of the
frequency response for h/H = 0.1 are much smaller. Moreover, it is noticed that
the natural frequencies obtained for h/H=0.6 and h/H=0.8 corresponding to the
first three eigenmodes are less dispersed by comparing the results with those
obtained for h/H=0.1 and h/H =0.3. This means that the frequencies decrease with
the increase in the thickness of the viscoelastic layer inducing high amplitudes.
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Fig.6. Comparison of frequency responses of the sandwich beam obtained for different values of
h/H ((a) simply supported; (b) cantilever beam)
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4.2.3. Effect of sandwich asymmetry

In this section, the effect of the asymmetry of sandwich beam with
viscoelastic core is studied by varying the thickness of the bottom layer with
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respect to the top layer by keeping the overall thickness of the sandwich beam 3H
constant (figure (1)). The natural frequency and loss factor variations for the first
three modes and for a cantilever beam are shown in figure 7. It is very clear that
natural frequencies are inversely proportional to the thickness ratio for ha/hi<1
whereas they become proportional to the thickness ratio for hs/h1>1. This means
that the natural frequencies increase when the thickness of the bottom layer is
strictly different from that of the top layer, the highest natural frequencies are
obtained for ha/h;=0.1 and ha/h;:=9 and the lowest value is obtained for hs/h1=0.1.
Reciprocally, the loss factor is proportional to the variation of the thickness ratio
for ha/h1<1 and inversely proportional for ha/h:>1, where highest value is obtained

for ha/h1=1.
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Fig.7. Variations of natural frequencies and loss factors for the first three modes of the cantilever
sandwich beam obtained for different values of thickness ratio hs/h; ((a) natural frequency; (b) loss
factor)

In order to evaluate the effect of asymmetry on the dynamic behavior of
the sandwich beam under dynamic load, the different frequency responses are
obtained and presented in figure 8. It can be seen that the increase of thickness
ratio ha/hy caused a shift of the amplitude peaks of different responses due to the
variation of natural frequencies. The largest shift of amplitude peaks for the
simply supported beam is obtained with the configuration ha/h;=0.25 and hs/h;=3
corresponding to the natural frequencies ®=227 and ®=208, respectively, while
the smallest shift is obtained for hs/hi=1 corresponding to the lowest natural
frequency ®w=159. It can also be observed that the peak amplitudes are very close
for different thickness values because of the interaction between reduced stiffness
and improved damping. The same remarks have been noticed for the cantilever
sandwich beam. Given that the lowest frequencies are the most critical for the
structure, it is evident that the structure has better performance when it becomes

asymmetrical.
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Fig.8. Comparison of frequency responses of the sandwich beam obtained for different values of
thickness ratio hs/hs ((a) simply supported; (b) cantilever beam)

5. Conclusions

In this work, a higher order theory was used to study frequency responses
of asymmetric sandwich beams with viscoelastic core by considering the
longitudinal and rotational inertias. An evaluation of the damping of sandwich
beams with viscoelastic materials strengthened by composite coats has been
carried out using an improved numerical approach based on the finite element
method, which has been validated by comparison with other research results. In
the face of the lack of research investigating the optimization of the configuration
of passive damping treatment by viscoelastic layer, in this research, the different
mechanical and geometrical properties as well as the asymmetry of the sandwich
beam that affect the dynamic behavior have been properly examined in order to
find an optimal configuration providing a high damping ability.

From the obtained results, the following conclusions can be drawn:

- The natural frequencies reach high values for § = 0°, 8 = 50° and 6 = 60°
while they reach low frequency values for configurations with 6 = 90° and 6 =
30°. However, the amplitude peaks of the frequency responses for 30° and 90°
configurations are higher compared to those obtained for 0° and 60°, in
particular for the first peaks.

- The natural frequencies are inversely proportional to the thickness ratio.
Therefore, the amplitudes of the peaks are proportional to this ratio.

- The natural frequencies increase when the sandwich beam becomes
asymmetrical, which caused a shift of the amplitude peaks of different
responses.

This analysis shows that the loss of stiffness due to the fiber orientation of
the face layers, which is possibly the main cause of the increase of amplitudes of
dynamic responses. In addition, the obtained results reflect the high damping
proprieties of the structure when the thickness of the viscoelastic core layer
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becomes thinner. However, the structure is more efficient and resistant to dynamic
load when the thickness of the bottom layer is different from that of the top layer.
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