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ABOVEGROUND BIOMASS ESTIMATION OF CAOHAI 

WETLAND VEGETATION BASED ON OPTICAL AND 

RADAR REMOTE SENSING 

Z.H. WANG1*, H.Y. DAI2, J.B. LIU3, J.T. REN4 

The aboveground biomass (AGB) of wetland vegetation is an important 

characterization of the structure and function of wetland ecosystems. Taking Caohai 

National Nature Reserve (CNNR) as the research object, three polarization 

combinations of two backscattering coefficients and 10 vegetation indexes were 

extracted from the GF-3 and Sentinel-2A, and the correlation between them and 

biomass were analyzed. Then, the AGB estimation models based on the integration 

of optical image and radar image were constructed. Based on the above research, 

the integration of optical and radar remote sensing was able to obtain the complete 

spatial distribution of biomass in the study area; which serves as a good reference 

value for the estimation of grassland AGB in cloudy and rainy areas. 
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1. Introduction 

The continuous development of remote sensing technology has led to great 

progress in research on remote sensing inversion of the aboveground biomass 

(AGB) of wetland vegetation. Many scholars have studied the use of NDVI, EVI, 

and other vegetation indexes to estimate the AGB of grassland based on the light 

energy utilization model [1,2], and satisfactory results have been achieved, but the 

model is complex, and its application is restricted to some extent [3]. The 

statistical model between the backscattering coefficient of synthetic aperture radar 

(SAR) image and vegetation biomass is simple and easy to implement, and its 

ability of penetrating cloud and fog has advantages in cloudy and rainy areas, but 

the disadvantages are lack of model parameters, low accuracy, and poor guarantee 

[4]. The spectral vegetation indexes can indirectly reflect vegetation coverage and 

biomass, so a linear or nonlinear relationship between wetland vegetation biomass 
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and vegetation index can be established [4]. In order to get the best inversion 

accuracy, many scholars have studied and analyzed the selection of vegetation 

indexes [5,6]. In recent years, some indexes and red-edge indexes related to 

vegetation physical and chemical parameters, such as red-edge chlorophyll index 

(CIre) and green chlorophyll index (CIgreen), have been proven to be closely related 

to chlorophyll content [7-9]. Therefore, the red-edge bands should also have the 

potential to estimate the AGB of wetlands [10]. Sentinel-2A and Sentinel-2B 

satellites provide high spatial and temporal resolution multispectral data, and three 

red-edge bands were set up to provide more optional information for vegetation 

monitoring [8]. Some scholars' research shows that Sentinel-2 red-edge bands are 

of important value in estimating vegetation biomass [10,11]. 

Compared with the single linear regression of the empirical model method, 

the multiple regression model and back propagation neural network (BPNN) 

model based on optimal vegetation indexes have higher accuracy in the estimation 

of vegetation physical and chemical parameters [12,13]. The BPNN model is also 

commonly used in recent years, and the research of many scholars shows that it 

performs well in biomass estimation [12,14]. 

With the promotion of the ecological environment protection and 

comprehensive treatment project in CNNR, the wetland habitat has been 

significantly recovered and improved. Due to the perennial cloudy and rainy 

weather in Southwest China, optical images can be easily affected, so the 

integration of an optical image and a radar image for biomass estimation can give 

full access to the advantages of different remote sensing data [4]. Based on the 

above considerations, we first extracted 10 vegetation indexes (NDVI, EVI, SR, 

MERIS Terrestrial Chlorophyll Index (MTCI), MSR, MSRre, NDVIre, SRre, CIre, 

and CIgreen) from multispectral Sentinel-2A data. Then, the indexes with high 

correlation with biomass were selected as the independent variables to construct 

the estimation model. For the cloud covered area, based on the dual polarimetric 

SAR data of GF-3, the different combinations of backscattering coefficients 

(HH/HV, (HH+HV)/(HV−HH), and HH−HV) were calculated, then the BPNN 

model was constructed to estimate the biomass. 

2. Research Area and Data Acquisition 

2.1 Research Area Overview 

CNNR, a subtropical plateau wetland ecosystem, is listed as a nationally 

important wetland [18]. Its special location and natural environment provides 

habitat for rare birds and migratory birds. The reserve is located in the central part 

of the Yunnan–Guizhou Plateau and in the hinterland of Wumeng Mountain. 

Caohai lake belongs to the Yangtze River system and is the upper source lake of 

the Hengjiang River, which is a tributary of the Jinsha River [15]. The scope of 
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this study centered on the protected area (center latitude and longitude are 

1105°18′27″ and 27°17′50″, respectively), and focused on the AGB of the water 

buffer zone and grassland in the catchment areas such as Huyelin, Bojiwan, and 

Zhujiawan. The range and distribution of samples of the nature reserve are shown 

in Figure 1, whose base map is the Sentinel-2A image taken on July 21, 2018. 

 
Fig. 1. Reserve and distribution of sampling points 

2.2 Field Data Measurement 

The vegetation growth on the Guizhou plateau reaches its peak in early 

August, and then begins to decline [16]. There were 31 survey points, mainly 

distributed in the catchment area and water outlet and other areas with complete 

grassland and little human impact. The data collected included grassland biomass 

and typical vegetation spectra. The sampling method of biomass was to select a 10 

m × 10-m area, then five 0.5 m × 0.5-m sample points in the four corners and 

center of the area were selected to collect the aboveground part of vegetation. At 

last, the collected vegetation was dried to a constant weight using a dryer in the 

laboratory. Then, the AGB dry weight (g·m-2) of dried vegetables was calculated 

as measured values [4][10]. The optical image used was from Sentinel-2A on July 

21, 2018, and the radar data was from GF-3 on July 15, 2018. The sampling dates 

are July 26 and July 27, both with cloudy and sunny weather. 

2.3 Satellite Data and Data preprocessing 

The Gaofen-3 satellite (GF-3) is a remote sensing satellite of China's 

Gaofen special project. GF-3 is the C-band synthetic aperture radar data, with 12 

modes such as SL, UFS, FS and QPS. This study used FSⅡdual-polarization 

SAR data with a resolution of 10×(8～12) m, which consists of HH and HV 

polarization channels. Sentinel-2A multispectral data include 13 bands, of which 

the visible and near-infrared bands have the highest resolution (10 m). The ESA 

SciHub publishes L1C-level data that provide a geometrically corrected 

orthophoto without radiometric calibration and atmospheric correction. 
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The pretreatment steps of GF-3 dual polarimetric SAR include multi-look 

processing, filtering and noise reduction, radiometric calibration, and geocoding. 

Sentinel-2A L1C data are derived from atmospheric apparent reflectance, which 

needs radiometric calibration and atmospheric correction to obtain surface 

reflectance data. For this reason, we used the sen2cor tool of the ESA to process 

L1C data into L2A data. Finally, the resulting data of each band were resampled 

to 10 m. 

3. Research Methods 

3.1. Estimation Parameter Selection 

The spectral vegetation index method is an effective method for remote 

sensing inversion of vegetation parameters. In this study, 10 vegetation indexes 

(Table 1) were selected to explore the relationship between vegetation indexes 

and grassland biomass based on Sentinel-2A multispectral image data. The 

correlation between reflectance and chlorophyll content at 705 nm is better than 

that of other red-edge bands [11,12]. Therefore, the 705-nm vegetation red-edge 

of Sentinel-2A was used as the red-edge band in the calculation formula. 

Research shows that different polarization combinations of the radar can 

weaken the impacts of noise on the backscattering coefficient of ground objects 

[17] and can reflect the characteristics of ground objects from more angles and 

broaden the information scope of ground objects [18]. According to past research 

publications and preliminary experiments, three types of backscattering 

coefficient polarization combinations, namely HH/HV, (HH+HV)/(HV−HH), and 

HH−HV, were selected. 
 

Table 1 

Vegetable indexes and polarization combination modes selected in this study 

Estimation Parameters  Formulas Reference Sources 

Normalized Difference 

Vegetation Index(NDVI) 
( ) / ( )nir red nir redR R R R− +  (Schell etc.,1973)[18] 

Enhanced Vegetation 

Index(EVI) 
2.5( ) / ( 6 7.5 1)nir red nir red blueR R R R R− + − +  

(Huete etc.,2002) 

[19] 

Simple Ratio(SR) /nir redR R  
(Jordan etc.,1969) 

[20] 

MERIS Terrestrial 

Chlorophyll Index(MTCI) 
( ) / ( )nir red edge red edge redR R R R− −− −  (Dash and 

Curran,2004)[21] 

Modified Simple 

Ratio(MSR) 
( / 1) / / 1nir red nir redR R R R− +  (Chen etc.,1996)[22] 

Modified red-edge Simple 

Ratio(MSRre) 
( / 1) / / 1nir red edge nir red edgeR R R R− −− +  (Wu etc.,2008)[23] 

Red-edge NDVI(NDVIre) ( ) / ( )nir red edge nir red edgeR R R R− −− +  (Sims and 

Gamon,2002)[24] 

Red-edge Simple /nir red edgeR R −  (Sims and 
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Ratio(SRre) Gamon,2002)[24] 

red-edge chlorophyll 

index(CIre) 
/ 1nir red edgeR R − −  (Gitelson 

etc.,2005)[7] 

Green Chlorophyll 

Index(CIgreen) 
/ 1nir greenR R −  (Gitelson 

etc.,2005)[7] 

HH/HV HH/HV / 

HH-HV HH-HV / 

(HH+HV)/(HV-HH) (HH+HV)/(HV-HH) / 

Note: HH and HV are the corresponding radar backscatter coefficients. 

3. 2. Biomass Estimation and Evaluation 

With the curve fitting tool in MATLAB, the indexes in Table 1 were 

optimally fitted with AGB. The root mean square error (RMSE) and the 

coefficient of determination (R2) were used to evaluate the accuracy of the fitted 

results of biomass and different indexes. Finally, the vegetation indexes with high 

correlation were selected to construct the multiple nonlinear regression model and 

BPNN model for biomass estimation. 

3. 2.1. Multiple Regression Model and BPNN model 

The approach of the multiple nonlinear regression model is to construct 

the research object into multiple functions and determine the parameters of each 

function [25]. Based on the analysis of the correlation between vegetation indexes 

and biomass, the indexes with better correlation and their fitting functions of 

biomass were selected, and then the multivariate nonlinear biomass estimation 

model was constructed based on the principle of linear superposition. The 

expression of the AGB multiple nonlinear regression model is as follows: 

3 31 1

1 2 2 3

b xb xAGB a e a x a e c= + + +                                       (1) 

In the formula, 1 2 3 1 3, , , ,a a a b b  and c are parameters to be determined, 

1 2,x x  and 3x  correspond to the indexes with high correlation with biomass. 

BPNN is composed of an input layer, hidden layer, and output layer. Its 

core idea is to use gradient descent method to solve the minimum value of the 

objective function with the square of network error [25]. It is generally believed 

that three-layer BPNN can approximate any continuous function [14]. Based on 

the MATLAB R2018a programming environment, the specific processes are as 

follows:  

(1) The sample values are linearly normalized with the following formula 

to ensure that the values are within (0,1). 

minmax

minˆ
xx

xp
bax

−

−
+=                                                    (2) 

In the formula, x̂ is the normalized values, and a and b are the parameter 

values for normalization, which can be adjusted appropriately during processing. 
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P is the value to be normalized, maxx  is the maximum value in the sequence value, 

and minx  is the minimum value. 

(2) Input the training eigenvectors { }iX  and the target vectors { }iY  into 

BPNN, iX  is the index eigenvector of sample i, iY  is the biomass of sample i. 

(3) In the hidden layer, the actual output value iy  of each node neuron is 

calculated according to Equations (3) and (4) to complete a forward propagation. 

)(
0

i

k

j

iji xWfy 
=

=    (j=1,2,…,k)                                           (3) 

  
)(1

1
)(

−−−
=

xe
xf                                                          (4) 

Here, ijW  is the weight of the jth neuron in the ith layer of the hidden 

layer, θ is the threshold, and f(x) is the transfer function sigmoid. 

(4) The errors between target output Y and target ŷ  of the network system 

is defined as Ei, and its formula is as follows: 

 −= 2)ˆ(
2

1
iii yyE

                                                  

(5) 

(5) The partial derivative of Ei to W is used to represent the gradient 

direction of the weights. Back propagation based on formula (6) is then used to 

adjust the weights of each node neuron in each hidden layer. 

)(|)/()1( tWWWEtWtW =−+=+ ）（
                    (6) 

Here,   is the learning rate. 

3.2.2. Evaluation methods 

The SPSS Statistics 24.0 software was used for random sampling of 31 

measured biomass values, and 16 were selected as modeling samples and 15 as 

test samples. The accuracy of the models were evaluated based on the relative 

mean error (RME) and mean absolute error (MAE). The formulas used are: 

1

1
y

N

i ii
MAE y

N =
= −                                             (7) 

2

1
1/ ( )

100%

N

i ii
N y y

RME
y

=
−

= 


                                (8) 

Here, iy  is the measured hay weight,
'

iy  is the estimated hay weight, and y 

is the average hay weight measured in samples. All measurement units of them 

are g/m2, and N is the number of sampling points. 
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4. Results Analysis and Discussion 

4.1. Correlation Analysis 

Figure 2 shows the scattered point-fitting curve between indexes and 

biomass, with R2 greater than 0.60. It can be seen from Figure 2 that SRre (R
2 = 

0.88, RMSE = 110.2 g·m-2) performed the best. For the fitting performance 

between the radar backscattering coefficient and biomass, ranked by R2 from 

highest to lowest: (HH+HV)/(HV−HH) > HH/HV = HH−HV. Compared to the 

red-edge indexes of SRre, MSRre, and NDVIre, along with the common indexes of 

SR, MSR, and NDVI, it can be seen that the red-edge indexes increased the 

accuracy of biomass estimation to different degrees. 

RMSE=110.2 g/m2

y=11.5e1.23x+319.5

RMSE=124.7 g/m2

y=116.2x+3.554

RMSE=163.9 g/m2

y=1.8e1.24x+464.9

RMSE=172.5 g/m2

y=17.4e3.48x+332.2

RMSE=186.2 g/m2

y=2×10-6e25.56x+451.8

RMSE=192.8 g/m2

y=31.9e1.34x+315.6

RMSE=182.9 g/m2

y=246.9x-1.077

RMSE=181.8 g/m2

y=46.03x+84.97

RMSE=141.9 g/m2

y=294.9e0.57x-57.4

RMSE=178.3 g/m2

y=1846x-1.077

RMSE=182.3 g/m2

y=1.3e11.59x+384.1

RMSE=205.9 g/m2

y=0.079e4.16x+431.3

 
Fig. 2. Relationships between AGB and vegetation indexes 

 

It was necessary to perform an accuracy test on the simulation results. The 

number of check samples was 15 and the RME was used to test the accuracy of 

this model. The errors, listed in ascending order, are as follows: SRre (13.5%) > 

SR (15.3%) > CIre (17.4%) > CIgreen (20.1%) > MSRre (21.2%) > 

(HH+HV)/(HV−HH) (22.1%) > NDVIre (22.4%) > NDVI (22.9%) > 

HH/HV(23.9%) > HH−HV (25.3%). The SRre had the smallest error, and the 

HH−HV error was the largest, which was consistent with the accuracy order of the 

models. The HH/HV, HH−HV, and (HH+HV)/(HV−HH) were significantly 

correlated at 0.05 level. 
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4.2. Biomass estimation based on multiple nonlinear regression 

Three indexes (SRre, SR, and CIre) with R2 greater than 0.8 were selected 

to construct the multivariate functional relationship between AGB and VIs. 

Sixteen groups of samples were used to calculate the model parameters, and 

lstOpt’s “Levenberg Marquardt method + general global optimization method” 

was used to solve the parameters in model (1), and then the multiple nonlinear 

regression model expression of AGB was obtained as follows: 

31 8.091.34

27.67 2.13 4997.01 372.39
xxAGB e x e

−
= − − +

               (9) 

The fitting accuracy R2 and RMSE of model (9) were 0.9 and 96.85 g·m-2, 

respectively. It can be seen from Figure 3 that the change trend of AGB predicted 

value of model (9) was consistent with the measured value, which was close to the 

1:1 line, and the determination coefficient R2 was 0.89. The mean absolute error 

(MAE) and mean relative error (RME) were used to evaluate the accuracy of the 

model. The MAE of the multivariate nonlinear model was 89.40 g·m-2, and the 

RME was 12.2%. The MAE of the multivariate linear model was 121.52 g·m-2, 

and the RME was 18.1%. 

 
Fig.3. Fitting effect of prediction model 

4.3. Biomass estimation based on BPNN 

A standard BPNN was established, where the hidden layer used the tansig 

activation function, the output layer used the sigmoid activation function, and the 

dynamic gradient function was used to train the samples. The weight and 

displacement of the hidden layer were set between rands (−1,1). The optimal 

parameters were judged by the minimum mean square error between the predicted 

output values and the sample values for verification. In order to improve the 

convergence speed and prediction accuracy of the network, the sample values 

were normalized by equation (2), parameter a was set to 0.1, parameter b was set 

to 0.8, and the sample values were normalized to (0,1). The Levenberg–Marquardt 

(LM) algorithm was used to train the sample values. This method not only 

retained the local convergence, but also had the global property of gradient 

descent method, with fast convergence and fewer iterations so as to improve 
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BPNN. The BPNN was constructed by using three vegetation indexes with R2 

greater than 0.8 as input variables in Figure 2. The number of nodes in the hidden 

layer was determined as 10, learning rate was 0.05, the maximum training times 

were 10,000, and the target accuracy was 0.00001. Similarly, for SAR data, the 

input variables of BPNN were HH/HV, HH−HV, and (HH+HV)/(HV−HH). 

The R2, MAE, and RME between testing samples and biomass predicted 

by BPNN based on optical vegetation indexes were 0.93, 75.46 g·m-2, and 10.2%, 

respectively. The R2, MAE, and RME between testing samples and biomass 

predicted by BPNN based on SAR were 0.8, 129.26 g·m-2, and 18.6%, 

respectively. 

 
Fig.4. Prediction effect of optical index (a) and SAR (b) based on BPNN model 

4.4. Spatial Distribution of Biomass 

The image data of the three polarization combinations were preprocessed 

and put into the BPNN model to obtain the biomass estimation results. In order to 

remove the influence of noise on biomass mapping, the biomass of grassland and 

cultivated land was extracted for mapping (as shown in Figure 5). 

 
Fig.5. Aboveground biomass distribution inversed by the radar model 

 

Similarly, after preprocessing the SRre, SR, and CIre images, the biomass 

estimation results were obtained by the BPNN model. For the cloud-covered parts 

of Sentinel-2A optical image, the biomass retrieved from SAR was used to 
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supplement the missing parts to obtain the biomass distribution map of the whole 

region, as shown in Figure 6. 

The areas with biomass value lower than 250 g·m-2 were mainly non-

vegetated areas such as construction land, water area, and unused land, which had 

no practical significance and were removed during mapping. In the northeast of 

Caohai Lake, the grassland from Xihai to Bojiwan was the most lush, with a large 

number of verdant plants such as Acorus calamus, Phragmites australis, and 

Alternanthera philoxeroides. Its biomass was the highest, generally more than 

1,000 g·m-2. In addition to the grassland type, the reason was also related to the 

inflow of some eutrophic urban wastewater in northeast Caohai. The biomass of 

corn planting areas was also relatively high. 

 
Fig.6. Biomass distribution of the Caohai Reserve 

 

The catchment basins of Huyelin, Bojiwan, Xihai, Zhujiawan, 

Wujiayantou, and Yangguanshan were important foraging and habitats of the 

black-necked crane and other rare and migratory birds; there were numerous 

hygrophytes (excluding submerged and floating plants), and their vegetation 

growth was of great significance to measure ecological changes. In the shallow 

water area of Yangguanshan, the biomass of the hygrophytes ranged from 400 

g·m-2 to 600 g·m-2, and they were mainly sedge, cordyceps, and some stretches of 

Phragmites australis. In the shallow water area of Huyelin, the hygrophytes were 

mainly spartina and bermudagrass, while in the offshore area, it was Phragmites 

australis, with biomass ranging from 400 to 850 g·m-2. Zhujiawan was 2.5-km 

long and 1.2-km wide; nearly half of the area was planted with crops, mainly corn 

and some vegetables, and the rest were hygrophytes; the biomass ranged from 400 

to 800 g·m-2. During the period of field investigation, the corn in the corn planting 

area was going through silking to filling, and the biomass was between 800 and 

1600 g·m-2. Bojiwan was connected with the West Sea; it had a large area of 

hygrophytes, as well as some grassland and vegetable crops. There were many 

kinds of vegetation such as bermudagrass, Phragmites australis, Acorus calamus, 
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Alternanthera philoxeroides, and Polygonum hydropiper. It was the most 

prosperous area around the lake. There was a large reed area in Jiangjiawan with a 

biomass of about 1,100 g·m-2. The total biomass calculated in this paper was 

about 360 kilotons and the annual average NPP of MODIS NPP from 2007 to 

2015 was about 500 kilotons. 

5. Conclusions 

(1) The three polarization combinations of backscattering coefficient extracted 

from Sentinel-1A had significant correlations with biomass (0.72 ≤ R2 ≤ 0.73, 

178.3 g·m-2 ≤ RMSE ≤ 182.9 g·m-2).  

(2) The vegetation indexes calculated by Sentinel-2A were significantly 

correlated with AGB of wetland vegetation (0.55 ≤ R2 ≤ 0.88, 110.2 g·m-2 ≤ 

RMSE ≤ 216 g·m-2). Of them, SRre had the highest correlation (R2 = 0.88, 

RMSE = 110.2 g·m-2), followed by SR and CIre; the correlation between 

vegetation indexes (SRre, NDVIre, MSRre) and biomass were improved by 

adding red-edge bands. 

(3) SRre, SR, and CIre with R2 values greater than 0.8 were selected to construct 

the multivariate nonlinear regression model and BPNN model. The results 

showed that the BPNN model was the best model, and the MAE and RME of 

the simulated values tested by test data were 75.46 g·m-2and 10.2%, 

respectively. Based on the BPNN model constructed by three polarization 

combinations of backscattering coefficient, R2, MAE, and RME tested by test 

data were 0.79, 130.27 g·m-2, and 18.5%, respectively. 

(4) In the cloudy and rainy Guizhou province, it was possible that the BPNN 

model based on vegetation indexes and the polarization combinations of the 

model were integrated to retrieve vegetation biomass, which compensated for 

the limitation that optical images could not obtain biomass in a cloudy area. 
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