
U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 2, 2018 ISSN 1223-7027

A REFINED UPPER BOUND FOR ENTROPY

Guoxiang Lu1

In this paper we mainly refine the recent entropy upper bound given by
Ţăpuş and Popescu (2012). By using Jensen’s inequality and some new inequalities with

exponential functions and logarithmic functions, we obtain the stronger upper bound for
entropy. At last we prove that the new upper bound is better than the previous one.
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1. Introduction

In information theory[2], if the probability distribution F is given by P (X = i) =
pi, pi > 0, i = 1, 2, · · · , n, s.t.

∑n
i=1 pi = 1, then the (Shannon’s) entropy is defined

as H(X) :=
∑n

i=1 pi log
1
pi
. The entropy reflects the expected value (or average value) of

the information contained in each message. And it plays an important role in information
science and applied mathematics. Some available bounds for the entropy can be seen in
[1, 3, 4, 5, 6, 7, 8, 9, 10]. Recently, Simic improved the Jensen’s inequality and obtained a
new bound for the entropy with two given variables as follows[13]:

0 ≤ m(µ, ν) := µ log

(
2µ

µ+ ν

)
+ ν log

(
2ν

µ+ ν

)
≤ log n−H(X),

where µ = min1≤i≤n{pi} and ν = max1≤i≤n{pi}.
In 2012, Ţăpuş and Popescu [14] obtained a sharper entropy upper bound by using

another refinement of Jensen’s inequality based on Simic’s work:

H(P ) ≤ logn− max
1≤µ1<µ2<···<µn−1≤n

log

( n− 1∑n−1
i=1 pµi

)∑n−1
i=1 pµi

(
n−1∏
i=1

p
pµi
µi

) . (1)

And soon Popescu et al. found a new upper bound for the entropy by a novel approach
in modeling of big Data applications[11] and bounds for Kullback-Leibler divergence[12].
In this paper, we will obtain a more precise upper bound for entropy by using Jensen’s
inequality and some new inequalities with exponential functions and logarithmic functions.

2. Some preliminary results

In this paper, the term “log” refers to natural logarithm.

Theorem 2.1. For x > 0,

x− 1− log x ≥ 1 + x(e1−
1
x − 2). (2)

The equality holds if and only if x = 1.
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Proof. Let f(x) = x− 1− log x−
[
1 + x(e1−

1
x − 2)

]
. Direct computing yields

f ′(x) = 3− 1

x
−
(
1 +

1

x

)
e1−

1
x ,

f ′′(x) =
1

x3

(
x− e1−

1
x

)
.

Using the standard inequality log x ≥ 1 − 1
x with the necessary and sufficient condition

x = 1 for the equality, we can find that x ≥ e1−
1
x and the equality holds if and only if x = 1.

Hence f ′′(x) > 0 for x ̸= 1. Since f(1) = f ′(1) = 0, we first have f ′(x) < 0 for 0 < x < 1
and f ′(x) > 0 for x > 1. Next we can obtain f(x) > 0 for 0 < x < 1 as well as x > 1 and
f(x) = 0 for x = 1. So the proof is complete. �
Theorem 2.2. If a = (a1, a2) and q = (q1, q2) are two positive 2-tuples such that q1+q2 = 1,
then

log(q1a1 + q2a2) ≥
q1a1

q1a1 + q2a2

(
e1−

q1a1+q2a2
a1 − 1

)
+

q2a2
q1a1 + q2a2

(
e1−

q1a1+q2a2
a2 − 1

)
+ (q1 log a1 + q2 log a2) .

(3)

The equality holds if and only if a1 = a2.

Proof. Substituting x = ai

q1a1+q2a2
into (2) and multiplying by qi for i = 1, 2, we have

qiai
q1a1 + q2a2

− qi − qi log
ai

q1a1 + q2a2
≥ qi +

qiai
q1a1 + q2a2

(
e
1− q1a1+q2a2

ai − 2
)

and the equality holds if and only if a1 = a2 are equal. By using q1+ q2 = 1 and q1a1

q1a1+q2a2
+

q2a2

q1a1+q2a2
= 1, after summing the two inequalities above we have

− q1 log
a1

q1a1 + q2a2
− q2 log

a2
q1a1 + q2a2

≥ q1a1
q1a1 + q2a2

(
e1−

q1a1+q2a2
a1 − 1

)
+

q2a2
q1a1 + q2a2

(
e1−

q1a1+q2a2
a2 − 1

)
.

Therefore, the desired result follows and the equality holds if and only if a1 = a2. �

Theorem 2.3. Let fλ(x) :=
x
λ

(
e1−

λ
x − 1

)
+ log x, λ > 0. Then fλ is a concave function

on (0,+∞).

Proof. Straightforward derivative shows

f ′′λ (x) =
1

x3

(
λe1−

λ
x − x

)
.

Observing the standard inequality log x ≥ 1− 1
x , we have log

x
λ ≥ 1− λ

x . Then the inequality
x
λ ≥ e1−

λ
x holds, or equivalently λe1−

λ
x − x ≤ 0. So the function fλ(x) is a concave function

on (0,+∞). �
Next let x = (x1, x2, · · · , xn) and p = (p1, p2, · · · , pn) are two positive n-tuple such

that
∑n

i=1 pi = 1. Then we present two effective theorems.

Theorem 2.4. If fλ is defined as above, Pn is defined as Pn =
∑n

i=1 pixi, and the notation
Tj is defined as follows:

Tj := max
1≤µ1<µ2<···<µj≤n

[(
j∑

i=1

pµi

)
fPn

(∑j
i=1 pµixµi∑j

i=1 pµi

)
−

j∑
i=1

pµifPn (xµi)

]
, (4)

where j = 2, · · · , n− 1, then we have

0 ≤ T2 ≤ T3 ≤ · · · ≤ Tn−1.
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Proof. Because fPn(x) is concave on (0,+∞) by Theorem 2.3, using Jensen’s inequality we
can easily have T2 ≥ 0. Next we will show that for any j ∈ {2, · · · , n− 2}, Tj ≤ Tj+1. Let
us consider that the maximum of the expression

(
j∑

i=1

pµi

)
fPn

(∑j
i=1 pµi

xµi∑j
i=1 pµi

)
−

j∑
i=1

pµifPn (xµi)

is obtained for µi = ηi, ηi ∈ {1, 2, · · · , n}, i = 1, 2, · · · , j. Then it is enough to prove that

(
j∑

i=1

pηi

)
fPn

(∑j
i=1 pηixηi∑j
i=1 pηi

)
−

j∑
i=1

pηifPn (xηi)

≤

(
j+1∑
i=1

pηi

)
fPn

(∑j+1
i=1 pηixηi∑j+1
i=1 pηi

)
−

j+1∑
i=1

pηifPn (xηi)

for any ηj+1 ∈ {1, 2, · · · , n} \ {η1, · · · , ηj}. The above inequality is equivalent to

pηj+1fPn

(
xηj+1

)
+

(
j∑

i=1

pηi

)
fPn

(∑j
i=1 pηixηi∑j
i=1 pηi

)
≤

(
j+1∑
i=1

pηi

)
fPn

(∑j+1
i=1 pηixηi∑j+1
i=1 pηi

)
.

Multiplying by
(∑j+1

i=1 pηi

)−1

, we have

pηj+1∑j+1
i=1 pηi

fPn

(
xηj+1

)
+

∑j
i=1 pηi∑j+1
i=1 pηi

fPn

(∑j
i=1 pηixηi∑j
i=1 pηi

)
≤ fPn

(∑j+1
i=1 pηixηi∑j+1
i=1 pηi

)
.

This inequality follows from Jensen’s inequality for the concave function fPn(x). So we
obtain the desired result. �

Theorem 2.5. Let S = 1
Pn

∑n
i=1 pixi

(
e
1−Pn

xi − 1
)
, then the following estimates hold

S ≤ S + T2 ≤ S + T3 ≤ · · · ≤ S + Tn−1 ≤ logPn −
n∑

i=1

pi log xi. (5)

Proof. By Theorem 2.4, we have

S ≤ S + T2 ≤ S + T3 ≤ · · · ≤ S + Tn−1.

Next we prove the last inequality of (5). Choose arbitrary xµi ∈ {x1, x2, · · · , xn} such that
1 ≤ µ1 < µ2 < · · · < µn−1 ≤ n with corresponding multiplier {pµ1 , pµ2 , · · · , pµn−1}, and
let xµn = {x1, x2, · · · , xn} \ {xµ1 , xµ2 , · · · , xµn−1}. Using the inequality (3) for q1 = pµn ,
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q2 =
∑n−1

i=1 pµi , a1 = xµn , a2 =
∑n−1

i=1 pµi
xµi∑n−1

i=1 pµi

, q1a1 + q2a2 = Pn, we have

logPn = log

(
n∑

i=1

pixi

)
= log

(
pµnxµn +

(
n−1∑
i=1

pµi

) ∑n−1
i=1 pµixµi∑n−1

i=1 pµi

)

≥ 1

Pn

[
pµnxµn

(
e
1− Pn

xµn − 1
)
+

(
n−1∑
i=1

pµi

)(∑n−1
i=1 pµixµi∑n−1

i=1 pµi

)

·
(
e
1− Pn∑n−1

i=1
pµi

xµi
/
∑n−1

i=1
pµi − 1

)]
+ pµn log xµn +

(
n−1∑
i=1

pµi

)
log

∑n−1
i=1 pµixµi∑n−1

i=1 pµi

=
1

Pn

(
n−1∑
i=1

pµixµi

)(
e
1− Pn∑n−1

i=1
pµi

xµi
/
∑n−1

i=1
pµi − 1

)
+

1

Pn

n∑
i=1

pixi

(
e
1−Pn

xi − 1
)

− 1

Pn

n−1∑
i=1

pµixµi

(
e
1− Pn

xµi − 1

)
+

n∑
i=1

pi log xi −
n−1∑
i=1

pµi log xµi

+

(
n−1∑
i=1

pµi

)
log

∑n−1
i=1 pµixµi∑n−1

i=1 pµi

=
n∑

i=1

pi log xi + S +

(
n−1∑
i=1

pµi

)
fPn

(∑n−1
i=1 pµixµi∑n−1

i=1 pµi

)
−

n−1∑
i=1

pµifPn (xµi)

Because µi ∈ {1, 2, · · · , n} are arbitrary, we have

logPn ≥
n∑

i=1

pi log xi + S + max
1≤µ1<µ2<···<µn−1≤n

[(
n−1∑
i=1

pµi

)
fPn

(∑n−1
i=1 pµixµi∑n−1

i=1 pµi

)

−
n−1∑
i=1

pµifPn (xµi)

]

=
n∑

i=1

pi log xi + S + Tn−1.

Then the last inequality of (5) follows. �

3. The new upper bound for entropy

By using Theorem 2.5, we can improve the upper bound for entropy.

Theorem 3.1. We have

H(P ) ≤ logn− 1

n

n∑
i=1

(
e1−npi − 1

)
− max

1≤µ1<µ2<···<µn−1≤n
{F (µ) +G(µ)}, (6)

where

F (µ) = log

( n− 1∑n−1
i=1 pµi

)∑n−1
i=1 pµi

(
n−1∏
i=1

p
pµi
µi

) ,
G(µ) =

n− 1

n

(
e1−

n
n−1

∑n−1
i=1 pµi − 1

)
− 1

n

n−1∑
i=1

(
e1−npµi − 1

)
,

and µ = (µ1, µ2, · · · , µn).
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Proof. Applying the last inequality (5) with xi = 1/pi, after some calculations by using
An = n we can obtain the inequality (6). �

The following theorem can illustrate that our new upper bound (6) for entropy is
better than previous bound (1) in [14].

Theorem 3.2.

1

n

n∑
i=1

(
e1−npi − 1

)
+ max

1≤µ1<µ2<···<µn−1≤n
{F (µ) +G(µ)}

≥ max
1≤µ1<µ2<···<µn−1≤n

{F (µ)}.
(7)

Proof. Let us consider that the maximum of the right-hand side of the inequality (7) is
obtained for µi = ηi, ηi ∈ {1, 2, · · · , n}, i = 1, 2, · · · , n − 1, and let ηn = {1, 2, · · · , n} \
{η1, · · · , ηn−1}. For η = (η1, η2, · · · , ηn) we have

1

n

n∑
i=1

(
e1−npi − 1

)
+ max

1≤µ1<µ2<···<µn−1≤n
{F (µ) +G(µ)}

− max
1≤µ1<µ2<···<µn−1≤n

{F (µ)}

≥ 1

n

n∑
i=1

(
e1−npi − 1

)
+G(η)

=
1

n

n∑
i=1

(
e1−npi − 1

)
+
n− 1

n

(
e1−

n
n−1

∑n−1
i=1 pηi − 1

)
− 1

n

n−1∑
i=1

(
e1−npηi − 1

)
=
1

n

(
e1−npηn − 1

)
+
n− 1

n

(
e1−

n
n−1

∑n−1
i=1 pηi − 1

)
Let ψ(x) = e1−x−1. We can easily obtain ψ(x) is convex for x > 0 by the second derivative
ψ′′(x) = e1−x > 0. Using Jensen’s inequality we have

1

n

(
e1−npηn − 1

)
+
n− 1

n

(
e1−

n
n−1

∑n−1
i=1 pηi − 1

)
≥ e1−(

1
nnpηn+n−1

n
n

n−1

∑n−1
i=1 pηi) − 1 = e1−

∑n
i=1 pi − 1 = 0

So we obtain the desired result. �
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