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3D SCENE RECONSTRUCTION FROM RGB IMAGES 

Răzvan-Paul ROTARU1, Alexandru GRĂDINARU2, Florica MOLDOVEANU3 

Object recognition is significantly improving, allowing us to better 

understand and extract information from images. This paper presents a novel 

method for 3D scene reconstruction using a single RGB image, based on a known 

3D model database. We use every detected object in an image to further process its 

pose and a corresponding 3D model by leveraging existing datasets of both 3D 

models and labeled images to understand and simulate perception correctly. This 

method produces a clean and lightweight representation of a scene. State-of-the-art 

research, implementation details, and evaluation results are presented.  
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1. Introduction 

Computer-vision techniques are becoming more complex every year. The 

continuous growth in this area leads to solutions with astonishing results in the 

fields of robotics, autonomous driving, and even content generation. 

In a timespan of just 6 years, neural network models such as YOLO 

evolved to its fifth iteration [18] and Dall-E to its second [24] in just 2 years. 

These works highlight the importance of and focus on improvement in both object 

detection and content generation fields. Looking forward, research in these 

directions may be combined to reach the goal of reconstructing complex scenes 

organically and realistically. This question arose in 1963 when Lawrence Roberts 

[26] implemented a system that infers 3D scenes from plain RGB images using 

primitives for his Ph.D. thesis. 

Since then, numerous deep learning architectures have been developed to 

represent 3D structures in different ways, which include voxels, point clouds, 

TSDF (Truncated Signed Distance Field) volumes, and meshes.  

While these approaches have shown significant promise, the lack of 

training sets hindered them from achieving complete restorations. Current 

databases that can be used for training networks to predict the shape of an object 

from images consist mainly of isolated objects. Furthermore, recreating volumes 

from micro elements tends to generate geometry that may have a tendency 

towards noise and excessive tessellation, resulting in invalid and unnatural shapes. 
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However, most of the existing solutions for 3D reconstruction are focused 

on isolated objects, and, for realistic outputs, images from multiple angles are 

required. Moreover, the result of those algorithms is also deteriorated by the 

obstructed zone from the scene, the main consequence being the appearance of 

unnatural gaps in the shape of the reconstructed objects. Limitations of this kind 

make the predictions unsuitable for many applications. 

In this paper, we propose a solution, to surpass some of these 

inconveniences, that will require a single image for an entire 3D reconstruction of 

the scene within the image. To reach the goal of scene reconstruction, a pipeline 

of 2D recognition for object detection and 3D reconstruction by leveraging 

preexisting meshes will be the foundation of a neural network architecture. Thus, 

we aim to align detected objects in an image to the viewport by mapping each 

detected object in an image to a mesh. By training, we learn to classify the objects and 

predict a specific model for it by comparing silhouette renders of models of the same type 

with the object in the region of interest. A finer pose prediction will be determined using 

the cosine distance to correctly align the shapes to the image. The training datasets are 

COCO and ShapeNet. However, the architecture allows the expansion of datasets only by 

adding meshes. 

2. State of the art 

To present the modern techniques related to this field, we will classify 

them into 2D object recognition techniques and 3D shape prediction techniques, 

which fundamentally address two distinct problems, thus having multiple specific 

solutions. Afterward, we will discuss another important aspect of the State of the 

Art, the Datasets created for this kind of work. 

Most of the methods for 2D object recognition have similar outputs of a 

multi-layered deep neural network. The output usually consists of a labeled 

bounding box per object instance, with each identified object having a 

segmentation mask or a simplified bounding box centered around it, although the 

information used for prediction varies from one implementation to another [14, 

19]. However, the most important element of these methods is not the architecture 

of the network but the datasets. 

The State-of-the-Art methods for this field are Mask R-CNN [14] and Fast 

R-CNN [10], which maintain and take advantage of the ever-growing training 

database and output an additional segmentation mask for each input, beside the 

bounding boxes. 

Another ground-breaking research in object and image segmentation is the 

Segment Anything (SAM) project [37], which has a model trained on over 1 

billion masks on 11M images. 
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However, the architecture of our object detection network is inspired by 

version 3 of YOLO [25], which has the particularity of dividing the images and 

analyzing every outputted chunk to find regions of interest that may contain 

known classes of objects in a hierarchical manner. 

In the 3D shape prediction, multiple solutions exist, that are completely 

different from one another, but they might be grouped into the following 

categories: 

- Multi-View Reconstruction - commonly known as Photogrammetry, is 

covered by a broad line of work, starting from more classical techniques, 

such as using binocular stereo vision [13] to approaches that learn structure 

priors and constrain the output shape to be more natural [17, 3, 28], and 

even to ones that use more complex deep learning techniques [1]. However, 

this work will only focus on single-image reconstruction. 

- Single-View Reconstruction - different approaches for shape prediction 

have been used in the last couple of years. As mentioned before, a usual 

course of action for this step is to train a deep network to predict the 

positioning of unit elements of an object. 

Depending on the implementation, the definition of a unit element will 

vary from as accurate as a point [12, 5] to patches [23] and primitives [35, 27]. 

Other methods use signed distance functions for predictions [7, 20, 21, 36] 

that offer greater flexibility regarding the complexity of the given structure and 

better means to infer deep learning. Voxel grids are also a reliable solution for 

shape prediction [6, 16], in addition, they support multiple resolutions and can be 

hierarchically distributed through octrees. A post-processing step can also be 

integrated into the algorithms pipeline to convert the voxels into one or more 

meshes (Fig. 1) [9]. 

 

Fig. 1. Voxel grid conversion to mesh 
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However, because this work's goal is to reconstruct the objects in a scene 

in a more natural and precise way, a set of already existing models will be 

preferred instead of generated geometry. In this regard, algorithms have been 

predicting the orientation and pose of known shapes, but, mostly, are still limited 

to a single object instance. 

Datasets represent another important aspect of the recent research in this 

field, which saw advances in 2D perception, through expanding already existing 

datasets, like COCO [31] and ImageNet [2], or by creating new ones, like 

ShapeNet [4] and Pix3D [33], which are large scale sets of CAD models and 

synthetically rendered images that can provide excellent training and testing data 

for field of study. 

However, both the object identification and the CAD datasets still cover a 

small subset of object categories, that are not nearly enough to cover all the 

variance we have in captured images: 

• ShapeNetCore has only 55 common object categories  

• COCO – 80 object classes 

• ImageNet – 1000 object classes 

To improve the datasets, there is research on using generative methods to 

synthetically create labeled datasets or expand on the existing ones [30], as these 

techniques can be used with structured input data.  

3. Proposed solution 

We propose a solution that will handle organic end-to-end scene 

generation from a single image without depth information. To achieve these 

results, starting from a single RGB image, the method will need to be able to 

localize and distinguish objects by comparing the detected items of known classes 

to similar renderings of a 3D mesh set and select the best candidate, inferring their 

pose orientation to the image afterward. This approach learns to directly map each 

detected object in an image to a mesh in an end-to-end manner (Fig. 2). 

 

1.Input                 2. Object detection    3.Pose estimation          4.Output 

                       
 

Fig. 2. Proposed solution  

 

This approach draws inspiration from the success of Mask2CAD [32], 

Zhang et. al [36], and Nie et. al [21], which are novel techniques that manage to 
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reconstruct complex scenes that contain multiple shapes, by placing pre-existing 

3D models of the identified objects within the scene. We also include the 

additional steps of Zhang et. al [36] of refining the final positions.  

The architecture is composed of 3 networks:  

- an initial layout estimation network (further referred to as LEN),  

- an object detection network (further referred to as ODN)  

- and a scene graph convolutional network (further referred to as 

SGCN). 

More specifically, from the input image we will initially estimate the 

layout of the scene using a deep network (LEN) trained to identify the ceiling, 

walls, and floor, their depths, and rotations, which will be represented as a 

bounding box. 

Afterwards, the image will be fed to the ODN to identify both semantic 

and structural aspects of the objects in the image. This network will output a 

coarse estimation of the identified object poses regarding their local implicit 

embeddings and the given layout from the previous network. As a result, in this 

step, a 3D bounding box and a class label will be predicted for all the objects 

detected. 

In terms of object detection, the goal of this step would be to output a 

labeled mask for each object in the scene. Therefore, a simple solution for 2D 

Object Recognition is Detectron2 [8], a new system provided by Facebook based 

on the PyTorch3D [22] framework. 

However, to accomplish this step a CNN following the architecture of 

YOLO [25] has been implemented, which proved to be accurate and fast. We 

trained the network on the COCO dataset [31] and learned to classify categories 

such as furniture, fruits, and electronics. The current accuracy of the model is 

somewhere above 91 percent. It is over-fitted on a couple of furniture categories, 

which have been used to develop and test the next branches. It should be noted 

that the model has not been trained for more than 12 hours due to resource 

limitations.  

An alternative to the MS-COCO [31] dataset and the SUN RGB-D [29] 

dataset is creating a synthetic dataset in Unity, using the meshes available in 

ShapeNet [4] or other sources. This alternative has been explored, and a custom 

dataset has been created, using indoor assets from the Unity Asset Store. 

However, the training on this dataset proved not to be possible, as the 

synthetically generated data did not satisfy the condition of realism. The idea of 

this approach is learning to map between image views and different shape poses, 

resulting in an association between images and 3D geometry. Thus, driving 

inspiration from Mask2CAD [32] and IM2CAD [15] because 3D meshes and 

images belong to distinct categories, while an image is view-dependent, we 

facilitate the pose estimation and the construction of a shared space by rendering 
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K different views of every mesh. We chose K = 20 in the experiments (Fig. 3). 

The resolution for each render is low due to performance limitations. 

Because every prediction is class-labeled, each element in the joint space 

will be strongly class-related. As this step requires unsupervised learning, we 

surely know that even poor predictions maintain a correct structure. 

 
Fig. 3. A chair rendered from 20 different perspectives. 

 

After the shared space is constructed, we can retrieve the shape of each 

prediction and apply the corresponding transformations to it. Following this 

structure, for an input image, at run-time, a scene containing only the detections 

should be outputted. 

An argument can be made that a shared embedding space can be created to 

optimize this search, however, following IM2CAD [15], we use more than one 

layer to extract and compare feature vectors, which will make this optimization 

more irrelevant and, moreover, this would imply that each addition to the dataset 

must be encoded to this embedded space. 

Regarding 3D shape prediction, this work aims to follow and improve 

Mask2CAD [32]. Because this method aims to reconstruct a more realistic and 

accurate scene than a geometry-accurate one, pre-existing meshes will be aligned 

to the viewport and not generated at the run-time. 

For this objective, we trained a convolutional neural network on SUN 

RGB-D [29] and ShapeNet [4] to predict the 6 degrees of freedom (the 3D 

rotation and translation) of every item known in the scene. This process was eased 

by the 3D transformation API and differential renderer provided by PyTorch3D 
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[22] and the structure of the dataset which includes indoor scenes with labels and 

3D bounding boxes. 

Firstly, the object detection network will be trained to learn a 3D bounding 

box estimation from a labeled 2D bounding box, and afterward, the local implicit 

embeddings will be learned for each shape from contextual data. 

As each model was rendered from K different perspectives, the translation 

and rotation have already been encoded and can be extracted from there. The best 

matching render, and automatically, the best matching model will be chosen by a 

Siamese Neural Network4 trained to minimize the cosine distance between two 

images, the region of interest (RoI) of a detected object, and all renders of its class 

based on feature vectors of 7 different convolutional layers. 

Another method that was considered was comparing the silhouettes by 

their Chamfer distance5, however, the best matching model could not be selected 

by computing the Chamfer distance between the silhouette of the output RoI of an 

image and its corresponding model rendered silhouette because this would require 

the assumption that the dataset is infinitely large (i.e. contains any shape of any 

chair) which is not the case. 

The pose refinement process is handled by the SGCN, which provides a 

better scene structure, no object overlaps, and better positions than previous 

attempts to satisfy this need. 

The SGCN is a deep neural network trained to learn realistic placements of 

objects within a bounded area. This training has been achieved over the SUN 

RGB-D [29] dataset for objects of over 40 classes, following Zhang et al.'s work 

[36]. 

As a result of this step, the generated scene looks more elegant, with 

continuous, light, and clean geometry, meshes that don’t feel watery, no strange 

holes, and no setbacks due to inadequate illumination. This final step will provide 

us with a scene configuration file that can be imported into a graphics engine, for 

which we chose Unity as our preferred engine. 

4. Evaluation and results 

Because this technique falls into the same category of subjectivity and lack 

of metrics that other content-generative solutions fall in, we cannot present the 

mathematical accuracy of our work, apart from the run-time of our final 

application. We run a series of experiments consisting of 5 images and their 

respective run-time in minutes as follows (Table 1):  

• Series 1 represents the run-time of the evaluation of an image 

containing 4 identified objects,  

 
4 https://en.wikipedia.org/wiki/Siamese_neural_network 
5 https://github.com/UM-ARM-Lab/Chamfer-Distance-API 
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• Series 2 of an image containing 8 identified objects,  

• Series 3 - 4 identified objects,  

• Series 4 - 7 identified objects,  

• Series 5 - 6 identified objects. 
 

Table 1 

Run-time of different experiments (minutes) 

Series LEN ODN SGCN Model selection 

1 0.01 0.01 0.01 4.2 

2 0.05 0.03 0.05 5 

3 0.03 0.05 0.01 6.5 

4 0.08 0.04 0.03 3 

5 0.02 0.02 0.01 7 

 

These tests have been measured on a system with an Intel i7 4700 CPU 

and a Nvidia 1050 GTX GPU. 

By examining the run-time results, we could certainly state that the work 

of this paper could not sustain a real-time application scenario, as it currently 

requires more than 5 minutes for a scene generation and an additional 20 to 30 

seconds for asset loading (measured in Unity). Further improvements are 

necessary for it to become a faster solution to the presented problem. 

Moreover, we followed common practices and created a survey for 

individuals to evaluate our work based on how accurate they considered our final 

scene to be, how accurate the resemblance of the viewport was, and how accurate 

the models were (Fig 4). 

 

Fig. 4. Survey results. 
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The results of 24 different persons showed that our method is satisfactory 

but could be improved in the future by extending the model dataset or improving 

the selection method. 

Even if the viewport tends to be the strong point of our solution, another 

improvement that could be made is the object placement within the scene, which 

proved to be deceitful and mostly satisfies just the viewport of the image. 

An evaluation that is impossible to make is the comparison between our 

solution and the previous one, because of our specific choice to use realistic pre-

modeled meshes instead of generating meshes at run-time, which can be observed 

in the following images. The first example (Fig. 5) is an example of scene 

generation done in Total3DUnderstanding [21] used as a ground comparative 

result. 
 

 
 

Fig. 5. A scene of an indoor table with 2 chairs reconstructed by Total3DUnderstaning [21]. 

 

We can observe in Fig. 6 that, even if the viewport looks correct, the 

object placement may not be entirely realistic when inspecting the scene closely. 

 

Fig. 6. A scene of an indoor table with 2 chairs reconstructed by our method. 
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However, these undesired results are not very common. In comparison, 

Fig. 7 proves that our method can produce organic environments. 

 
Fig. 7. A scene of an indoor office reconstructed by our method. 

 

All in all, we demonstrated that our approach generates realistic high-

quality scenes by combining several novel approaches in the literature and adding 

an additional step of using a high-definition realistic 3D models database that 

matches identified objects before rendering the scenes, providing a lightweight, 

clean, and compact reconstruction of the scene captured in the image. 

6. Conclusions 

This paper presents advancements in the generation of 3D scenes from 

images without depth information. After analyzing the current state-of-the-art 

techniques, a solution that improves on the existing methods was proposed. We 

presented in this paper some implementation details and results.  

The comparison to other state-of-the-art techniques that address this 

problem cannot be easily realized. While novel approaches in this domain are 

published every year, not many are open-source, and we would be limited to 

comparing just a few results made public by the authors. The evaluation shows 

promising results, and we can state that we successfully addressed the issue of 

inconsistent geometry within the scene by leveraging already existing models and 

correlating them with objects of known classes, hence creating realistic 

environments that can be used for content generation in virtual reality scenarios. 

Doing so, we extended the astonishing results of previous techniques ([36] [21], 

[15] and [32]) in a different direction which we believe is more suitable for the 

target problem we address in this paper.  

Further work is required to improve the speed performance, the model 

dataset, and the selection method.  
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