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A NOTE ON THE CORRELATIONS BETWEEN NIST
CRYPTOGRAPHIC STATISTICAL TESTS SUITE

Emil SIMION?, Paul BURCIU?

This paper is focused on an open question regarding the correlation and the
power of the NIST statistical test suite. If we found some correlation between these
statistical tests, then we can improve the testing strategy by executing only one of
the tests that are correlated. Using the Galton-Pearson “product-moment
correlation coefficient”, by simulation, we found a high correlation between five
couples of this statistical tests: (frequency, cumulative sums forward), (frequency,
cumulative sums reverse), (cumulative sums forward, cumulative sums reverse),
(random excursions, random excursions variant), and (serial 1, serial 2).
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1. Introduction

When we talk about communications security, we need to cover both the
confidentiality of the transmitted data and the confidentiality of the
communicators (sender and receiver). Statistical tests are an efficient tool for
assigning the ownership of a set of independent observations, called
measurements, to a specific population or probability distribution; they are
commonly used in the field of cryptography, specifically in randomness testing.
Statistics can be useful in showing that a proposed system is weak. Thus, one
criterion in validating ciphers is that there is no efficient method for breaking it by
brute force. That is, if we have a collection of cipher texts (and eventually the
corresponding plain texts) all the keys have the same probability to be the correct
key, thus we have uniformity in the key space. If we are analyzing the output of
the cipher and find non-uniform patterns, then it can be possible to break it. But if
we cannot find these non-uniform patterns, no one can guarantee that there are no
analytical methods for breaking it. Also, statistical tests can be used for analyzing
communication data and detect covert communications (steganographic systems)
and anomalies in TCP flow (cyber-attacks).

The paper will be organized as follows. In section 2 we present statistical
requirements for validating the security of cryptographic primitives. Validation by
statistical methods is prone to errors due to the samples used in testing. In section
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3 we discuss types of errors, sample requirements, and constructions for testing
block ciphers. For a reference to clearly defined security, the International
Standardization Organization (ISO), national standards organizations such as
American National Standards Institute (ANSI), National Institute for Standards
and Technologies (NIST) standardize requirements and evaluation criteria for
cryptographic algorithms. The statistical methods used in academic security
evaluation of the AES candidates are generally based on the “de facto” standard
STS SP 800-22 [8], a publication of Computer Security Research Center [9], a
division of NIST, that initially describes sixteen statistical (because improper
evaluation of mean and variance, the Lempel-Ziv test was dropped from the
revised version). Besides the above, there exist other several statistical testing
procedures and tools specified in Donald Knuth’s book [3], The Art of Computer
Programming, Seminumerical Algorithms, the Crypt-XS suite of statistical tests
developed by researchers from the Information Security Research Centre at
Queensland University of Technology from Australia, the DIEHARD suite of
statistical tests developed by George Marsaglia [5], TestU01, a C library for
empirical testing of random number generators developed by P. L’Ecuyer and R.
Simard [4]. In section 3 we discuss about STS SP 800-22 and the statistical
cryptographic evaluation standard used in AES candidates’ evaluation. In section
4, we provide experimental results regarding evaluation of correlation between
statistical tests that were run using three different lengths of the string sample (i.e.
1, 2, and 5 million bits). In fact, using the Galton-Pearson “product-moment
correlation coefficient” we found a high correlation between some couples of
these statistical tests. This fact allows us to improve the testing strategy by
executing only the uncorrelated statistical tests. Finally, in section 5, we conclude.

2. Statistical Testing of Cryptographic Primitives

When designing cryptographic primitives such as block/stream ciphers,
there are several requirements. One of these requirements is that the cryptographic
primitive has to satisfy several statistical properties:

e strict avalanche: changing one input bit causes on average about 50%
output changes;

e correlation immunity: correlated input gives an uncorrelated output;

e predictability: having a sample of n binary observations it is impossible to
predict (with a different from 0.5 probability) the next bit outcome;

e Dbalance: every output is produced by the same number of inputs.

The validation of these criteria is done by analytical methods or statistical
tests (in case the first one is not available). Also, statistical tests are useful to
mount distinguishing attacks that allow an attacker to distinguish random data
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from encrypted data. Statistical hypothesis testing is a mathematical technique,
based on sample data, used for supporting the decision making on the theoretical
distribution of a population. In the case of statistical analysis of a cryptographic
algorithm, the sample is the output of the algorithm from different inputs for the
key and plain text. Because we deal with sample data from the population, the
decision process of the population’s probability distribution is prone to errors. To
meet this challenge, we model the decision making-process with the aid of two
statistical hypotheses: the null hypothesis, denoted by Ho - in this case, the sample
does not indicate any deviation from the theoretical distribution - and the
alternative hypothesis Ha - when the sample indicates a deviation from the
theoretical distribution. There can be two types of errors: first type error (also
known as the level of significance), i.e. the probability of rejecting the null
hypothesis when it is true (1):

a = Pr(reject H, | H, is true) (1)
and the second type error, which represents the probability of failing to reject the
null hypothesis when it is false (2):

B = Pr(accept H, | H, is false) )

These two errors, « and £, can’t be minimized simultaneously since the
risk £ increases as the risk o decreases and vice-versa. For this reason, one
solution is to have the value of « under control and compute the probability /.
The analysis plan of the statistical test includes decision rules for rejecting the null
hypothesis. These rules can be described in two ways:

e Decision based on P-value. In this case, we consider f to be the value of
the test function and compare the P-value, defined as (3):

Pr(X < f) 3)

with the value «, and decide on the null hypothesis if P-value is greater

than a;

e The “critical region” of a statistical test is the set which causes the null
hypothesis to be rejected; the complementary set is called the “acceptance
region”. In the acceptance region, we shall find the ideal results of the
statistical test.

Because for each test statistical test the rejection rate « is a probability,
which is “approximated” from the sample data, we need to compute the minimum
sample size in order to achieve the desired rejection rate a. Also, the sample must
be independent and governed by the same distribution.

A way to construct samples for testing block ciphers is to setup the plain
text and the key (4):

X; =E(P k) @)



212 Emil Simion, Paul Burciu

where E is the encryption function, P; is the set of plain texts, and k; is the set of
keys. For each plain text input P; and each encryption key ki, the output from the
encryption function must have a uniform distribution. To test this assumption, for
AES candidates, in NIST standard [9] the samples are constructed with low/high
density plain text/key (a low density text/key is a text/key with a small number of
1s, in opposition to a high density text/key which is a text/key with a small
number of 0s). As we can see, when using this type of construction, the samples
are not independent variables because they are connected by means of the
encryption function E. Are the results of the statistical tests relevant when this
assumption is not true? If the statistical test accepts the null hypothesis, then we
can say that there is not enough evidence for the non-uniformity of the sample.

If a cryptographic primitive passes a statistical test, it does not mean that
the primitive is secure. For example, the predictable sequence 01010...01 is
“perfect” if we analyze it with the bit frequency test. This is one of the reasons
why we should be “suspicious” if we obtain perfect results. To avoid these
situations, in some cases it is indicated to include the neighborhood of the ideal
result in the critical region.

NIST SP 800-90A [NIST SP 800-90] contains the specifications of four
cryptographic secure PRBG for use in cryptography based on: hash functions,
hash-based message authentication code, block ciphers and elliptic curve
cryptography. Some problems with the later one (Dual EC_DRBG) were
discovered since 2006 ([2]): the random numbers it produces have a small bias
and it raises the question if NSA put a secret backdoor in Dual EC_DRBG. It was
proved, in 2013, that (Dual_ EC_DRBG) has flows. Internal memos leaked by a
former NSA contractor, Edward Snowden, suggest that NSA generated a trapdoor
in Dual EC_DRBG. To restore the confidence on encryption standards, NIST
reopens the public vetting process for the NIST SP 800-90A.Thus, if algorithm
will fail to certain tests, then it should not be used in cryptographic applications
because an attacker will be able to predict the behavior of the algorithm or, even
worse, may indicate the existence of certain trapdoors.

3. A View on STS SP 800-22

Pseudorandom bit generators (PRBG) are cryptographically secure if pass
next bit test, that is, there is no polynomial time algorithm which, given the first I-
bits of the output, can predict | +1-bit with probability significantly greater than
0.5, and in the situation when a part of PRBG is compromised, then it should be
impossible to reconstruct the stream of random bits prior to the compromising.
Yao [Yao] proved that PRBG passes next bit test if and only if passes all
polynomial time statistical tests. Because practically is not feasible to test PRBG
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for all polynomial statically tests, we need to find a representative, polynomial
time, statistical testing suite such as STS SP 800-22.

Because STS SP 800-22 is a standard, we shall focus on it rather than
other statistical test suites ([3], [4], or [5]). STS SP 800-22 (the revised version)
consists of fifteen statistical tests, which highlight a certain fault type proper to
randomness deviations. Each test is based on a computed test statistic value f,
which is a function of the sample. A statistical test is used to compute (5):

P —Value =Pr(f |H,) (5)
that summarizes the strength of the evidence against the null hypothesis. If the P-
value is greater, then the null hypothesis is accepted (the sequence appears to be
random). The tests are not jointly independent, making it difficult to compute an
overall rejection rate (i.e. the power of the test). Recall that the tests Ty,...,T1s are
jointly independent if (6) is true for every subset {i1,...,ik} of {1,...,15}:

Pr(Ti17"'7Tik): Pr(Til) Pr(Tik) (6)

Obviously, jointly independent tests are pair wise independent. The
converse is not true [1]. If the statistical tests would be independent, then the
overall rejection rate, would be computed using the probability of the
complementary event (7):

1-(1-a)°~0.14 (7)

STS SP 800-22 provides two methods for integrating the results of the
tests, namely percentage of passed tests and the uniformity of P-values. The
experiments revealed that these decision rules were insufficient and, therefore,
researchers considered their improvement would be useful. Therefore, in [10],
new integration methods for these tests were introduced:

e Maximum value decision, based on the max value of independent
statistical test Ti, i =1,...,n. In this case, the maximum value of the random
variables was computed; the repartition function of the max value being
the product of the repartition functions of the random variables Ti (8):

Pr(max(T,,...T,)< x)= f[ Pr(T, <x) (8)

e Sum of square decision, based on the sum of squares S of the results of the
tests (which have a normal distribution). The distribution of S, in this case,
is ¥, the freedom degrees given by the number of partial results which are
being integrated.

Weak points of STS SP 800-22:

e Fixed first order error « =0.01;

e The tests are not evaluating the second order error, which represents the
probability to accept a false hypothesis.
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In [7], the possibility of extending STS SP 800-22 tests to arbitrary level
of significance « (and computing p) is presented by computing, for n> 30, the
second order probability (9):

PoY, n(pl_po) PoY n(pl_po)
=@| |0 —— D -
b {\/ oXe {uli‘ \/NPyG, D (\/ P, [UZ \/NPyG, B ©)

In [6], there are some comments about NIST statistical testing
methodology: ambiguous hypothesis (does not specify the family of distribution
and/or the alternative), error quantification (NIST does not give the size of the
category-test decisions), power of the test suite, dependencies of tests, invariant
test (cryptographically equivalent tests performed on the same sample do not
necessary give the same result), and inadmissible tests (the existence of better
tests).

After the process of evaluation of AES candidates, researchers [Kim]
reported that the test setting of Discrete Fourier Transform test (designed to detect
periodic features in the tested sequence that would indicate a deviation from the
assumption of randomness) and Lempel-Ziv test (designed to see if the sequence
can be compressed and will be considered to be non-random if it can be
significantly compressed) of the STS SP 800-22 are unsuitable:

e threshold value and the variance ¢ of theoretical distribution, and
e the setting of standard distribution, which has no algorithm dependence

(SHA-1 for million bit sequences) and the re-definition of the uniformity

of P-values (based on simulation).

Because the mean and variance of Lempel-Ziv test were evaluated using
samples generated by an algorithm, in the revised version of STS SP 800-22 the
Lempel-Ziv was dropped.

4. Experimental Analysis of Correlation Between Statistical Tests

In [10], we studied the variation of the second order error f, with respect
to p1 and the length n of the bit stream Frequency test within a block, Runs,
Discrete Fourier transform (spectral), and Serial test (2 components). For the rest
of statistical tests, it is difficult to find an analytical formula for the second order
error S. For this reason, one proposal is the following procedure for checking the
independence of tests i and j:

) implement the NIST SP 800-22 testing suite;

i) use a “good” pseudorandom generator GPA to test N binary
samples;

iii)  for each test i, define the Bernoulli random variable T;
which gives 1 if the sample passes the test, otherwise 0;
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iv) estimate the value of (10):

Pr(T, and T, )-Pr(T,)- Pr(T;) (10)
If the tests are independent, then this value should be close
to zero.

V) find the highest value of the above value for i and j.

On the other hand, the result of a statistical test, denoted as P-value, as a
measure of randomness, ranges between [0,1], and is calculated by a specific
formula given for each test by NIST’s specification. With a P-value close to 1, we
have a high level of randomness.

Our work improves the results of [11] and [12] and, based on the Galton-
Pearson “product-moment correlation coefficient” ([13]), evaluates pairs of P-
values, and produces a result which ranges between [-1, 1]. A correlation of +1
means that there is a perfect positive linear relationship between variables, or a
direct proportion, while a correlation of -1 means that there is a perfect negative
linear relationship between them, or an inverse proportion. With a correlation
which is close to the absolute value of 1, we have a strong relationship between
the variables. In case of a correlation close to 0, the variables are independent. The
reciprocal is not always true ([14]). For the evaluation of correlation between
statistical test results, the chosen method was Galton-Pearson formula, that is, the
correlation coefficient. In order to produce reliable/effective results and
conclusions, this was done by calculating and analyzing three sets of correlation
coefficients, corresponding to the application of NIST statistical tests over 100
binary samples of different lengths (i.e. 1, 2, and 5 million bits). The correlation
coefficients that resulted from the application of NIST statistical tests, and showed
a strong correlation (close to or greater than 0.5) between a test situated on the
horizontal line and one on the vertical line, are contained by Table 1, 2, and 3
shown below (only the tests with correlations), that is, for a sample length M =
1,000,000, 2,000,000, and 5,000,000 bits.

Table 1
Correlation coefficients for M = 1,000,000 bits

Tests T1 T3F T3R T12 T13 | T14.1 | T14.2
T1 1 0.738 | 0.722 | 0.287 | 0.248 | 0.031 | -0.002
T3F | 0.738 1 0.765 | 0.371 | 0.313 | -0.087 | -0.245
T3R | 0.722 | 0.765 1 0.235 | 0.180 | -0.049 | -0.149
T12 | 0.287 | 0.371 | 0.235 1 0.725 | -0.010 | -0.037
T13 | 0.248 | 0.313 | 0.180 | 0.725 1 -0.011 | -0.079
T14.1 | 0.031 | -0.087 | -0.049 | -0.010 | -0.011 1 0.690
T14.2 | -0.002 | -0.245 | -0.149 | -0.037 | -0.079 | 0.690 1
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Table 2
Correlation coefficients for M = 2,000,000 bits
Tests T1 T3F T3R | T12 T13 | T14.1 | T14.2
T1 1 0.790 | 0.767 | 0.286 | 0.324 | 0.022 | -0.052
T3F | 0.790 1 0.705 | 0.421 | 0.348 | -0.092 | -0.116
T3R | 0.767 | 0.705 1 0.236 | 0.201 | -0.043 | 0.033
T12 | 0.286 | 0.421 | 0.236 1 0.623 | 0.128 | 0.036
T13 | 0.324 | 0.348 | 0.201 | 0.623 1 0.049 | -0.098
T14.1 | 0.022 | -0.092 | -0.043 | 0.128 | 0.049 1 0.690
T14.2 | -0.052 | -0.116 | 0.033 | 0.036 | -0.098 | 0.690 1
Table 3

Correlation coefficients for M = 5,000,000 bits
Tests T1 T3F T3R T12 T13 | T14.1 | T14.2

T1 1 0.716 | 0.733 | 0.199 | 0.139 | -0.123 | -0.111
T3F | 0.716 1 0.637 | 0.267 | 0.099 | -0.107 | -0.117
T3R | 0.733 | 0.637 1 0.086 | 0.014 | -0.164 | -0.106
T12 | 0.199 | 0.267 | 0.086 1 0.498 | -0.056 | -0.135
T13 | 0.139 | 0.099 | 0.014 | 0.498 1 -0.013 | -0.023

T14.1 | -0.123 | -0.107 | -0.164 | -0.056 | -0.013 1 0.746
T14.2 | -0.111 | -0.117 | -0.106 | -0.135 | -0.023 | 0.746 1

where: T1 - Frequency (Monobit), T3F - Cumulative Sums (Forward), T3R -
Cumulative Sums (Reverse), T12 - Random Excursions, T13 - Random
Excursions Variant, T14.1 - Serial 1 (where a P-value; was evaluated for
K, =2"degrees of freedom, with m being the number of bits in a pattern that
appears in the n-bit stream), and T14.2 - Serial 2 (where a P-value, was evaluated
for K, =2"*degrees of freedom); the values that are close to or greater than 0.5
were filled with grey color.

We found a high correlation between five couples of these statistical tests:
(frequency, cumulative sums Forward), (frequency, cumulative sums reverse),
(cumulative sums forward, cumulative sums reverse), (random excursions,
random excursions variant) and (serial 1, serial 2). This allows us to improve the
testing strategy by “dropping” one of the correlated tests.

Looking at the correlation coefficients, concerning only the presumed
dependencies (correlations), we found different patterns of variation (depending
on the sample length), as follows:
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Oscillation pattern: T1-T3F: 0.738 1 0.790 { 0.716
Oscillation pattern: T1-T3R: 0.722 1 0.767 | 0.733
Decrease pattern: T3F-T3R: 0.765 4 0.705 | 0.637
Decrease pattern: T12-T13: 0.725 { 0.623 { 0.498
Increase pattern: T14.1-T14.2: 0.690 T 0.690 T 0.746

These patterns will be object of our future work in order to mathematically
describe the variance of correlation coefficients with the length of string sample.

6. Conclusions

In this article we focused on an open question regarding the correlation of
the NIST statistical test suite and improved the results obtained in [10], [11] and
[12]. Using the Galton-Pearson “product-moment correlation coefficient” we
found a high correlation between five couples of these statistical tests. This
allowed us to improve the testing strategy.
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