U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 4, 2016 ISSN 2286-3540

ALL-PAIRS SHORTEST PATH MODIFIED MATRIX-
MULTIPLICATION BASED ALGORITHM FOR A ONE-CHIP
MapReduce ARCHITECTURE

Voichita DRAGOMIR!

An implementation of a newly developed parallel all-pairs shortest
path algorithm based on modified matrix-multiplication on a new one-chip many-
core structure with a MapReduce architecture is presented. The generic structure's
main features and performances are described together with the new general
purpose features added for upgrading the existing generic structure in order to run
the best performance of this algorithm. The main outcome of the presented research
is that our MapReduce architecture, in spite having a simpler and smaller structure,
has the same theoretical time performance as the hypercube architecture. Also, the
actual energy performance of our architecture is 7 pJ for 32-bit integer operation,
compared with the ~ 150 pJ per operation of the current many-cores.

Keywords: parallel computing; MapReduce; many core; all-pair shortest path;
matrix multiplication; parallel algorithm

1. Introduction

Many structures - physical such as transportation or road networks, social
such as friendship networks, or virtual such as computer networks - have natural
graph representations. Graphs, one of the most versatile data structures, play an
important role in many domains because they provide an easy and systematic way
to model many problems. Because of the ever-expanding amounts of computation
and captured data [1], both researchers and industry are confronted with the need
to process increasingly large amounts of data, essential form by graphs and solved
using standard graph algorithms. So, graph processing is becoming increasingly
important nowadays. In graph theory, the shortest path problem is the problem of
finding a path between two vertices (nodes) in a graph such that the sum of the
weights of its constituent edges is minimum. There are two algorithms: Single-
Source Shortest Path (finding the shortest path from a single vertex to every other
vertex) and All-Pair Shortest Path (APSP) algorithms (finding the shortest path
between all pairs of vertices). The optimal sequential algorithm for APSP is in
O(N3); N being the number of vertices in the graph. This paper is about a parallel
formulation of an All-Pair Shortest Path algorithm: the Modified Matrix-
Multiplication based algorithm on a one-chip MapReduce architecture.

! Teaching assistant., Dept.of Electronic Devices, Circuits and Architectures, University
POLITEHNICA of Bucharest, Romania, e-mail: voichita.dragomir@upb.ro

96 Voichita Dragomir

The modified matrix multiplication is not an optimal algorithm. Its
sequential time is in O(N3logN), but we use it because of its simplicity and the
efficiency on our new structure, the one-chip many-core MapReduce engine. This
new structure is described in chapter 3. This APSP algorithm is called matrix-
multiplication based, because it uses the modified matrix multiplication which
substitutes the multiplication operation with addition and addition operation with
minimum. Our approach is different than what has been done so far. Let us take a
look on the current existing solutions in the next chapter. Chapter three describes
the new structure we are working on. It performs best on matrix-vector
operations. Therefore, we designed an APSP algorithm based on the dense
matrix representation of graph, presented in chapter four. We did not cover the
sparse matrix version because we can't talk of one in this case, due to the fact that
the only zeroes that appear in the matrix are on the main diagonal. Chapter five
contains the new general purpose features added for upgrading the existing
generic structure, in order to run the best performance of this algorithm. To
determine the efficiency of the parallel algorithms we developed for the
MapReduce structure, we are comparing them to the most efficient and used
parallel structure today, the distributed hypercube parallel computer. Concluding
remarks are presented in chapter six.

2. Current existing solutions

So far, parallel APSP algorithms have been implemented on multi-core
processors, with shared external memory. They are limited in the number of cores,
the memory size and they are non-scalable for big data size [2] [3]. Another
existing implementation is cloud MapReduce architecture, with distributed
memory, where the MapReduce approach is limited by the latency introduced by
the communication network [4] [5], which means a significant increase in energy
and time use. For example, if the interconnection network used is a hypercube —
one of the most efficient solution for communication nowadays — then the size of
the entire system belongs to O(PlogP) with a latency in communication in
O(logP), where P represents the number of cells. What is new in our approach is
that we are going to implement the parallel APSP algorithm on a one-chip many-
core structure not on multi-core or distributed computing. There are other one-
chip MapReduce approaches. For example, the Intel SCC family. In [6] and [7]
two different MapReduce applications are presented. The use of this general-
purpose array of processors has a much slower response, because it has no more
than 48 cores (which are also much too complex for solving this kind of problem)
and the MapReduce functionality is implemented in software, not hardware, as in
our case.

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (...) 97

3. New Generic One-Chip MapReduce Architecture

The research presented in this paper is part of a larger project set out to
improve, this generic new architecture, the one-chip MapReduce architecture. For
this purpose, we address the collection of algorithm families important in parallel
computing that the Berkeley research report on parallel computation talks about,
naming them the 13 “dwarfs” [12]. The “dwarf” considered in this paper is Graph
traversal and the APSP with modified matrix-multiplication is one of the graph
traversal algorithms.

3.1. The Structure
The structure we work on is a one-chip MapReduce architecture, presented

in Fig. 1, where:

_______________________________ MAF T
¥ ¥ ¥ ¥ k 4 k 4 ! Yy
1

i
!)

-;—b-I eng | miem |-q—p-| eng | et |-<— - - - —.-| eng | mem IQ—H CONTR I-Q—b-l MEMORY |
1 1

O D | D N] | N | A

REDUCE

Fig. 1. MapReduce one-chip architecture

* pairs eng-mem in the MAP section; they correspond to each cell from a linear
array of hundreds or thousands of cells containing execution units and local
memory of few KB, and consist of:

—eng, the engine, which is an execution unit
— mem, the local memory to store data

« REDUCE unit; is a log-depth tree structure used to compute some reduction
functions (add, min, max, ...) which provides for the controller CONTR a scalar
from a vector.

* CONTR, a controller used as sequencer; a processing unit which issues in each
cycle an instruction and various data distributed, if needed, in the array of cells.

« MEMORY, a memory resource for data and programs.

The cellular structure of the generic structure is accompanied by the
standard scalar processing structure used as controller. In the cellular structure all
the resources are of vectorial type. The instruction set architecture works on four
storage resources:

« vectorial resources, distributed along the array of cells

98 Voichita Dragomir

« scalar resources, in the controller

« control resources, in the controller

« evaluation resources, used to evaluate the performance of the execution
all of which are described as follows:

// vector domain, V

reg [x-1:0] ixVect[0: (1<<x)-1] ; // index read-only vector
reg [a-1:0] actVect[0: (1<<x)-1] ; // activation vector

reg boolVect[0: (1<<x)-1] ; // Boolean vector

reg [n-1:0] accVect[0: (1<<x)-1] ; // accumulator vector

reg crVect[0: (1<<x)-1]1 ; // carry vector

reg [v-1:0] addrVect[0: (1<<x)-1] ; // address vector
reg [n-1:0] vectMem[O: (1<<x)-1]1[0:(1<<v)-1] ; // vector memory

// scalar domain, S

reg [n-1:0] acc ; // scalar accumulator
reg cr ; // scalar carry

reg [s-1:0] addr ; // scalar address

reg [n-1:0] mem[0: (1<<s)-1] ; // scalar memory

// control resources

reg [p-1:0] pc ; // program counter
reg [31:0] ir ; // instruction register
reg [31:0] progMem[O: (1<<p)-11 ; // program memory

// evaluation resources
reg [31:0] cc ; // cycle counter
reg ccEnable ; // cycle counter enable

The generic structure starts with the simplest and smallest resources, like:
« each of the 2* cell’s engine is an execution unit (not a processing unit)
« both, the execution unit of the controller and the execution unit of each cell
are accumulator based
« 32-bit interface to the external memory
The described structure has a few physical implementation versions. The
last out of the three implemented versions, issued in 2008, in 65nm standard cells
technology [8], provides the following performances: 100 GOPS/Watt and 5
GOPS/mm?, while the current sequential engines (x86 architecture, for example)
have, in the same technology: ~1 GOPS/Watt and ~0,25 GOPS/mm? (GOPS
stands for Giga Operations Per Second).
The size of the structure is in O(P), where P is the number of cells, while
the communication latency between the array and the controller is in O(logP).

3.2. The Instruction Set Architecture

Instruction Set Architecture defines the operations performed over the two
data domains: scalar domain, S, and vector domain, V. Therefore, the structure of
the MapReduce generic architecture consists of two parts — one associated to

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (...) 99

Controller and another for Array —, and the resulting instruction set architecture,
|SAMapReduce, is a dual one:
ISAmapReduce = (ISAs x ISAV)
where:
° ISAS = SSarith&Iogic U SScontrol U SScommunication iS the ISA aSSOCiated to the
Controller, with its three subsets of instructions
* ISAv = SSarithalogic U SSspatialcontrol U SStranster 1S the ISA associated to the cellular
Array, with its three subsets of instructions

In each clock cycle from the program memory of the controller a pair of
instructions is read: one from ISAs, to be executed by Controller, and another from
ISAv to be executed by Array.

The SSarithalogic are identical in the two ISAS. The SScommunication Subset
controls the internal communication between array and controller and the
communication of the MapReduce system with the host computer. The SStransfer
subset controls the data transfer between the distributed local memory of the array
and the external memory of the system. The SScontror Subset consists of
conventional control instructions in a standard processor. We must pay more
attention to the SSspatiaicontrol SUDSet used to perform the specific spatial control in
an array of execution units. The main instructions in SSspatiaicontrol SUDSEt are:

activate: all the cells of the array are activated for executing the next
instructions

where: Mmaintains active only the active cells where the condition cond is
fulfilled; for example: where (zero) maintains active only the active cells
where the accumulator is zero (it corresponds to the if (cond) instruction
form the SScontrol SUbset)

elsewhere: activates the cells inactivated by the associated where (cond)
instruction (it corresponds to the e1se instruction form the SScontrol SUDSEL)

endwhere: restores the activations existed before the previous where (cond)
instruction (it corresponds to the endi £ instruction form the SScontrol SUbSEL)

3.2.1. The Instruction Structure

The instruction format for the MapReduce engine allows issuing two
instruction at a time, as follows:
mrInstruction[31:0] = {controllerInstr, arraylInstr} =

{{instr[4:0], operand[2:0], wvalue[7:0]},
{instr[4:0], operand[2:0], value[7:0]}}
where:

instr[4:0] : codes the instruction

operand[2:0] : codes the second operand used in instruction

value[7:0] : IS mainly the immediate value or the address

100 Voichita Dragomir

The field operand(2:0] 1is specific for our accumulator centered
architecture. It mainly specifies the second n-bit operand, op, and has the
following meanings:

val: immediate value
op = {{(n-8)value[7]}, value[7:0]}

mab : absolute from local memory

op = mem|[value]
mr1 : relative from local memory
op = mem[value + addr]

mri : relative from local memory and increment
op = mem[value + addr]; addr <= value + addr;

cop . immediate with co-operand — coop

op = coop ;
mac . absolute from local memory with co-operand
op = mem[coop];

mrc : relative from local memory with co-operand
op = mem|[value + coop] ;

ctl : control instructions ;

where the co-operand of the array is the accumulator of the controller: acc, while
the co-operand of the controller is provided by the four outputs of reduction
section of the array:

redsum: the sum of the accumulators from the active cells: Zé’ ace;

redMin: the minimum value of the accumulators from the active cells: Ming’acci
redMax: the maximum value of the accumulators from the active cells: Maxg’acci
redBool: the sum of the active bit from the active cells: Zgbooli

3.2.2. The Assembler Language

The assembly language provides a sequence of lines each containing two
instructions, one for Controller (containing the prefix c) and another for Array.
Some of the line are labeled, LB (n), where n is a positive integer.

Example 1. The program which provides in the controller’s accumulator the sum

of indexes is:
cNOP; ACTIVATE; // activate all cells
cNOP; IXLOAD; // load the index of each cell in accumulator
cCLOAD (0) ; NOP; // load in controller’s accumulator the sum of

indexes

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (...) 101

3.3. Concluding About Our MapReduce Architecture

This one-chip MapReduce architecture is used as an accelerator in
application fields like video [9], encryption, data mining and also for efficiently
generating pseudo-random number sequences [10].
Matrix-vector operations are very frequent and it is important to cover this aspect.
The system we work with is a many-core one-chip with a MapReduce architecture
and it performs best on matrix-vector operations. The operation supposes a series
of scalar (dot, inner) products whose results must be assembled in a vector stored
back into the array's distributed memory. The generic MapReduce structure
performs very efficiently the vector multiplication (on the Map section of the
engine) and then the n-ary addition (in the Reduce section of the engine). This is
why we choose to do the all-pair shortest path based on the modified matrix
multiplication algorithm, although it's not an optimal algorithm.

4. All-Pairs Shortest Path Modified Matrix-Multiplication Based
Algorithm for Dense Matrix Representation of Graphs

Important note: only the dense matrix version of the modified
multiplication algorithm is considered, because the only zeroes that appear in the
matrix are on the main diagonal and this means dense matrix, so there is no sparse
case.

4.1. The Algorithm
Modified matrix multiplication algorithm assumes to substitute the
multiplication with addition and addition with minimum, such that in computing
the elements of the resulting matrix instead of:
k=N

Cij = D aik xbyj
k=1
we use:
_ i K=N
Cij =min k=1 (aik +bkj)
If, the graph is represented by the weighted adjacency matrix A, then, for a graph
with the number of vertexes |V| = N, the output of the APSP algorithm will be the

N x N matrix D = AN"1, computed using, instead of the matrix multiplication, the
modified matrix-multiplication algorithm.

4.2. The Program

The program is based on the efficiency of our MapReduce architecture in
computing the inner product. The Map section computes the sums aix +byj, for the
modified algorithm, while the Reduce section, pipeline connected, computes the
minimum, for the modified algorithm. Thus, the vector-matrix product is very

102 Voichita Dragomir

efficiently computed by the following program stored as the file
modifiedMatrixVectMult.v Of form:

cLOAD (6) ; NOP; // acc <= last line of matrix
cLOAD (0) ; CADDRLD; // acc <= N; addr[i] <= acc
cVSUB (1) ; RLOAD (0) ; // acc <= N-1; load last matrix M1l line
cNOP; ADD (0) ; // add line with vector
LB(6); cCPUSHL(1); RILOAD(127);// push reduction min; load next line
cBRNZDEC (6) ;ADD (0Q) ; // test end of loop; line-vector add
// latency = 1 + 0.5 log N
cNOP; NOP; // latency
cNOP; NOP; // latency
cLOAD (9) ; SRLOAD; // acc <= mem[9]; load result in acc
cVADD (1) ; CSTORE; // acc <= acc+l; store in vector memory

The loop consists of the following two lines:

LB(6); cCPUSHL(1); RILOAD(127); // push reduction min; load next line
cBRNZDEC (6) ; ADD(0) ; // test end of loop; line-vector add
Actually the hole program stays mainly on these two lines. The weight of the
program from the execution time point of view falls on these two lines, the loop
labeled with LB (6) . The execution time for a N xN matrix is:
Tvector-Matrix(N) = 2N + 6 + 0.5logP € O(N)

with N < P, where N is the number of vertices in the graph which gives the

dimension of the matrix and P is the number of the execution units from the

engine's array of cells. 0. 5logP is due to the latency introduced by the reduction

network. For N = 1024 the execution time for vector matrix multiplication is
Tvector-Matrix(N) = 2048 + 6 + 5 = 2048 +11

which means that only 0.5% of the overall time is spent by the program outside
the loop. This small and concise loop is possible because:
« the control of the loop is performed by the controller in parallel with the
computation done in the Map section and Reduce section.

« the Map section and Reduce section are pipelined and, thus work in
parallel contributing to the computing of two successive inner products.

» the instruction cCPUSHL we added in the instruction set of the
MapReduce engine builds the result vector in parallel.

Based on the previous program, the modified matrix-matrix multiplication
program stored as the file modifiedMatrixMatrixMult.v IS:

‘include "03 matrixTranspose.v"
// select the first N cells only

cLOAD(0); IXLOAD; // acc <= N; acc[i] <= index
cLOAD(0); CSUB; // accl[i] <= index - N
cSTORE (5) ; WHERECARRY; // select only the first N cells
cLOAD (1) ; NOP;

cADD(0) ; NOP;

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (...) 103

cVSUB(1); NOP;
cSTORE (6) ; NOP; // mem[6] <= last line in M1l
cLOAD(2); NOP;
cSTORE (9) ; NOP;
cLOAD (3) ; NOP;
cSTORE (10) ; NOP;

// matrix M1 "x" matrix transpose M2T

LB(7); cLOAD(10); NOP; // acc = address the transp. matrix
cVADD (1) ; CALOAD; // acc <= acc+l; acc[i]<=memVec|[addr]
cSTORE (10) ; STORE(0); // save the pointer; load line at O

‘include "03 modifiedMatrixVectMult.v"

cSTORE (9); NOP;

cLOAD (5) ; NOP; // acc = loopCounter
cVSUB (1) ; NOP; // decrement loopCounter
cSTORE (5); NOP; // store back loopCounter
cBRNZ (7) ; NOP;

The execution time for the modified matrix-matrix multiplication is:
Tmvmm = 3NZ+ 44N + 0.5NlogP +2 € O(N2)

with N <P, where P is the number of execution units and N is the number of
vertices in the graph.
For N = 1024 we obtain the result:

Tmmmm = 3.048N2 cycles

out of which 3N2 are consumed in the following lines:
« from the matrix transpose program (named 03 matrixTranspose.v) the
following two lines are executed in N cycles:

LB(2); cBRNZDEC (2);GLSHIFT; // global left shift cycle times

LB(3); cBRNZDEC(3);GRSHIFT; // global right shift N-cycles times

« from the modified vector—matrix multiplication program (named
03 modifiedMatrixvVectMult.v) the following two lines are executed in
2N cycles:

LB(2); cCPUSHL(1); RILOAD(63);//push reduction sum; load line
cBRNZDEC (2) ; ADD(O0); //test end of loop; line vector add

The execution time for APSP is:
Tapse = (Tmvmm + 11) logP = (3N?+ 44N + 0.5NlogP +13) logP € O (N2logP)

104 Voichita Dragomir

with N < P, where N is the number of vertexes and P is the number of execution
units.

4.3. The Test Program and the Results

For running and evaluating the algorithm on the described architecture we
used a Verilog based simulator and we obtained the following.
We considered the example represented in Fig. 2 (see in [11], Fig. 7.7).

Fig. 2. The graph considered as example

There are N = 9 vertexes in the graph. The corresponding weighted adjacency
matrix A is:

A B C D E F G H |
0O 2 3 99 99 99 99 99 99
99 0 99 99 99 1 99 99 99
9 99 0 1 2 99 99 99 99
99 99 99 0 99 99 2 99 99
99 99 99 99 0 99 99 99 99
9 99 99 9 9 O 2 3 2
99 99 99 9 1 9 0 1 99
0
1

99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 0

-—- IOGmMmMOOOw>

The value 99 stands for oo, meaning there is no path between the two vertexes.
For N = 9 vertexes, we are computing by turn A%, A* and A® using the modified
matrix multiplication.

After running the program the results are:

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (...) 105

A B C D E F G H I
Al vect[38] = 0 2 3 4 5 3 5 6 5 xx X X X X X
Bl vect[39] = 99 099 99 4 1 3 4 3 X X X X X X X
C| vect[40] = 99 99 0 1 2 99 3 4 99 x X X X X X X
D| vect[41l] = 99 99 99 0O 3 99 2 3 99 x x X X X X X
E| vect[42] = 99 99 99 99 0 99 99 99 99 x X X X X X X
F| vect[43] = 99 99 99 99 3 0 2 3 2 X X X X X X X
G| vect[44] = 99 99 99 99 1 99 0O 1 99 x X X X X X X
H| vect[45] = 99 99 99 99 99 99 99 0 99 x X X X X X X
Il vect[46] = 99 99 99 99 99 99 99 1 0 X X X X X X X

where the resulting matrix contains the minimal distances from each vertex to
another. For example, the fourth component of vect [38] which has the value 4
represents the minimum distance from vertex A to vertex D. The value 99, like in
the first component of vect [39], means that there is no path from vertex A to
vertex B, and so on. So the list of existing minimum distances is:

((AB2)(AC3)(AD4)(AES5)(AF 3)(AGS5)(AHGSG)(ATIS)
(BE4)(BF 1)(BG3)(BH4 (BI3)(CDI)(CE?2)(CG 3
(CH4)(DE3)(DG2)(DHI3)(FE3)(FG2)(FHD3)(FI2)
(GE 1) (G H 1) (I H 1))

The rest of the vertexes don't have a path between them. The vectors have
16 elements because we made the simulation with an engine having 16 processing
units. Because the graph we considered has only 9 vertexes (N = 9), the last
components of the vectors are unused (their value is undefined, x). The running
time for the APSP algorithm, obtained in the simulation environment, is: Tarsp =
2041 cycles. So, for N =9, Taese = 8.39NZlogP cycles.

5. Upgraded Version of MapReduce Architecture and Organization

During the process of developing the parallel APSP algorithm based on
modified matrix-multiplication on our new one-chip many-core structure with a
MapReduce architecture we discovered and added some new general purpose
features for the structure and so we were able to upgrade the existing generic
structure in order to achieve a better, maybe the best performance. These
improvement are the following:

o aserial register distributed along the array added to the generic design

e adirect loop from the Reduce module to Array (the loop does not go

through the Controller, the results are sent directly to the Array). This
means significantly faster response in time and less energy
consumption (see Fig. 3)

106 Voichita Dragomir

11

» CONTROLLER

|

|

! Y y ! | l
| MAP |

| |

I cell] (- e el | » CONTROLLER E

| I .

: ! [l __________________ T l

REDUCE

b)

Fig. 3. a). Generic one-chip MapReduce structure; b). Upgraded structure with
serial register and direct loop

e two new instruction added to the set of instructions:

pushl
pushr

5'b01110, // push left to global shift register (c)
5'01111, // push right to global shift register(c)

So, the serial register will do the following:

reg [n-1:0] serialReg[0: (1<<x)-1] ;

case (contrOpCode)

pushl: if(i == 0) serialReg[i] <= op ;
else serialReg[i] <= serialReg[i-1];
pushr: if (1 == ((1<<x) - 1))
serialReg[i] <= op;
else serialReg[i] <= serialReg[i+1];
endcase

As a result of this upgrading we have obtained an increase in performance
by reducing the execution time for the matrix-vector multiplication from
O(NlogP) to O(N). Let us see how it worked. Our generic MapReduce structure
performs very efficiently the vector-vector multiplication. But, the sum involved
in the inner product and the composing of the resulting vector for matrix-vector
multiplication request an embarrassingly long sequence of operations, and more
than that the execution time depends logarithmically by P. Indeed, the loop that
would be written for the generic version looks as follows:

00 LB(6); cSTORE(5); RILOAD(63); // load next matrix line

01 cNOP; MULT (0) ; // multiply line with vector
02 cLOAD (5) ; IXLOAD; // acc <= ixCounter; acc[i]<=ixVector[i]
03 cNOP; CSUB; // acc[i] <= acc[i]-acc;
04 cNOP; WHEREZERO; // for reduction latency
05 cNOP; NOP; // for reduction latency if P > 16
06 cNOP; NOP; // for reduction latency if P > 64
// ... if needed
07 cCLOAD (0) ; NOP; // acc <= reduceAdd
08 cNOP; CLOAD; // accl[i] <= acc;
09 cLOAD(5); STORE (1) ; // acc <= ixCounter; mem[i] [1]<= acc[i]

10 cBRNZDEC (6) ; ENDWHERE; // test end of loop;

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (...) 107

Lines 01 to 07 provide in controller’s accumulator the scalar product of the
vector with a line of the matrix. Because the latency of the reduction network for
addition is 1+0.5logP, the above example is for an array of 256 cells. The
minimum length of the loop is of 9 cycles, for P = 16, because in the lines 02 to
04, in array is selected the cell which will receive the currently computed scalar
product. The time for this loop is: 7 + 0.5logP.

We were looking for an improvement to reduce this 7 + 0.5logP to the
smallest possible constant in order to obtain:

Tmmmm € O(N2)
instead of the current:
Tmmmm € O(N2logP)
(where mMMMM stands for modified matrix-matrix multiplication)

This is what we obtained with the inclusion of the shift register in the design. We
were able to reduce the previous loop sequence to only two lines:

LB(6); cCPUSHL(0); RILOAD(63); //push redSum; load next matrix line
cBRNZDEC (6) ; MULT (0) ; //test end; multiply line with vector

And so, the execution time for matrix-matrix multiplication using the previous
matrix-vector multiplication becomes:

Tvmm = (2N + 0.5l0g2P + ci)N + N2+ ¢c2 € O(N?)

Thus, both, the magnitude order and the constant is small, because, for big N,
Tmmmm — 3N2,

6. Concluding Remarks

The APSP matrix—multiplication based algorithm on a P-processor
hypercube architecture is evaluated as working in O(N?logP) cycles [11], where N
is the number of vertices and N < P. Our architecture provides the same
theoretical time performance, but the advantages we offer is that our engine has
the size in O(P) compared with a hypercube organization with a size in O(PlogP).

Another advantage of our solution is that the cells in our engine are
execution units, not processing units like in the hypercube engines. The program
in a distributed hypercube architecture is replicated P times in each of the P
processing units, while in our approach it is stored only in the Controller’s
program memory.

The last but not the least advantage of our solution is that the hypercube
architecture supposes data multiplies many times in the processing cells' array,

108 Voichita Dragomir

while in our approach data is not multiplied in the array of the execution cells.
Also, the actual energy performance of our architecture is 7 pJ for 32-bit integer
operation, compared with the ~ 150 pJ per operation of the current many-cores.

Acknowledgment

This work has been funded by the Sectoral Operational Program Human
Resources Development 2007-2013 of the Ministry of European Funds through
the Financial Agreement POSDRU/159/1.5/S/132397.

REFERENCES

[1]. M. Hilbert, P. Lépez, "The world’s technological capacity to store, communicate, and compute
information", Science vol. 332, no. 6025, April 2011, pp. 60-65.

[2]. G. Revesz, "Parallel Graph-Reduction With A Shared Memory Multiprocessor System", IEEE
Computer Languages, New Orleans, LA, March 1990, pp. 33-38.

[3]. M. Yasugi, T. Hiraishi, S. Umatani and T. Yuasa, "Dynamic Graph Traversals for Concurrent
Rewriting using Work-Stealing Frameworks for Multi-core Platforms”, IEEE Conference on
Parallel and Distributed Systems (ICPADS), 16th edition, Dec 2010, pp. 406 — 414.

[4]. M. Cosulschi, A. Cuzzocrea and R. De Virgilio "Implementing BFS-based Traversals of RDF
Graphs over MapReduce Efficiently”, IEEE Conference on Cluster, Cloud and Grid Computing
(CCGrid), Delft, May 2013, pp. 569 — 574.

[5]. Q. Lianghong, F. Lei and L. Jianhua, "Implementing Quasi-Parallel Breadth-First Search in
MapReduce for Large-Scale Social Network Mining”, IEEE Conference on Computational
Aspects of Social Networks (CASoN), Fifth International Conference, 2013, pp. 7 — 14.

[6]. A. Papagiannis, D.S. Nikolopoulos, "MapReduce for the Single-Chip Cloud Architecture”
ACACES Journal - Seventh International Summer School on Advanced Computer Architecture
and Compilation for High-Performance and Embedded Systems, Fiuggi, Italy, 2011.

[7]. A. Tripathy, A. Patra, S. Mohan and R. Mahapatra, "Distributed Collaborative Filtering on a
Single Chip Cloud Computer”, IEEE Conference on Cloud Engineering (IC2E), 2013, pp. 140 -
145,

[8]. G. Stefan, "One-Chip TeraArchitecture”, Proceedings of the 8th Applications and Principles of
Information Science Conference, Okinawa, Japan, 2009.

[9]. C. Bira, R. Hobincu, L. Petrica, V. Codreanu, S.Cotofana, "Energy - Efficient Computation of L1
and L2 Norms on a FPGA SIMD Accelerator, with Applications to Visual Search", Proceedings
of the 18th International Conference on Computers (part of CSCC *14), Advances in Information
Science and Applications — vol. I, Santorini, Greece, 2014, pp. 432-437.

[10]. A.Gheolbanoiu, D.Mocanu, R.Hobincu, L.Petrica, "Cellular Automaton pRNG with a Global
Loop for Non-Uniform Rule Control*, Proceedings of the 18th International Conference on
Computers (part of CSCC ’14), Advances in Information Science and Applications — vol. |1,
Santorini, Greece, 2014, pp. 415-420.

[11]. V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to Parallel Computing: Design and
Analysis of Algorithms, The Benjamin/Cummings Publishing Company, 1994,

[12]. K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, W.L.
Plishker, J. Shalf, S.W. Williams, K.A. Yelick, "The landscape of parallel computing research: A
view from Berkeley", Technical Report No. UCB/EECS-2006-183, December 18, 2006.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.pdf

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

