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3D SCENE RECONSTRUCTION FROM RGB IMAGES

Razvan-Paul ROTARU!?, Alexandru GRADINARU?, Florica MOLDOVEANU?

Object recognition is significantly improving, allowing us to better
understand and extract information from images. This paper presents a novel
method for 3D scene reconstruction using a single RGB image, based on a known
3D model database. We use every detected object in an image to further process its
pose and a corresponding 3D model by leveraging existing datasets of both 3D
models and labeled images to understand and simulate perception correctly. This
method produces a clean and lightweight representation of a scene. State-of-the-art
research, implementation details, and evaluation results are presented.
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1. Introduction

Computer-vision techniques are becoming more complex every year. The
continuous growth in this area leads to solutions with astonishing results in the
fields of robotics, autonomous driving, and even content generation.

In a timespan of just 6 years, neural network models such as YOLO
evolved to its fifth iteration [18] and Dall-E to its second [24] in just 2 years.
These works highlight the importance of and focus on improvement in both object
detection and content generation fields. Looking forward, research in these
directions may be combined to reach the goal of reconstructing complex scenes
organically and realistically. This question arose in 1963 when Lawrence Roberts
[26] implemented a system that infers 3D scenes from plain RGB images using
primitives for his Ph.D. thesis.

Since then, numerous deep learning architectures have been developed to
represent 3D structures in different ways, which include voxels, point clouds,
TSDF (Truncated Signed Distance Field) volumes, and meshes.

While these approaches have shown significant promise, the lack of
training sets hindered them from achieving complete restorations. Current
databases that can be used for training networks to predict the shape of an object
from images consist mainly of isolated objects. Furthermore, recreating volumes
from micro elements tends to generate geometry that may have a tendency
towards noise and excessive tessellation, resulting in invalid and unnatural shapes.
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However, most of the existing solutions for 3D reconstruction are focused
on isolated objects, and, for realistic outputs, images from multiple angles are
required. Moreover, the result of those algorithms is also deteriorated by the
obstructed zone from the scene, the main consequence being the appearance of
unnatural gaps in the shape of the reconstructed objects. Limitations of this kind
make the predictions unsuitable for many applications.

In this paper, we propose a solution, to surpass some of these
inconveniences, that will require a single image for an entire 3D reconstruction of
the scene within the image. To reach the goal of scene reconstruction, a pipeline
of 2D recognition for object detection and 3D reconstruction by leveraging
preexisting meshes will be the foundation of a neural network architecture. Thus,
we aim to align detected objects in an image to the viewport by mapping each
detected object in an image to a mesh. By training, we learn to classify the objects and
predict a specific model for it by comparing silhouette renders of models of the same type
with the object in the region of interest. A finer pose prediction will be determined using
the cosine distance to correctly align the shapes to the image. The training datasets are
COCO and ShapeNet. However, the architecture allows the expansion of datasets only by
adding meshes.

2. State of the art

To present the modern techniques related to this field, we will classify
them into 2D object recognition techniques and 3D shape prediction techniques,
which fundamentally address two distinct problems, thus having multiple specific
solutions. Afterward, we will discuss another important aspect of the State of the
Art, the Datasets created for this kind of work.

Most of the methods for 2D object recognition have similar outputs of a
multi-layered deep neural network. The output usually consists of a labeled
bounding box per object instance, with each identified object having a
segmentation mask or a simplified bounding box centered around it, although the
information used for prediction varies from one implementation to another [14,
19]. However, the most important element of these methods is not the architecture
of the network but the datasets.

The State-of-the-Art methods for this field are Mask R-CNN [14] and Fast
R-CNN [10], which maintain and take advantage of the ever-growing training
database and output an additional segmentation mask for each input, beside the
bounding boxes.

Another ground-breaking research in object and image segmentation is the
Segment Anything (SAM) project [37], which has a model trained on over 1
billion masks on 11M images.
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However, the architecture of our object detection network is inspired by
version 3 of YOLO [25], which has the particularity of dividing the images and
analyzing every outputted chunk to find regions of interest that may contain
known classes of objects in a hierarchical manner.

In the 3D shape prediction, multiple solutions exist, that are completely
different from one another, but they might be grouped into the following
categories:

- Multi-View Reconstruction - commonly known as Photogrammetry, is
covered by a broad line of work, starting from more classical techniques,
such as using binocular stereo vision [13] to approaches that learn structure
priors and constrain the output shape to be more natural [17, 3, 28], and
even to ones that use more complex deep learning techniques [1]. However,
this work will only focus on single-image reconstruction.

- Single-View Reconstruction - different approaches for shape prediction
have been used in the last couple of years. As mentioned before, a usual
course of action for this step is to train a deep network to predict the
positioning of unit elements of an object.

Depending on the implementation, the definition of a unit element will
vary from as accurate as a point [12, 5] to patches [23] and primitives [35, 27].

Other methods use signed distance functions for predictions [7, 20, 21, 36]
that offer greater flexibility regarding the complexity of the given structure and
better means to infer deep learning. VVoxel grids are also a reliable solution for
shape prediction [6, 16], in addition, they support multiple resolutions and can be
hierarchically distributed through octrees. A post-processing step can also be
integrated into the algorithms pipeline to convert the voxels into one or more
meshes (Fig. 1) [9].

Fig. 1. Voxel grid conversion to mesh
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However, because this work's goal is to reconstruct the objects in a scene
in a more natural and precise way, a set of already existing models will be
preferred instead of generated geometry. In this regard, algorithms have been
predicting the orientation and pose of known shapes, but, mostly, are still limited
to a single object instance.

Datasets represent another important aspect of the recent research in this
field, which saw advances in 2D perception, through expanding already existing
datasets, like COCO [31] and ImageNet [2], or by creating new ones, like
ShapeNet [4] and Pix3D [33], which are large scale sets of CAD models and
synthetically rendered images that can provide excellent training and testing data
for field of study.

However, both the object identification and the CAD datasets still cover a
small subset of object categories, that are not nearly enough to cover all the
variance we have in captured images:

e ShapeNetCore has only 55 common object categories

e COCO —80 object classes

e ImageNet — 1000 object classes

To improve the datasets, there is research on using generative methods to
synthetically create labeled datasets or expand on the existing ones [30], as these
techniques can be used with structured input data.

3. Proposed solution

We propose a solution that will handle organic end-to-end scene
generation from a single image without depth information. To achieve these
results, starting from a single RGB image, the method will need to be able to
localize and distinguish objects by comparing the detected items of known classes
to similar renderings of a 3D mesh set and select the best candidate, inferring their
pose orientation to the image afterward. This approach learns to directly map each
detected object in an image to a mesh in an end-to-end manner (Fig. 2).

4.0Output
)|

Fig. 2. Proposed solution

This approach draws inspiration from the success of Mask2CAD [32],
Zhang et. al [36], and Nie et. al [21], which are novel techniques that manage to
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reconstruct complex scenes that contain multiple shapes, by placing pre-existing
3D models of the identified objects within the scene. We also include the
additional steps of Zhang et. al [36] of refining the final positions.

The architecture is composed of 3 networks:

- aninitial layout estimation network (further referred to as LEN),

- an object detection network (further referred to as ODN)

- and a scene graph convolutional network (further referred to as

SGCN).

More specifically, from the input image we will initially estimate the
layout of the scene using a deep network (LEN) trained to identify the ceiling,
walls, and floor, their depths, and rotations, which will be represented as a
bounding box.

Afterwards, the image will be fed to the ODN to identify both semantic
and structural aspects of the objects in the image. This network will output a
coarse estimation of the identified object poses regarding their local implicit
embeddings and the given layout from the previous network. As a result, in this
step, a 3D bounding box and a class label will be predicted for all the objects
detected.

In terms of object detection, the goal of this step would be to output a
labeled mask for each object in the scene. Therefore, a simple solution for 2D
Object Recognition is Detectron2 [8], a new system provided by Facebook based
on the PyTorch3D [22] framework.

However, to accomplish this step a CNN following the architecture of
YOLO [25] has been implemented, which proved to be accurate and fast. We
trained the network on the COCO dataset [31] and learned to classify categories
such as furniture, fruits, and electronics. The current accuracy of the model is
somewhere above 91 percent. It is over-fitted on a couple of furniture categories,
which have been used to develop and test the next branches. It should be noted
that the model has not been trained for more than 12 hours due to resource
limitations.

An alternative to the MS-COCO [31] dataset and the SUN RGB-D [29]
dataset is creating a synthetic dataset in Unity, using the meshes available in
ShapeNet [4] or other sources. This alternative has been explored, and a custom
dataset has been created, using indoor assets from the Unity Asset Store.
However, the training on this dataset proved not to be possible, as the
synthetically generated data did not satisfy the condition of realism. The idea of
this approach is learning to map between image views and different shape poses,
resulting in an association between images and 3D geometry. Thus, driving
inspiration from Mask2CAD [32] and IM2CAD [15] because 3D meshes and
images belong to distinct categories, while an image is view-dependent, we
facilitate the pose estimation and the construction of a shared space by rendering
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K different views of every mesh. We chose K = 20 in the experiments (Fig. 3).
The resolution for each render is low due to performance limitations.

Because every prediction is class-labeled, each element in the joint space
will be strongly class-related. As this step requires unsupervised learning, we
surely know that even poor predictions maintain a correct structure.

O 1000 1000 1000 1000 100

Fig. 3. A chair rendered from 20 different perspectives.

After the shared space is constructed, we can retrieve the shape of each
prediction and apply the corresponding transformations to it. Following this
structure, for an input image, at run-time, a scene containing only the detections
should be outputted.

An argument can be made that a shared embedding space can be created to
optimize this search, however, following IM2CAD [15], we use more than one
layer to extract and compare feature vectors, which will make this optimization
more irrelevant and, moreover, this would imply that each addition to the dataset
must be encoded to this embedded space.

Regarding 3D shape prediction, this work aims to follow and improve
Mask2CAD [32]. Because this method aims to reconstruct a more realistic and
accurate scene than a geometry-accurate one, pre-existing meshes will be aligned
to the viewport and not generated at the run-time.

For this objective, we trained a convolutional neural network on SUN
RGB-D [29] and ShapeNet [4] to predict the 6 degrees of freedom (the 3D
rotation and translation) of every item known in the scene. This process was eased
by the 3D transformation API and differential renderer provided by PyTorch3D
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[22] and the structure of the dataset which includes indoor scenes with labels and
3D bounding boxes.

Firstly, the object detection network will be trained to learn a 3D bounding
box estimation from a labeled 2D bounding box, and afterward, the local implicit
embeddings will be learned for each shape from contextual data.

As each model was rendered from K different perspectives, the translation
and rotation have already been encoded and can be extracted from there. The best
matching render, and automatically, the best matching model will be chosen by a
Siamese Neural Network? trained to minimize the cosine distance between two
images, the region of interest (Rol) of a detected object, and all renders of its class
based on feature vectors of 7 different convolutional layers.

Another method that was considered was comparing the silhouettes by
their Chamfer distance®, however, the best matching model could not be selected
by computing the Chamfer distance between the silhouette of the output Rol of an
image and its corresponding model rendered silhouette because this would require
the assumption that the dataset is infinitely large (i.e. contains any shape of any
chair) which is not the case.

The pose refinement process is handled by the SGCN, which provides a
better scene structure, no object overlaps, and better positions than previous
attempts to satisfy this need.

The SGCN is a deep neural network trained to learn realistic placements of
objects within a bounded area. This training has been achieved over the SUN
RGB-D [29] dataset for objects of over 40 classes, following Zhang et al.'s work
[36].

As a result of this step, the generated scene looks more elegant, with
continuous, light, and clean geometry, meshes that don’t feel watery, no strange
holes, and no setbacks due to inadequate illumination. This final step will provide
us with a scene configuration file that can be imported into a graphics engine, for
which we chose Unity as our preferred engine.

4. Evaluation and results

Because this technique falls into the same category of subjectivity and lack
of metrics that other content-generative solutions fall in, we cannot present the
mathematical accuracy of our work, apart from the run-time of our final
application. We run a series of experiments consisting of 5 images and their
respective run-time in minutes as follows (Table 1):

e Series 1 represents the run-time of the evaluation of an image
containing 4 identified objects,

4 https://en.wikipedia.org/wiki/Siamese_neural_network
5 https://github.com/UM-ARM-Lab/Chamfer-Distance-API
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e Series 2 of an image containing 8 identified objects,
e Series 3 - 4 identified objects,
e Series 4 - 7 identified objects,
e Series 5 - 6 identified objects.
Table 1
Run-time of different experiments (minutes)
Series LEN ODN SGCN Model selection
1 0.01 0.01 0.01 4.2
2 0.05 0.03 0.05 5
3 0.03 0.05 0.01 6.5
4 0.08 0.04 0.03 3
5 0.02 0.02 0.01 7

These tests have been measured on a system with an Intel i7 4700 CPU

and a Nvidia 1050 GTX GPU.

By examining the run-time results, we could certainly state that the work
of this paper could not sustain a real-time application scenario, as it currently
requires more than 5 minutes for a scene generation and an additional 20 to 30
seconds for asset loading (measured in Unity). Further improvements are
necessary for it to become a faster solution to the presented problem.

Moreover, we followed common practices and created a survey for
individuals to evaluate our work based on how accurate they considered our final
scene to be, how accurate the resemblance of the viewport was, and how accurate
the models were (Fig 4).

Scene Accuracy

Viewport Acouracy

Model Accuracy

Fig. 4. Survey results.
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The results of 24 different persons showed that our method is satisfactory
but could be improved in the future by extending the model dataset or improving
the selection method.

Even if the viewport tends to be the strong point of our solution, another
improvement that could be made is the object placement within the scene, which
proved to be deceitful and mostly satisfies just the viewport of the image.

An evaluation that is impossible to make is the comparison between our
solution and the previous one, because of our specific choice to use realistic pre-
modeled meshes instead of generating meshes at run-time, which can be observed
in the following images. The first example (Fig. 5) is an example of scene
generation done in Total3DUnderstanding [21] used as a ground comparative
result.

Fig. 5. A scene of an indoor table with 2 chairs reconstructed by Total3DUnderstaning [21].

We can observe in Fig. 6 that, even if the viewport looks correct, the
object placement may not be entirely realistic when inspecting the scene closely.

Fig. 6. A scene of an indoor table with 2 chairs reconstructed by our method.
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However, these undesired results are not very common. In comparison,
Fig. 7 proves that our method can produce organic environments.

Fig. 7. A scene of an indoor office reconstructed by our method.

All in all, we demonstrated that our approach generates realistic high-
quality scenes by combining several novel approaches in the literature and adding
an additional step of using a high-definition realistic 3D models database that
matches identified objects before rendering the scenes, providing a lightweight,
clean, and compact reconstruction of the scene captured in the image.

6. Conclusions

This paper presents advancements in the generation of 3D scenes from
images without depth information. After analyzing the current state-of-the-art
techniques, a solution that improves on the existing methods was proposed. We
presented in this paper some implementation details and results.

The comparison to other state-of-the-art techniques that address this
problem cannot be easily realized. While novel approaches in this domain are
published every year, not many are open-source, and we would be limited to
comparing just a few results made public by the authors. The evaluation shows
promising results, and we can state that we successfully addressed the issue of
inconsistent geometry within the scene by leveraging already existing models and
correlating them with objects of known classes, hence creating realistic
environments that can be used for content generation in virtual reality scenarios.
Doing so, we extended the astonishing results of previous techniques ([36] [21],
[15] and [32]) in a different direction which we believe is more suitable for the
target problem we address in this paper.

Further work is required to improve the speed performance, the model
dataset, and the selection method.
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