

## MICROPLASTICS CONTAMINATION OF DAIRY PRODUCTS WITH HIGH-FAT CONTENT - OCCURRENCE AND ASSOCIATED RISKS

Andreea Laura BANICA<sup>1,2</sup>, Cristiana RADULESCU<sup>1,2,3\*</sup>, Raluca Maria STIRBESCU<sup>1</sup>, Ioana Daniela DULAMA<sup>1\*</sup>, Ioan Alin BUCURICA<sup>1\*</sup>, Sorina Geanina STANESCU<sup>1</sup>, Nicolae Mihail STIRBESCU<sup>1</sup>

*This study aims to investigate the presence of microplastics in dairy products in terms of morphology and chemical composition. Through optical microscopy, microparticles of different colors were identified: ~942 per kg of conventional butter, ~833 per kg of organic butter, and ~800 per kg of sour cream. Micro-FTIR technique through OPUS v.7.5 library has identified in the microparticles' composition as having more natural than synthetic compounds. The correlations obtained by the statistical approach could serve or act as an incentive for milk processors to try finding the source of contamination.*

**Keywords:** microplastic, microparticles, dairy products, optical microscopy, micro-FTIR, health risk, statistical approach.

### 1. Introduction

The evidence regarding the presence of microplastics (MPs) in humans was recently revealed, these being included in the category of emerging contaminants (ECs) [1-4]. Due to the chemical composition and small sizes (i.e., less than 5 mm), MPs are slowly degraded and easily inhaled or/and ingested by humans [5, 6]. The scientific concerns show that the first pathway of human exposure to MPs is ingestion, mainly through the consumption of contaminated food and water [4, 7]. From a chemical composition point of view, it was revealed that their complex composition acts as a vector for different chemical contaminants adsorbed on their surfaces such as pyrene [8], phthalates and bisphenol A [9, 10], heavy metals [11], polycyclic aromatic hydrocarbons (PAHs) [12], dioxins and dioxin-like compounds (DLCs) [4], pharmaceuticals [13], and serve as carriers of pathogenic microbes, therefore threats to humans and aquatic ecosystems. Usually, the most commonly known morphological shapes of microplastics are fiber, fragment, pellet, film, and foam of different colors [14]. The most predominant types of MPs are fibers

<sup>1</sup> Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, Romania, e-mail: dulama.ioana@icstn.ro; bucurica\_alin@icstn.ro

<sup>2</sup> Doctoral School Chemical Engineering and Biotechnology, National University for Science and Technology POLITEHNICA of Bucharest, Romania

<sup>3</sup> Faculty of Sciences and Arts, Valahia University of Targoviste, Romania, e-mail: cristiana.radulescu@valahia.ro

(synthetic or mixture), and several studies showed that they are easily released from clothes/protection or work equipment during different processes [15-17]. It was previously mentioned that risk awareness is important but can this be enough to prevent the MPs from reaching into our organism? Well, a leading actor in the quality of assured life is given by the food industry, the raw material as well as manufacturing processes or the packaging known of being the final step before distribution it may increase or decrease the contamination by inhalation/ingestion. The storage environment and temperature may also affect food quality; therefore, the fragmentation of MPs and passing them into food depends on the type of polymer structure as well as climatic/microclimatic conditions. Apart from chemical composition, the occurrence and abundance of microplastics represent valuable indicators, but unfortunately, less investigated when assessing contamination levels with MPs of foods, particularly dairy products. On the other hand, taking into consideration the chemical risk of MPs from animal feeds or pollution levels with nano/microplastics can be difficult to quantify the potential human health risk of them. Packaging made of plastics is an important source in terms of the occurrence of MPs [18, 19]. Briefly, the polymeric materials known as plastics are achieved by a complex polymerization process of one kind or different monomers, and various additives are incorporated during production. The release of plastic additives from the packaging by leaching represents a huge issue worldwide [20]. Li et al. [21] revealed that processed foods are more likely to be contaminated with microplastics than non-processed foods. The expected answer for the aforementioned is linked to the manufacturing and packaging processes [21].

Currently, to characterize MPs as too small to be chemically analyzed by conventional techniques, a series of analytical methods were developed [22-25]. In this regard, for a precise investigation of micro/nanoparticles in terms of chemical composition can be used micro-Fourier transform infrared spectroscopy (micro-FTIR), micro-Raman spectroscopy, thermal analysis (differential scanning calorimetry (DSC), and thermal desorption gas chromatography-mass spectrometry (TGC-MS)) [26-31]. Since the development of mercury-cadmium telluride (MCT) detector technology, the micro-FTIR technique has become preferential in microplastic characterization [31]. This technique takes over IR signals at high spatial resolution (beam size  $< 5 \mu\text{m}$ ) allowing the characterization of compositionally complex MPs samples. In addition, what is very important and represents an advantage compared to the conventional FTIR technique, or compared to other techniques, is the fact that micro-FTIR allows *in situ*, non-destructive, and non-invasive analysis without the demand of other stages in sample preparation. On the other hand, the microscopy technique provides information regarding the microparticles' morphology mainly about shape and size. Imaging software and microscopy allow the determination of the average particle size as well as the microparticle number. Currently, several microscopy techniques, such as atomic force microscopy (AFM), fluorescence microscopy, scanning electron microscopy

(SEM), phase contrast microscopy, and stereo microscopy, have provided the first data in terms of the morphology of microparticles/microplastics from different samples, including dairy products [22, 23, 32]. One of the main problems in detecting microplastics in dairy products may be, on the one hand, the complex composition of the organic matrix of milk and dairy products, particularly the high-fat contents, and on the other hand, the fact that isolation of MPs must be achieved by a method that involves the using of safe, efficient, and eco-friendly reagents [3, 22, 23].

The current study highlighted that MPs from dairy products were investigated for the first time, in terms of morphology and chemical composition, to give the scientific world the possibility to take cause-effect research to another level of knowledge related to the safety of human life. The study of MPs morphology, in conjunction with analytical investigations regarding the chemical composition of MPs, as well as with the risk effect of compositionally dairy products with high-fat content (i.e., butter and sour cream) by identifying microplastic particles of small/different sizes on human health, is an assumed objective of the present research. The findings from this study regarding the occurrence, isolation, and characterization of MPs, based on the correlations established by the statistical approach, surely will be helpful to producers of milk and dairy products.

## 2. Materials and Methods

### 2.1. Materials and reagents

All used reagents (Merck, KGaA, Germany, and Sigma-Aldrich, Saint Louis, USA) were of high purity (analytical grade). In addition, the liquid ones were filtered before use to avoid accidental contamination of the samples (including ultrapure water) or possible interferences in chemical investigations.

### 2.2. Sampling and sample preparation

To investigate the occurrence and type of MPs in eighteen dairy products with high-fat content, i.e., eleven popular butter brands (conventional/organic, Tables 1 and 2) and seven Romanian sour cream brands (Table 3), were sampled in the spring of 2023. As a complement, for this study, all the above-mentioned products were purchased exclusively from Romanian stores. The fat content of butter varied between 80-82% and of the sour cream between 20-25%. The samples taken were coded, characterized in terms of nutritional properties as stated on the package label (Tables 1-3), and stored in the refrigerator (2-6°C) until analysis. The selection criteria for the two categories of dairy products were: (1) high-fat content, brand popularity among consumers, packaging type, affordable price among consumers, the share of sales, and for butter the safety criteria regarding the international classification of food quality, i.e. organic or conventional, were also included. Considering the contamination risk that may occur it was decided that all sample preparation (including the sampling stage) to be performed under strict regulation of the laboratory environment where

no kind of airborne particles may interfere. Therefore, these activities were carried out in a cleanroom (according to ISO 14644-1:2015, Class 1000 - ISO6) at the Institute of Multidisciplinary Research for Science and Technology of Valahia University of Targoviste.

**Table 1**  
**General presentation of conventional butter samples**

| Sample code    | Nutritional value / 100 g butter |                     |                           |                   |             |          | Fat content [%] | Packaging type |
|----------------|----------------------------------|---------------------|---------------------------|-------------------|-------------|----------|-----------------|----------------|
|                | Energy value [kJ]                | Energy value [kcal] | Saturated fatty acids [g] | Carbohydrates [g] | Protein [g] | Salt [g] |                 |                |
| U <sub>1</sub> | 3060                             | 744                 | 55                        | 1.0               | 0.5         | 0.02     | 82              | Waxed paper    |
| U <sub>2</sub> | 3092                             | 738                 | 50                        | 0.4               | 0.2         | 0.10     | 82              | Waxed paper    |
| U <sub>3</sub> | 2980                             | 725                 | 49                        | 0.7               | 0.5         | 0.20     | 80              | Glass bottle   |
| U <sub>4</sub> | 3054                             | 743                 | 49                        | 0.4               | 0.8         | 0.05     | 82              | Waxed paper    |
| U <sub>5</sub> | 3051                             | 742                 | 53                        | 0.1               | 0.9         | 0.01     | 82              | Waxed paper    |
| U <sub>6</sub> | 3073                             | 739                 | 49                        | 0.1               | 0.1         | 0.06     | 82              | Waxed paper    |
| U <sub>7</sub> | 2985                             | 726                 | 56                        | 0.5               | 0.7         | 0.02     | 80              | Waxed paper    |
| U <sub>8</sub> | 2977                             | 724                 | 48                        | 0.3               | 0.7         | 0.05     | 80              | Waxed paper    |

**Table 2**  
**General presentation of organic butter samples**

| Sample code     | Nutritional value / 100 g butter |                     |                           |                   |             |          | Fat content [%] | Packaging type |
|-----------------|----------------------------------|---------------------|---------------------------|-------------------|-------------|----------|-----------------|----------------|
|                 | Energy value [kJ]                | Energy value [kcal] | Saturated fatty acids [g] | Carbohydrates [g] | Protein [g] | Salt [g] |                 |                |
| U <sub>6B</sub> | 3073                             | 739                 | 49                        | 0.1               | 0.1         | 0.06     | 82              | Waxed paper    |
| U <sub>7B</sub> | 3056                             | 743                 | 55                        | 0.6               | 0.7         | 0.04     | 82              | Waxed paper    |
| U <sub>8B</sub> | 2977                             | 724                 | 48                        | 0.3               | 0.7         | 0.05     | 80              | Waxed paper    |

**Table 3**  
**General presentation of sour cream samples**

| Sample code    | Nutritional value / 100 g sour cream |                     |                           |                   |             |          | Fat content [%] | Packaging type |
|----------------|--------------------------------------|---------------------|---------------------------|-------------------|-------------|----------|-----------------|----------------|
|                | Energy value [kJ]                    | Energy value [kcal] | Saturated fatty acids [g] | Carbohydrates [g] | Protein [g] | Salt [g] |                 |                |
| S <sub>1</sub> | 849                                  | 203                 | 13                        | 2.9               | 2.8         | 0.10     | 20              | Plastic bottle |
| S <sub>2</sub> | 1020                                 | 247                 | 15                        | 3.3               | 2.3         | 0.06     | 25              | Plastic bottle |
| S <sub>3</sub> | 828                                  | 200                 | 13                        | 2.9               | 2.8         | 0.10     | 20              | Plastic bottle |

| Sample code    | Nutritional value / 100 g sour cream |                           |                   |             |          | Fat content [%] | Packaging type |
|----------------|--------------------------------------|---------------------------|-------------------|-------------|----------|-----------------|----------------|
|                | Energy value [kJ]                    | Saturated fatty acids [g] | Carbohydrates [g] | Protein [g] | Salt [g] |                 |                |
| S <sub>4</sub> | 832                                  | 202                       | 12                | 2.5         | 2.9      | 0.20            | 20             |
| S <sub>5</sub> | 842                                  | 204                       | 14                | 3.2         | 2.8      | 0.10            | 20             |
| S <sub>6</sub> | 996                                  | 242                       | 16                | 2.0         | 2.2      | 0.06            | 25             |
| S <sub>7</sub> | 822                                  | 199                       | 12                | 2.2         | 2.6      | 0.10            | 20             |

Furthermore, the non-textile lab coats (i.e., cotton) and particle-free nitrile gloves were worn all this time while the sleeves of the lab coats were in advance inserted and secured inside the gloves. The glass vessels were sequentially rinsed at least three times with anhydrous ethanol and ultrapure water. Samples were carefully handled and were covered with aluminum foil, till the isolation process. The protocol of MPs isolation for each sample was repeated three times and the used data was obtained by averaging the three repetitions.

### 2.2.1. Microplastics isolation protocol

The protocol for the isolation of MPs from dairy product samples with high-fat content (i.e., butter and sour cream) was achieved according to the patent application [23]. Firstly, the vessels/materials used for MPs isolation and further investigations (e.g., Erlenmeyer beakers, graduated cylinders, pipettes, spatulas, and Petri dishes) were properly cleaned with anhydrous ethanol and ultrapure water, then sterilized at a temperature of 100°C for 48 hours in Venticell® oven (BMT Medical Technology, Brno, Czech Republic). The MPs isolation protocol requires the following steps: A. pretreatment of samples with reagents for fat, protein, and carbohydrate digestion; B. digestion; C. mixtures filtering and MPs isolation. For the MPs isolation from the butter samples regardless of the fat content, 8 g of sample were mixed with 4 g of sodium dodecyl sulfate, 1 g of sodium hydroxide, and 500 mL of distilled water. The resulting mixture was homogenized for 10 minutes at 150 rpm using IKA® shaker RT 5 (IKA, Staufen, Germany); thus, the obtained sample was ultrasonicated for 20 minutes at 30°C by using ultrasonic bath type VWR® Ultrasonic Cleaner USC – TH (VWR International, Radnor, USA). Filtration was carried out on a cellulose membrane with pore size 12-15 µm using a three-position stainless steel filtration system (Labbox Labware, Barcelona, Spain) connected to a vacuum pump at 18 L/min flow rate of on cellulose filters with 12-15 µm porosity, VWR® Grade 413 (VWR International, Radnor, United States of America). The mixture was kept in a water bath at a temperature of 60°C until complete filtration [23]. Similar to the previously described protocol (i.e.,

butter), for the MPs isolation from the sour cream samples, 5 g were mixed with 0.5 g of sodium dodecyl sulfate, 0.6 g of sodium hydroxide, and 500 mL of distilled water. The mixture was homogenized for 10 minutes at 150 rpm, then was ultrasonicated for 20 minutes at 30°C, and finally, was filtrated [23].

### 2.3. Analytical techniques

#### 2.3.1. *Optical microscopy*

Microparticles found on the surface of the filters were identified using optical microscopy. The magnification factors used were 25X, 32X, 40X, and 50X, depending on the particle size and to highlight certain aspects of interest. In this sense, the Stemi 2000c microscope coupled with the Axiocam 105 digital video camera (Carl Zeiss) was used as well as Zen software for the image acquisitions. Optical microscopy was important for the identification and physical characterization of microparticles (shape, color, texture).

#### 2.3.2. *Micro-Fourier-Transform Infrared Spectroscopy*

Fourier Transform Infrared Spectroscopy (FTIR) is a non-destructive and non-invasive analytical technique that provides important information in terms of the molecular structure of organic components. In the past few decades, this method has been used extensively for the chemical characterization of food samples, together with Raman spectroscopy, under the umbrella of vibrational spectroscopies. Currently, it was demonstrated that the employment of both high-resolution micro-FTIR and micro-Raman imaging enables visualization and mapping of the MPs distributions on a micrometer scale in food samples, leading to an advanced understanding in terms of chemical composition. These features, barely accessible with other analytical techniques, may provide fundamental information in terms of MPs occurrence in food samples, as well. In this research, the micro-FTIR technique was performed by Vertex 80 FTIR spectrometer (Bruker, United States) equipped with a Bruker Hyperion 2000 microscope. The Hyperion 2000 FTIR system uses an MCT detector (mercury cadmium telluride) cooled with liquid nitrogen. The chosen method for the analysis of dairy product samples was attenuated total reflection (ATR), which allows the direct measurement of samples. The ATR objective (20x), is equipped with a Ge crystal (refraction index 4). Micro-FTIR analysis was performed in transmittance mode, 600–4000  $\text{cm}^{-1}$  spectral range, with 32 scans per sample. The obtained IR spectra were compared with the database on the OPUS v.7.5 software, and a polymer type was considered acceptable in the sample when the match with standard spectra was greater than 70% according to several studies [33-36].

## 2.4. Data analysis

### 2.4.1. Pollution Load Index (PLI)

The pollution load index (PLI) was described by Tomlinson et al. [37] as:

$$PLI = \sqrt{\frac{C_i}{C_0}} \quad (1)$$

where:  $C_i$  represents the content of MPs (expressed as n/kg) determined in butter and sour cream samples and  $C_0$  represents the minimum reported average concentration of microparticles in processed food [3, 38] ( $C_0 = 1.68 \text{ n}\cdot\text{kg}^{-1}$ ). Lin et al. [3] established hazard levels according to PLI values (Table 4).

Table 4

The risk level criteria for pollution load index of MPs [3]

| PLI   | Hazard level     | Color assigned to the Hazard level |
|-------|------------------|------------------------------------|
| < 10  | Very low hazard  | Blue                               |
| 10–20 | Low hazard       | Green                              |
| 20–30 | Medium hazard    | Yellow                             |
| > 30  | High hazard      | Red                                |
| -     | Very high hazard | Orange                             |

### 2.4.2. Daily Microparticles Intake

Daily microparticles intake (DIM) can be calculated using the following equation as described by Lin et al. [3]:

$$DIM = \frac{C_i \cdot I_r \cdot E_f \cdot E_d}{B_w \cdot A_t} [\text{n}/(\text{kg} \cdot \text{d})] \quad (2)$$

where:  $C_i$  represents the microparticles content (expressed as n/kg) determined in the butter and sour cream samples;  $I_r$  represents the degree of ingestion (expressed in kg/d);  $E_f$  represents the exposure rate (expressed as d/y);  $E_d$  represents the exposure period (expressed as y);  $B_w$  represents body weight (expressed in kg);  $A_t$  represents the average exposure time (expressed as d). The values of the mentioned parameters are presented in Table 5.

Table 5

The values of parameters for DIM calculation

|            |          | $I_r$<br>[kg/d] | $E_f$<br>[d/y] | $E_d$<br>[y] | $B_w$<br>[kg] | $A_t$<br>[d] |
|------------|----------|-----------------|----------------|--------------|---------------|--------------|
| Butter     | Adults   | 0.013           | 365            | 70           | 70            | 25550        |
|            | Children | 0.010           | 365            | 10           | 14            | 3650         |
| Sour cream | Adults   | 0.026           | 365            | 70           | 70            | 25550        |
|            | Children | 0.020           | 365            | 10           | 14            | 3650         |

## 2.5. Statistical analysis

IBM SPSS Statistics for Windows software (Version 21.0, IBM Corp., United States of America) was used for the statistical processing of the study data. Significant correlations were analyzed using the Pearson coefficient, which is used as an indicator of linear dependence between two or more variables, determining the dependence relationship between them, which can take values between  $-1$  and  $+1$  [39]. A regression analysis was performed to predict the links between the variables. As a methodology, the dependent variable is distributed on the  $y$ -axis, while the independent variable is distributed on the  $x$ -axis. To determine the similarities between samples and/or fibers, a cluster analysis was performed.

## 3. Results and Discussion

The prevalence of microparticles in food chains and their long-term impact pose a significant threat to human health. Given their ubiquitous nature, rapid and reliable characterization is critical [40]. The large number of particles that must be analyzed in samples creates significant challenges in this research field.

### 3.1. Optical microscopy

The first analytical technique for identifying the impurities from dairy products is optical microscopy (OM). It represents the preliminary step for highlighting the presence of microparticles on the filter surface. It is important to note that this technique aims to highlight the presence of particles but does not reveal the existence of MPs, for which the chemical and structural analysis will be necessary, therefore it was decided to address at this point to those impurities as microparticles. During the investigations, some microparticles were detected on the cellulose filters and were characterized and classified based on some aspects (i.e. color, and shape). The range of colors (black, blue, red, brown, yellow, gray, etc.) and shapes (irregular, oval, rhomboidal, film, and fiber) (Figures 1-3) were highlighted and helped to determine the total number of microparticles (represented as microparticles/kg) (Tables 6-8).

Table 6

Optical microscopy on conventional butter samples

| Sample code    | Color and number of microparticles |      |     |       |       |      |        |        | Total [microparticles/kg] |
|----------------|------------------------------------|------|-----|-------|-------|------|--------|--------|---------------------------|
|                | Black                              | Blue | Red | Green | Brown | Grey | Yellow | Purple |                           |
| U <sub>1</sub> | 750                                | 250  | 125 | nd*   | 250   | nd*  | 125    | nd*    | 1500                      |
| U <sub>2</sub> | 125                                | 125  | nd* | 125   | nd*   | nd*  | nd*    | nd*    | 375                       |
| U <sub>3</sub> | 1125                               | nd*  | 125 | nd*   | nd*   | nd*  | nd*    | nd*    | 1250                      |
| U <sub>4</sub> | nd*                                | 125  | 125 | nd*   | 125   | nd*  | nd*    | nd*    | 375                       |
| U <sub>5</sub> | 625                                | 250  | nd* | nd*   | nd*   | nd*  | 125    | nd*    | 1000                      |
| U <sub>6</sub> | 250                                | 125  | 125 | nd*   | nd*   | 375  | nd*    | nd*    | 875                       |
| U <sub>7</sub> | 375                                | 500  | nd* | 250   | nd*   | nd*  | 250    | 125    | 1500                      |
| U <sub>8</sub> | 375                                | 250  | 125 | nd*   | nd*   | 125  | 125    | nd*    | 1000                      |

nd\* - unidentified

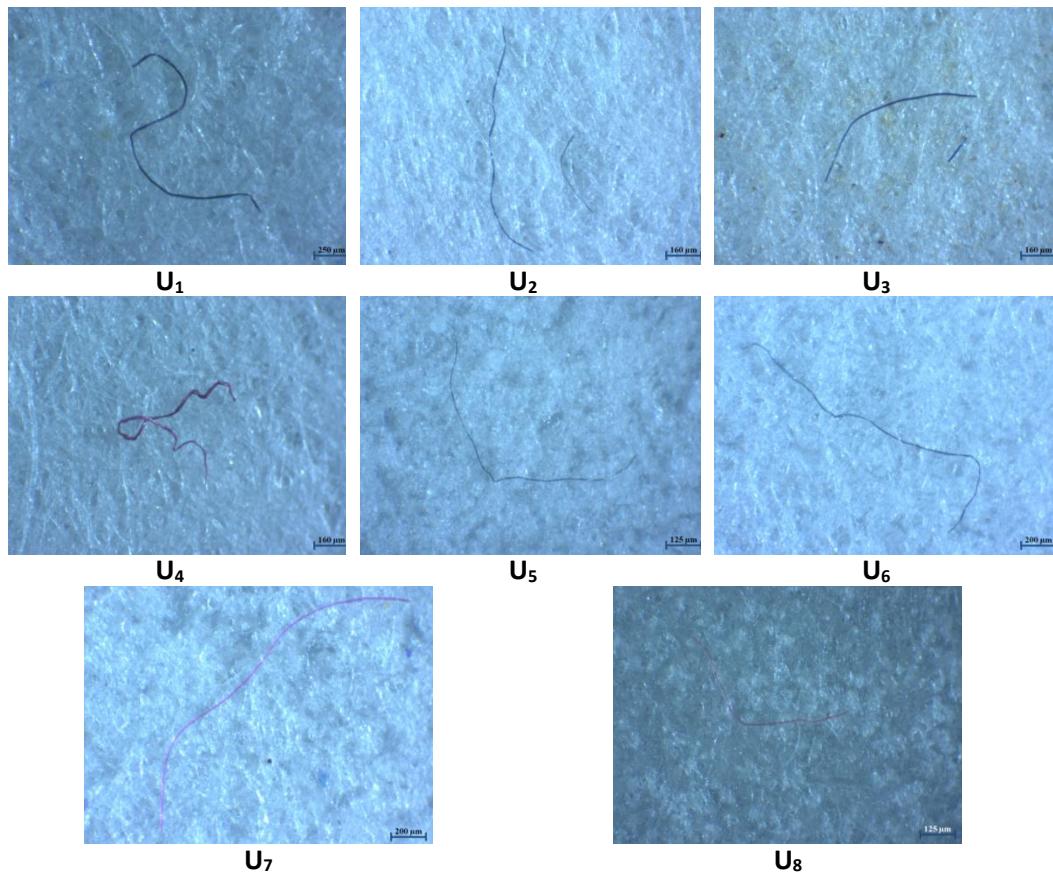



Figure 1. Representative microparticles in conventional butter samples.

Table 7

**Optical microscopy on organic butter samples**

| Sample code     | Color and number of microparticles |      |     |       |      |        |        | Total [micro-particles/kg] |
|-----------------|------------------------------------|------|-----|-------|------|--------|--------|----------------------------|
|                 | Black                              | Blue | Red | Brown | Grey | Yellow | Purple |                            |
| U <sub>6B</sub> | 750                                | nd*  | 125 | nd*   | nd*  | 125    | nd*    | 1000                       |
| U <sub>7B</sub> | 125                                | 375  | nd* | nd*   | 125  | nd*    | nd*    | 625                        |
| U <sub>8B</sub> | 375                                | 125  | nd* | 125   | nd*  | 125    | 125    | 875                        |

nd\* - unidentified



Figure 2. Representative microparticles in organic butter samples.

Table 8

## Optical microscopy on sour cream samples

| Sample code    | Color and number of microparticles |      |       |      |        |        | Total [micro-particles/kg] |
|----------------|------------------------------------|------|-------|------|--------|--------|----------------------------|
|                | Black                              | Blue | Green | Grey | Yellow | Purple |                            |
| S <sub>1</sub> | 400                                | nd*  | nd*   | nd*  | nd*    | nd*    | 400                        |
| S <sub>2</sub> | 600                                | nd*  | nd*   | 200  | nd*    | nd*    | 800                        |
| S <sub>3</sub> | 600                                | 200  | nd*   | nd*  | 200    | nd*    | 1000                       |
| S <sub>4</sub> | 1000                               | nd*  | 200   | nd*  | nd*    | nd*    | 1200                       |
| S <sub>5</sub> | 600                                | 200  | nd*   | 200  | 200    | nd*    | 1200                       |
| S <sub>6</sub> | 600                                | nd*  | nd*   | nd*  | nd*    | nd*    | 600                        |
| S <sub>7</sub> | 200                                | nd*  | nd*   | nd*  | nd*    | 200    | 400                        |

nd\* - unidentified

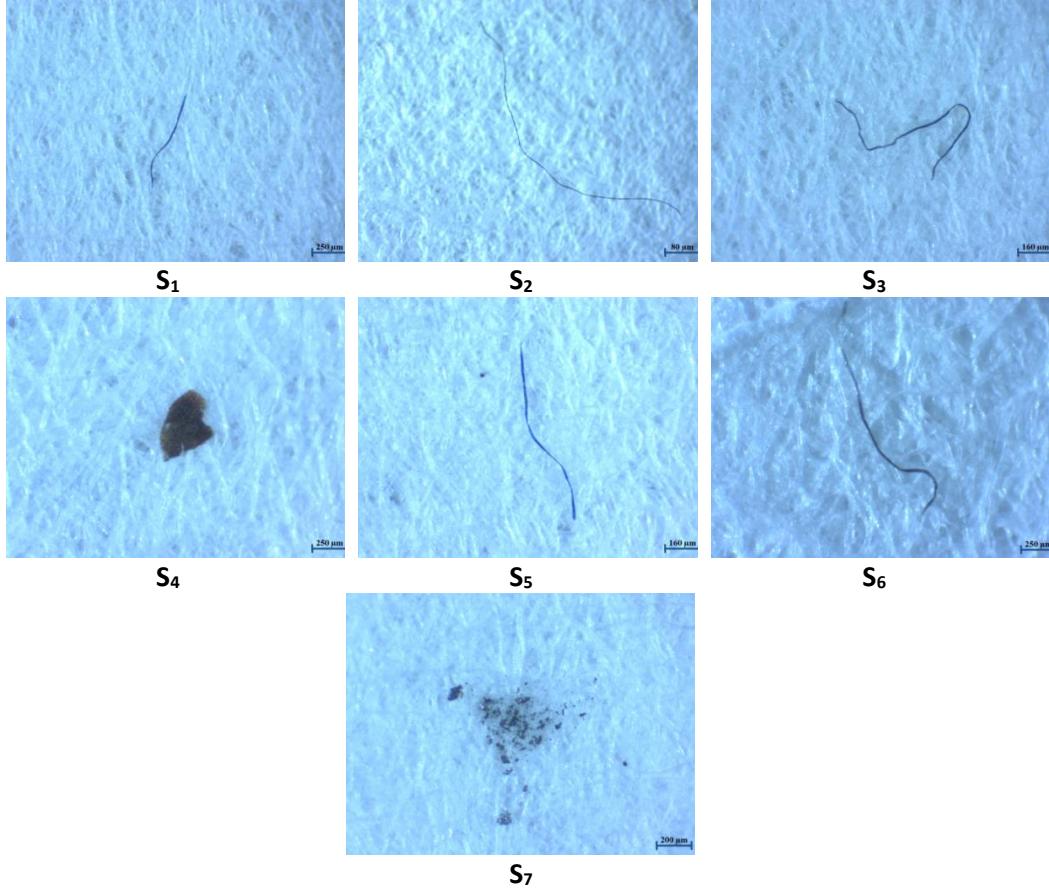



Figure 3. Representative microparticles in sour cream samples.

It is important to note that the investigations were carried out not only on the filters used in the separation process, but also on empty filters, or those used to filter the reagents, in the case of the latter the result was zero. The total number of microparticles identified in analyzed samples (conventional or organic butter and conventional sour cream) is presented in Figure 4. The highest number of microparticles was determined in the conventional butter where eight samples were

analyzed, followed by the conventional sour cream and organic butter. The number of microparticles (split by color) identified in the butter (conventional or organic) and sour cream samples are presented in Figures 5, 7, and 9.

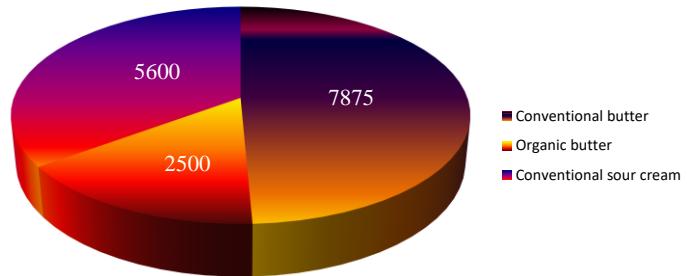



Figure 4. Total microparticles identified in butter and sour cream samples

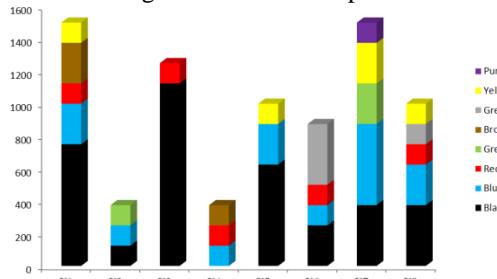



Figure 5. Plot of microparticles colors identified in conventional butter samples.

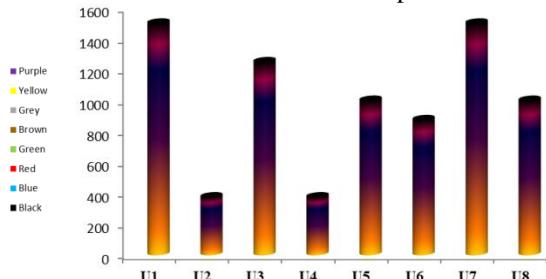



Figure 6. The total number of microparticles identified in conventional butter samples.

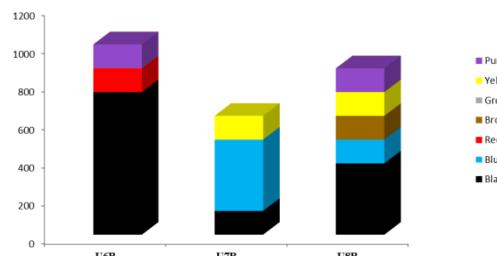



Figure 7. Plot of microparticles colors identified in organic butter samples.

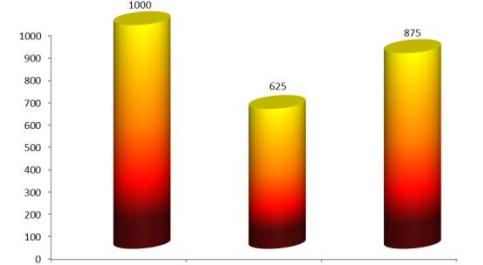



Figure 8. The total number of microparticles identified in organic butter samples.

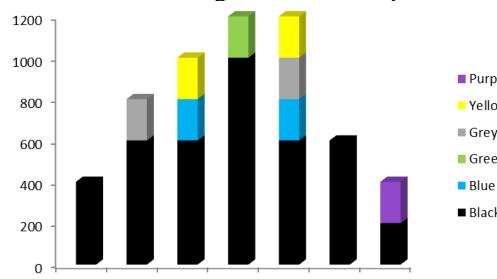



Figure 9. Plot of microparticles colors identified in conventional sour cream samples.

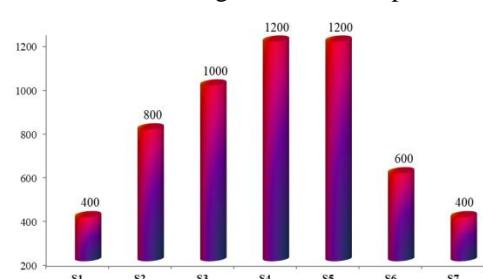



Figure 10. The total number of microparticles identified in conventional sour cream samples.

In the conventional butter samples eight colors were identified (black, blue, red, green, brown, grey, yellow, and purple), seven colors in the organic butter samples (black, blue, red, brown, grey, yellow, and purple) and six colors in the conventional sour cream samples (black, blue, green, grey, yellow, and violet). Figures 6, 8 and 10 show the total number of microparticles identified in the analyzed butter and sour cream samples.

The predominant color of microparticles/filters is black, with a proportion of 46% for conventional butter, 50% for organic butter, and 71% for sour cream. Furthermore, it may be added that in the conventional U<sub>3</sub> butter sample, 1125 microparticles/kg were identified, 750 black microparticles/kg in the U<sub>6</sub>B organic butter sample, and the sour cream, the blackest particles (1000 microparticles/kg) were found in the S<sub>4</sub> sample. The second predominant color was blue, thus, in the conventional butter samples the percentage concentration was 21%, in the organic butter sample 20%, and in the cream 7%. The maximum value of blue microparticles for each diary product category was as follows: U<sub>7</sub> with 500 microparticles/kg, U<sub>7</sub>B with 375 microparticles/kg, S<sub>3</sub> and S<sub>5</sub> samples with 200 microparticles/kg. Other colors identified in the analyzed samples are: red – 8% in conventional butter samples and 5% in organic butter samples, green – 5% in conventional butter samples, and 4% in conventional sour cream samples. Brown fibers were identified in conventional and organic butter (5%) and by a very small percentage of other colors like grey, yellow, and purple in all three categories.

### **3.2. Micro-Fourier-Transform Infrared Spectroscopy**

An in-depth chemical and morphological characterization of microparticles can be achieved by micro-FTIR imaging. Although micro-FTIR spectroscopy requires many more on-point investigations to obtain a concluding result, it is still one of the most effective ways to identify the sample matrices based on vibrational frequency. After the spectrum background correction was made, all analyzed spectra showed different weak, medium, and strong vibrational frequencies. In spectroscopic terms, the weak, medium, and strong peaks (intensity), together with the wave numbers, allowed the assignment of the functional groups in the organic compounds [30]. Tables 9, 10, and 11 show the identifications of the samples analyzed according to the spectral library. The measurement sequence was carried out for each microparticle after the FTIR analysis (Figure 11).



Figure 11. Microparticle measurements sequence.

Table 9

**Identification of microparticles according to the OPUS v.7.5 library of FTIR from conventional butter samples**

| Sample         | Sample Code | Identification according to the OPUS v.7.5 library |         |       |          |           |      | Microparticles composition | Characterization |                 |
|----------------|-------------|----------------------------------------------------|---------|-------|----------|-----------|------|----------------------------|------------------|-----------------|
|                |             | Cotton                                             | Acrylic | Nylon | Elastane | Cellulose | Wool |                            | Shape            | Size (LxW) [μm] |
| U <sub>1</sub> | U1.1        | ✓                                                  |         | ✓     |          |           | ✓    | mixture 65:25:10           | Irregular        | 43.69 (L)       |
|                | U1.2        | ✓                                                  | ✓       |       |          |           |      | mixture 73:21              | Irregular        | 170.62 x 69.14  |
|                | U1.3        | ✓                                                  |         |       |          |           | ✓    | mixture 70:30              | Fiber            | 344.83 (L)      |
|                | U1.4        | ✓                                                  |         |       |          |           | ✓    | mixture 70:30              | Fiber            | >1443.57 (L)    |
|                | U1.5        | ✓                                                  |         |       |          |           | ✓    | mixture 70:30              | Film             | 256.88 (L)      |
|                | U1.6        | ✓                                                  |         |       |          |           | ✓    | mixture 70:30              | Fiber            | ≈788.25 (L)     |
|                | U1.7        | ✓                                                  |         |       |          |           |      | 100% natural               | Fiber            | >704.82 (L)     |
|                | U1.8        | ✓                                                  |         | ✓     |          |           | ✓    | mixture 65:25:10           | Fiber            | >1022.95 (L)    |
|                | U1.9        | ✓                                                  | ✓       |       |          |           |      | mixture 79:21              | Fiber            | 303.12 (L)      |
| U <sub>2</sub> | U2.1        |                                                    |         |       |          |           | ✓    | 100% natural               | Irregular        | 167.23 x 76     |
|                | U2.2        | ✓                                                  |         | ✓     |          |           | ✓    | mixture 65:25:10%          | Oval             | 163.06 x 132.44 |
|                | U2.3        | ✓                                                  | ✓       |       |          |           |      | mixture 79:21              | Irregular        | 85.30 x 52.79   |
|                | U2.4        | ✓                                                  | ✓       | ✓     |          |           | ✓    | mixture 70:6:11:13         | Square           | 41.03 x 41.03   |
|                | U2.5        | ✓                                                  | ✓       |       |          |           |      | mixture 79:21              | Film             | 457.49 x 168.45 |
|                | U2.6        | ✓                                                  |         |       |          |           |      | 100% natural               | Irregular        | 90.92 x 73.55   |
| U <sub>3</sub> | U3.1        | ✓                                                  | ✓       |       |          |           | ✓    | mixture 60:20:20           | Film             | 137.97 (L)      |
|                | U3.2        |                                                    |         |       |          |           | ✓    | 100% natural               | Film             | 361.4 (L)       |
|                | U3.3        | ✓                                                  | ✓       |       |          |           |      | mixture 79:21              | Fiber            | 439.17 (L)      |
|                | U3.4        | ✓                                                  | ✓       |       |          |           |      | mixture 60:40              | Fiber            | 261.52 (L)      |
|                | U3.5        | ✓                                                  | ✓       |       |          |           |      | mixture 79:21              | Fiber            | >929.14 (L)     |
|                | U3.6        | ✓                                                  |         |       |          |           |      | 100% natural               | Fiber            | >1434.98 (L)    |
|                | U3.7        | ✓                                                  | ✓       | ✓     |          |           | ✓    | mixture 70:6:11:13         | Fiber            | 870.87 (L)      |
|                | U3.8        | ✓                                                  | ✓       |       |          |           |      | mixture 79:21              | Fiber            | ≈726.02 (L)     |
|                | U3.9        | ✓                                                  | ✓       | ✓     |          |           | ✓    | mixture 70:6:11:13         | Fiber            | 388.89 (L)      |
|                | U3.10       | ✓                                                  |         |       |          |           | ✓    | mixture 70:30              | Fiber            | 639.08 (L)      |
|                | U3.11       | ✓                                                  | ✓       |       |          |           |      | mixture 79:21              | Fiber            | 221.6 (L)       |
|                | U3.12       |                                                    |         |       |          |           | ✓    | 100% natural               | Fiber            | 341.03 (L)      |
| U <sub>4</sub> | U4.1        |                                                    |         |       |          |           | ✓    | 100% natural               | Irregular        | immeasurable    |
|                | U4.2        | ✓                                                  |         |       | ✓        |           |      | mixture 92:8               | Irregular        | 122.74 x 58.91  |
|                | U4.3        |                                                    |         |       |          |           | ✓    | 100% natural               | Irregular        | 125.74 x 52.79  |
|                | U4.4        | ✓                                                  | ✓       | ✓     |          |           | ✓    | mixture 70:6:11:13         | Irregular        | 53.65 (L)       |
|                | U4.5        |                                                    |         |       |          |           | ✓    | 100% natural               | Irregular        | 93.22 x 70.80   |
| U <sub>5</sub> | U4.6        |                                                    |         |       |          |           | ✓    | 100% natural               | Fiber            | 225.01 (L)      |
|                | U4.7        | ✓                                                  | ✓       |       |          |           |      | mixture 60:40              | Fiber            | 184.18 (L)      |
|                | U5.1        |                                                    |         |       |          |           | ✓    | 100% natural               | Irregular        | 225.51 x 262.42 |
|                | U5.2        |                                                    |         |       |          |           | ✓    | 100% natural               | Irregular        | 673.90 x 341.51 |
|                | U5.3        | ✓                                                  |         |       | ✓        |           |      | mixture 92:8               | Triangle         | 641.23 x 577.04 |

| Sample | Sample Code | Identification according to the OPUS v.7.5 library |         |       |          |           | Microparticles composition | Characterization   |                           |
|--------|-------------|----------------------------------------------------|---------|-------|----------|-----------|----------------------------|--------------------|---------------------------|
|        |             | Cotton                                             | Acrylic | Nylon | Elastane | Cellulose |                            | Shape              | Size (LxW) [µm]           |
| U5     | U5.4        | ✓                                                  | ✓       |       |          |           |                            | mixture 79:21      | Irregular 64.51 (L)       |
|        | U5.5        | ✓                                                  | ✓       |       |          |           |                            | mixture 79:21      | Fiber 308.98 (L)          |
|        | U5.6        |                                                    |         |       |          | ✓         |                            | 100% natural       | Fiber 337.46 (L)          |
| U6     | U6.1        | ✓                                                  | ✓       | ✓     |          |           | ✓                          | mixture 70:6:11:13 | Irregular 123.04 x 63.01  |
|        | U6.2        |                                                    |         |       |          |           | ✓                          | 100% natural       | Fiber >682.83 (L)         |
|        | U6.3        |                                                    |         |       |          |           | ✓                          | 100% natural       | Fiber >736.19 (L)         |
|        | U6.4        |                                                    |         |       |          |           | ✓                          | 100% natural       | Fiber >696.68 (L)         |
|        | U6.5        | ✓                                                  | ✓       |       |          |           |                            | mixture 60:40      | Fiber >635.21 (L)         |
|        | U6.6        | ✓                                                  | ✓       | ✓     |          |           | ✓                          | mixture 70:6:11:13 | Fiber >762.7 (L)          |
|        | U6.7        | ✓                                                  | ✓       | ✓     |          |           | ✓                          | mixture 70:6:11:13 | Fiber >758.04 (L)         |
| U7     | U7.1        |                                                    |         |       |          |           | ✓                          | 100% natural       | Square 165.89 x 150.66    |
|        | U7.2        | ✓                                                  | ✓       |       |          |           |                            | mixture 60:40      | Irregular 129.09 x 93.99  |
|        | U7.3        | ✓                                                  | ✓       |       |          |           |                            | mixture 60:40      | Irregular 207.12 x 81.27  |
|        | U7.4        | ✓                                                  | ✓       |       |          |           |                            | mixture 60:40      | Irregular 116.09 x 87.82  |
|        | U7.5        | ✓                                                  | ✓       | ✓     |          |           | ✓                          | mixture 70:6:11:13 | Irregular 283.84 x 70.74  |
|        | U7.6        | ✓                                                  | ✓       |       |          |           |                            | mixture 60:40      | Irregular 151.28 x 138.36 |
|        | U7.7        | ✓                                                  | ✓       |       |          |           |                            | mixture 60:40      | Fiber 304.16 (L)          |
|        | U7.8        | ✓                                                  | ✓       |       |          |           |                            | mixture 60:40      | Fiber >980.13 (L)         |
|        | U7.9        | ✓                                                  |         | ✓     | ✓        | ✓         |                            | mixture 33:16:2:49 | Fiber >783.71(L)          |
|        | U7.10       |                                                    |         |       |          |           | ✓                          | 100% natural       | Fiber >814.03(L)          |
|        | U7.11       |                                                    |         |       |          |           | ✓                          | 100% natural       | Fiber >827.92(L)          |
|        | U7.12       |                                                    |         |       |          |           | ✓                          | 100% natural       | Fiber 260.52 (L)          |
| U8     | U8.1        | ✓                                                  | ✓       | ✓     |          |           | ✓                          | mixture 70:6:11:13 | Trapezoid 206.42 x 102.58 |
|        | U8.2        | ✓                                                  | ✓       |       |          |           |                            | mixture 79:21      | Irregular 132.75 x 74.79  |
|        | U8.3        | ✓                                                  | ✓       |       |          |           |                            | mixture 79:21      | Diamond 166.50 x 137.57   |
|        | U8.4        |                                                    |         |       |          |           | ✓                          | 100% natural       | Irregular 205.16 x 83.31  |
|        | U8.5        | ✓                                                  |         |       |          |           |                            | 100% natural       | Film immeasurable         |
|        | U8.6        | ✓                                                  | ✓       | ✓     |          |           | ✓                          | mixture 70:6:11:13 | Fiber >556.14 (L)         |
|        | U8.7        | ✓                                                  | ✓       | ✓     |          |           | ✓                          | mixture 70:6:11:13 | Fiber 147.70 (L)          |
|        | U8.8        | ✓                                                  | ✓       |       |          |           |                            | mixture 60:40      | Fiber 198.85 (L)          |
|        | U8.9        | ✓                                                  | ✓       |       |          |           |                            | mixture 50:50      | Film 138.77 (L)           |

A total of 133 samples (microparticles) were analyzed by the micro-FTIR technique for the three categories of dairy products (conventional and organic butter and sour cream) and were characterized from the point of view of the microparticles' nature: 65 natural and 68 synthetic microparticles (Figures 12, 13, and 14). It is considered as natural microparticles those microparticles that present a 100% natural composition or a mixture of natural fibers (e.g., cotton, wool, raffia, cellulose, etc.) according to Garside and Wyeth [36] (Tables 9, 10, and 11). Synthetic microparticles are those microparticles that have in their composition a mixture of natural and polymeric compounds (acrylic, nylon, or elastane).

**Table 10**  
**Identification of microparticles according to the OPUS v.7.5 library of FTIR from organic butter samples**

| Sample | Sample Code | Identification according to the OPUS v.7.5 library |         |           |      | Microparticle composition | Characterization |                            |
|--------|-------------|----------------------------------------------------|---------|-----------|------|---------------------------|------------------|----------------------------|
|        |             | Cotton                                             | Acrylic | Cellulose | Flax |                           | Shape            | Size (LxW) [µm]            |
| U6B    | U6B1        | ✓                                                  | ✓       |           |      |                           | mixture 79:21    | Oval 170.62 x 71.12        |
|        | U6B2        | ✓                                                  | ✓       |           | ✓    |                           | mixture 79:21    | Film 143.12 (L)            |
|        | U6B3        | ✓                                                  | ✓       |           |      |                           | mixture 79:21    | Irregular ≈117.82 x 64.95  |
|        | U6B4        | ✓                                                  | ✓       |           |      |                           | mixture 79:21    | Rectangular 103.71 x 56.80 |
|        | U6B5        | ✓                                                  | ✓       |           |      |                           | mixture 79:21    | Irregular 144.35 x 113.60  |
|        | U6B6        | ✓                                                  | ✓       |           | ✓    |                           | mixture 60:40    | Irregular 99.52 x 108.52   |
|        | U6B7        | ✓                                                  | ✓       |           |      |                           | mixture 79:21    | Fiber 282.51 (L)           |
|        | U6B8        | ✓                                                  |         |           |      | 100% natural              | Fiber            | 159.61 (L)                 |

| Sample           | Sample Code | Identification according to the OPUS v.7.5 library |         |           |      | Microparticle composition | Characterization |                 |
|------------------|-------------|----------------------------------------------------|---------|-----------|------|---------------------------|------------------|-----------------|
|                  |             | Cotton                                             | Acrylic | Cellulose | Flax |                           | Shape            | Size (LxW) [µm] |
|                  | U6B9        | ✓                                                  | ✓       |           |      | mixture 79:21             | Fiber            | 527.48 (L)      |
| U <sub>7</sub> B | U6B10       | ✓                                                  | ✓       |           |      | mixture 50:50             | Fiber            | >945.68 (L)     |
|                  | U7B1        | ✓                                                  | ✓       |           |      | mixture 79:21             | Sphere           | 72.29 (D)       |
|                  | U7B2        | ✓                                                  | ✓       |           |      | mixture 79:21             | Oval             | 105.77 x 78.16  |
|                  | U7B3        | ✓                                                  | ✓       |           |      | mixture 50:50             | Square           | 83.63 x 81.81   |
|                  | U7B4        |                                                    |         | ✓         | ✓    | mixture 42:58             | Irregular        | 86.77 (L)       |
|                  | U7B5        | ✓                                                  | ✓       |           |      | mixture 79:21             | Fiber            | >605.76 (L)     |
|                  | U7B6        |                                                    |         | ✓         |      | 100% natural              | Fiber            | ≈771.02 (L)     |
|                  | U7B7        | ✓                                                  |         |           |      | 100% natural              | Fiber            | >635.28 (L)     |
|                  | U7B8        | ✓                                                  | ✓       |           | ✓    | mixture 64:15:21          | Fiber            | 716.45 (L)      |
|                  | U7B9        |                                                    |         | ✓         |      | 100% natural              | Fiber            | 209.30 (L)      |
| U <sub>8</sub> B | U7B10       | ✓                                                  | ✓       |           |      | mixture 79:21             | Fiber            | 812.72 (L)      |
|                  | U8B1        | ✓                                                  |         |           |      | 100% natural              | Irregular        | 141.04 (L)      |
|                  | U8B2        | ✓                                                  | ✓       |           |      | mixture 60:40             | Irregular        | 107.80 x 101.34 |
|                  | U8B3        | ✓                                                  | ✓       |           |      | mixture 79:21             | Fiber            | 911.03 (L)      |
|                  | U8B42       | ✓                                                  | ✓       |           |      | mixture 60:40             | Film             | immeasurable    |

**Table 11**  
**Identification of microparticles according to the OPUS v.7.5 library of FTIR from conventional sour cream samples**

| Sample         | Sample Code | Identification according to the OPUS v.7.5 library |         |           |      | Microparticle composition | Characterization |                    |
|----------------|-------------|----------------------------------------------------|---------|-----------|------|---------------------------|------------------|--------------------|
|                |             | Cotton                                             | Acrylic | Cellulose | Flax |                           | Shape            | Size (LxW) [µm]    |
|                | S1.1        | ✓                                                  |         |           | ✓    | mixture 60:40             | Irregular        | 47.22 (L)          |
| S <sub>1</sub> | S1.2        | ✓                                                  |         |           |      | 100% natural              | Film             | 291.10 x 55.88     |
|                | S1.3        | ✓                                                  |         |           |      | 100% natural              | Fiber            | >810.96 x 73.73    |
|                | S1.4        | ✓                                                  |         |           |      | 100% natural              | Fiber            | 173.10 (L)         |
|                | S1.5        | ✓                                                  |         |           |      | 100% natural              | Fiber            | ≈838.78 (L)        |
|                | S1.6        | ✓                                                  |         |           | ✓    | mixture 60:40             | Fiber            | >1028.68 (L)       |
|                | S2.1        | ✓                                                  |         |           | ✓    | mixture 60:40             | Oval             | 104.95 (L)         |
| S <sub>2</sub> | S2.2        | ✓                                                  | ✓       |           |      | mixture 60:40             | Irregular        | immeasurable       |
|                | S2.3        |                                                    |         | ✓         |      | 100% natural              | Fiber            | >949.68 (L)        |
|                | S2.4        | ✓                                                  |         |           |      | 100% natural              | Fiber            | >902.68 (L)        |
|                | S2.5        |                                                    |         | ✓         |      | 100% natural              | Film             | immeasurable       |
|                | S3.1        |                                                    |         | ✓         |      | 100% natural              | Irregular        | 86.37 (L)          |
| S <sub>3</sub> | S3.2        |                                                    |         | ✓         |      | 100% natural              | Fiber            | >1747.91 (L)       |
|                | S3.3        | ✓                                                  |         |           |      | 100% natural              | Fiber            | >709.22 (L)        |
|                | S4.1        |                                                    |         | ✓         |      | 100% natural              | Irregular        | 332.98 x 293.15    |
| S <sub>4</sub> | S4.2        |                                                    |         | ✓         |      | 100% natural              | Fiber            | >1143.87 (L)       |
|                | S4.3        | ✓                                                  |         |           |      | 100% natural              | Fiber            | >213.66 (L)        |
|                | S4.4        |                                                    |         | ✓         |      | 100% natural              | Fiber            | >975.68 (L)        |
|                | S4.5        | ✓                                                  |         |           |      | mixture 60:40             | Fiber            | >760.51 (L)        |
|                | S4.6        |                                                    |         | ✓         |      | 100% natural              | Fiber            | ≈305.23 (L)        |
|                | S4.7        | ✓                                                  |         |           | ✓    | mixture 60:40             | Fiber            | 494.75 (L)         |
|                | S5.1        | ✓                                                  |         |           |      | 100% natural              | Triangle         | 49.00 x 79.05      |
| S <sub>5</sub> | S5.2        |                                                    |         | ✓         |      | 100% natural              | Irregular        | immeasurable       |
|                | S5.3        |                                                    |         | ✓         |      | 100% natural              | Fiber            | >868.49 (L)        |
|                | S5.4        | ✓                                                  |         |           |      | 100% natural              | Fiber            | >259.24 (L)        |
|                | S5.5        |                                                    |         | ✓         |      | 100% natural              | Fiber            | ≈975.07 (L)        |
|                | S5.6        |                                                    |         | ✓         |      | 100% natural              | Fiber            | 576.7 (L)          |
|                | S6.1        | ✓                                                  |         |           |      | 100% natural              | Irregular        | 150.76 x 107.80    |
| S <sub>6</sub> | S6.2        | ✓                                                  | ✓       |           | ✓    | mixture 64:15:21          | Fiber            | >777.62 (L)        |
|                | S6.3        |                                                    |         | ✓         |      | 100% natural              | Fiber            | 644.95 (L)         |
|                | S6.4        |                                                    |         | ✓         |      | 100% natural              | Fiber            | 747.94 (L)         |
|                | S6.5        |                                                    |         |           | ✓    | 100% natural              | Fiber            | 237.27 (L)         |
|                | S7.1        | ✓                                                  |         |           |      | mixture 60:40             | Irregular        | 55.30 (L)          |
| S <sub>7</sub> | S7.2        |                                                    |         |           |      | 100% natural              | Oval             | 66.83 (L)          |
|                | S7.3        |                                                    |         | ✓         |      | 100% natural              | Irregular        | >1026.40 x >349.43 |
|                | S7.4        | ✓                                                  |         |           |      | 100% natural              | Fiber            | 739.64 (L)         |

According to Figures 12-14, organic and conventional butter had the highest distribution of synthetic microparticles (80% in organic butter and 56% in conventional

butter), while conventional sour cream had the lowest distribution (22%). In terms of natural microparticles, sour cream had the highest distribution (78%), while conventional and organic butter accounted for 44% and 20%, respectively.

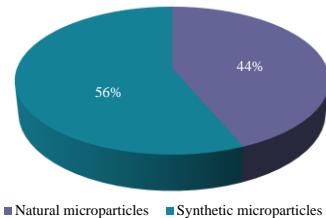



Figure 12. The nature of microparticles identified by the micro-FTIR technique in conventional butter samples.

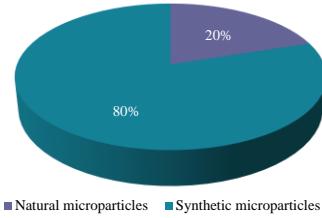



Figure 13. The nature of microparticles identified by the micro-FTIR technique in organic butter samples.

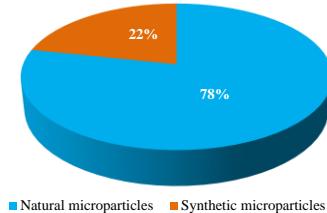



Figure 14. The nature of microparticles identified by the micro-FTIR technique in sour cream samples.

The microparticles content in butter (conventional and organic) and sour cream samples is highly variable. In the conventional butter samples, was recorded a variation from 375 to 1500 microparticles/kg (Table 6), and in organic butter from 625 to 1000 microparticles/kg (Table 7). In the case of sour cream, the variation of microparticles content ranged between 400 and 1200 microparticles/kg (Table 8).

Based on the pollution load index (PLI) equation, for conventional and organic butter samples, the recorded variations were from 14.940 (U<sub>2</sub> and U<sub>4</sub> samples) to 29.881 (U<sub>1</sub> and U<sub>7</sub> samples). For the conventional butter samples and organic butter samples, values ranged from 19.288 (sample U<sub>7B</sub>) to 24.398 (sample U<sub>6B</sub>). According to Table 4, the samples of conventional and organic butter fall either into a low-danger level (green color) or a high-danger one (red color) (Figure 15) of pollution/contamination.

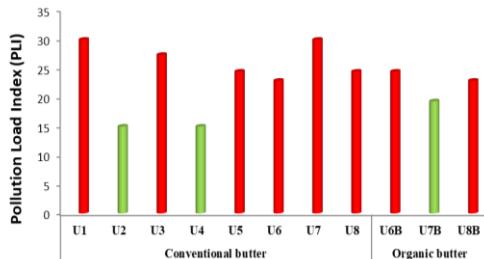



Figure 15. The pollution load index (PLI) of analyzed butter samples

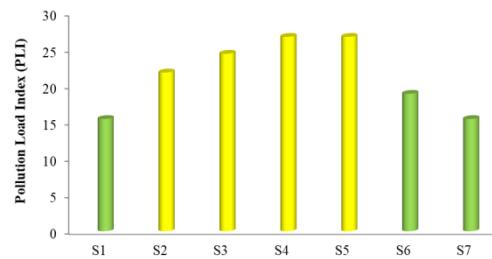



Figure 16. The pollution load index (PLI) of analyzed sour cream samples

The pollution loading index (PLI) of the conventional sour cream pods varied from 15.430 (S<sub>1</sub> and S<sub>7</sub> samples) to 26.726 (S<sub>4</sub> and S<sub>5</sub> samples). The sour cream samples are included in low and medium levels of risk (hazard) (Figure 16) according to Table 4.

Using the second equation, the daily intake of microparticles for children and adults was calculated. Figures 17 and 18 show the results for butter (conventional and organic) and sour cream (conventional).

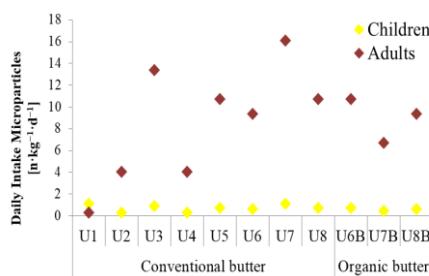



Figure 17. The daily intake of micro-fibers (DIM) in the analyzed butter samples.

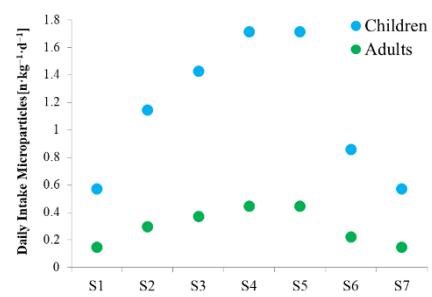



Figure 18. The daily intake of micro-fibers (DIM) in the analyzed sour cream samples.

Conventional butter samples recorded a DIM value for children between 0.268 and 1.071 n/(kg·d) and between 0.279 and 16.071 n/(kg·d) for adults, while organic butter reached values between 0.446 and 0.714 n/(kg·d) for children and from 6.696 to 10.714 n/(kg·d) for adults. Conventional sour cream samples recorded a DIM value for children between 0.571 and 1.714 n/(kg·d) and for adults, DIM values were between 0.149 and 0.446 n/(kg·d).

The Pearson correlation coefficient is used to determine the relationship between "microparticle type" and potential sources of occurrence. Table 12 highlights the presence of a significant correlation between the two variables ( $R = 0.595$ ), which proves that the type of microparticle defines the source of occurrence.

**Table 12**  
**Correlations between the type of microparticle and the sources of origin in conventional and organic butter samples**

|                    |                     | Microparticle type | Occurrence source |
|--------------------|---------------------|--------------------|-------------------|
| Microparticle type | Pearson Correlation | 1                  | 0.595**           |
|                    | Sig. (2-tailed)     |                    | 0.000             |
|                    | N                   | 96                 | 96                |
| Occurrence source  | Pearson Correlation | 0.595**            | 1                 |
|                    | Sig. (2-tailed)     | 0.000              |                   |
|                    | N                   | 96                 | 96                |

\*\*. Correlation is significant at the 0.01 level (2-tailed).

The forecast of privileged values at the source of origin of microparticles from the analyzed samples was made based on the equation that describes the link between the microparticle type and the source of occurrence by the linear regression method. The effect size indicators in the case of simple linear regression are R and adjusted R<sup>2</sup>, in this case, it is R=0.595, so there is a large effect of the source of occurrence on microparticle type. The coefficient of determination R<sup>2</sup>=0.354, which means that 35.4% of the variance of the dependent variable "Microparticle type" can be explained by the variance of the independent variable (source of occurrence).

**Table 13**  
**Model Summary<sup>b</sup>**

| Model | R                  | R Square | Adjusted R Square | Std. Error of the Estimate | Change Statistics |          |     |     |               | Durbin-Watson |
|-------|--------------------|----------|-------------------|----------------------------|-------------------|----------|-----|-----|---------------|---------------|
|       |                    |          |                   |                            | R Square Change   | F Change | df1 | df2 | Sig. F Change |               |
| 1     | 0.595 <sup>a</sup> | 0.354    | 0.345             | 2.159                      | 0.354             | 37.280   | 1   | 95  | 0.000         | 1.290         |

<sup>a</sup> Predictors: (Constant), Occurrence source; <sup>b</sup> Dependent Variable: Microparticle type

In Table 13, the unstandardized (B) and standardized (beta) regression coefficients are presented, as well as the t-test results for each of these coefficients. For simple linear regression, beta (standardized coefficient  $\beta = 0.595$ ) is the correlation coefficient between the independent variable and the dependent variable. The unstandardized coefficient (Table 14) for the variable ethical attitudes at the political level is  $b=3.183$  and represents the slope of the regression line. The unstandardized coefficient for the constant is  $a= -73.033$  and represents the intercept. It can be write the regression equation  $Y=a+b\cdot X=-73.033+3.183X$  to predict the growth of microparticles based on the source of occurrence.

**Table 14**  
**Coefficients<sup>a</sup>**

| Model             | Unstandardized Coefficients |            | Standardized Coefficients | t      | Sig.  |
|-------------------|-----------------------------|------------|---------------------------|--------|-------|
|                   | B                           | Std. Error | Beta                      |        |       |
| (Constant)        | -73.033                     | 12.813     |                           | -5.700 | 0.000 |
| Occurrence source | 3.183                       | 0.521      | 0.595                     | 6.106  | 0.000 |

<sup>a</sup> Dependent Variable: Microparticle type

To analyze whether the predictor variable and the outcome variable are linearly related, visual verification was carried out using a scatter plot. In assessing

the relationship between ethical attitudes at the political level and ethical attitudes at the social level, the scatter plot in Figure 19 indicates that there is a moderate linear positive relationship between the two variables, which is supported by the correlation coefficient ( $r = 0.595$ ).

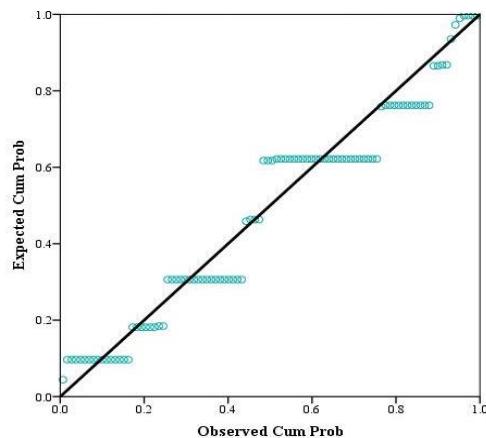



Figure. 19. Moderate positive linear relationship between the two variables. Normal P-P plot of regression standardized residual dependent variable.

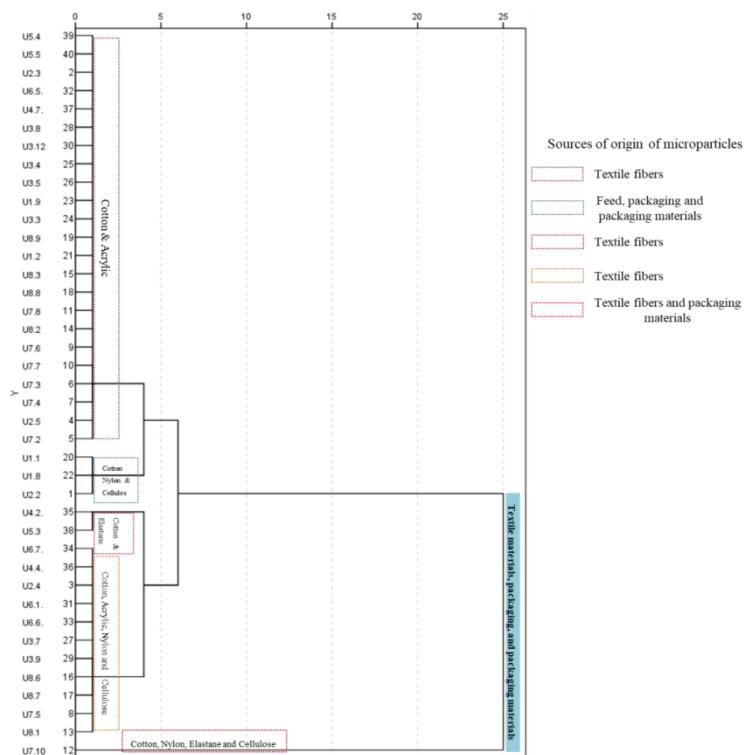



Figure 20. Dendrogram plot tab - distribution of textile fibers, feed, packaging materials for conventional butter samples

The hierarchical cluster analysis is a procedure for identifying relatively homogeneous groups in terms of cases or variables based on predetermined characteristics. Figures 20 and 21 present an analysis of the hierarchical clusters made for conventional and organic butter, and the default variables were the type of microparticle and the nature of the microparticle. For both categories of butter, synthetic fibers were selected that had nylon, acrylic, and/or elastane in their composition.

The dendrogram (hierarchical cluster) of conventional butter was obtained on data collected from 40 synthetic microparticles (Figure 20), while the organic butter was obtained on data collected from 20 synthetic microparticles (Figure 21).

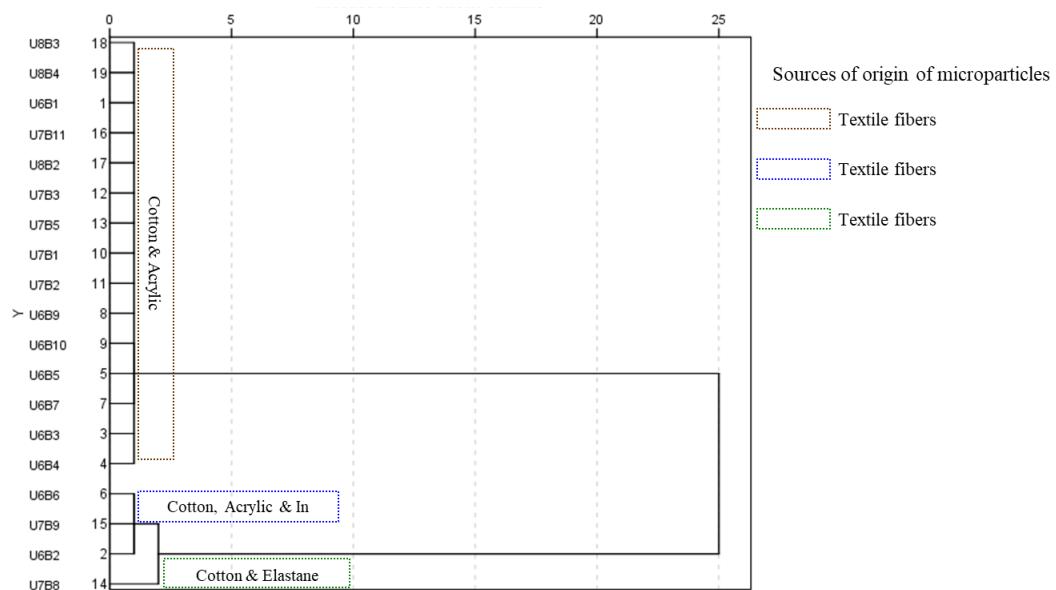



Figure 21. Dendrogram plot tab - distribution of textile fibers for organic butter samples

Based on the cluster analysis, it was possible to group the conventional butter samples according to microparticle (e.g. cotton, cellulose, linen, wool, nylon, acrylic, etc.) and group them according to the composition of the blends. Cluster analysis grouped the 40 samples into five categories and assigned potential sources of occurrence. For the cotton and acrylic blend, 23 conventional butter samples were identified. In the mixture, cotton and acrylic come from the textile industry, and the potential sources of provenance could be clothes, materials used in the milk industry for straining, and the preparation of raw and auxiliary materials to be used in the technological field. The mixture of cotton, nylon, and cellulose, which could come from animal feed and food packaging but also from ingesting packaging found on pastures and meadows, was identified in three samples. Cotton in combination with elastane and the mixture of cotton, acrylic, nylon, and cellulose was identified in two respectively ten samples, which may come from the textile

industry during the work equipment use (blouses, trousers, vests etc.), protection (disposable caps and masks) and cloths. The mixture of cotton, nylon, elastane, and cellulose was identified in a sample that may come from the textile industry and the blisters used in the packaging of medicines.

Cluster analysis made it possible to group the organic butter samples according to fiber type (e.g., cotton, cellulose, linen, wool, nylon, acrylic, etc.) and group them according to the composition of the blends. Cluster analysis grouped the 25 samples into three categories and assigned potential sources of origin. For the cotton-acrylic blend, cotton, acrylic, and linen, 14 and 3 organic butter samples were identified, respectively. In a mixture, cotton and acrylic, but also a mixture consisting of cotton, acrylic, and linen can come from the textile industry, and the potential sources of appearance are clothes, cloths, materials used in the milk industry for straining, as well as the preparation of raw and auxiliary materials. Cotton, in combination with elastane, was identified in one sample. The mixture can come from the textile industry during the use of work equipment (blouses, trousers, and vests), protective equipment (caps and disposable masks) and cloths.

#### **4. Conclusions**

Microplastics-bound hazard pollutants are ingested through foods, including milk and dairy products. An absence of knowledge and procedures/standards in terms of microplastic analysis is a challenge for the future. Following the analyses, it can attribute the term microplastics to all synthetic microparticles (identified in a mixture with natural fibers). Therefore, from all 133 microparticles identified in the three categories of dairy products, 51.13% of them represent microplastics (synthetic microparticles), while the differences are attributed to natural microparticles. So far, according to our knowledge, no studies exist regarding the investigations on microplastics (type of polymer, morphological characterization, occurrence, abundance, source, risk, etc.), from a complex matrix of milk, such as dairy products with a high-fat content (i.e., sour cream, butter). In this respect, this study wants to be a point of start for future original research related to the presence of MPs in milk-based foods to a better assessment of potential human exposure and human health risks.

#### **Funding:**

This research was funded by the Ministry of Research, Innovation, and Digitization [project 43PFE/30.12.2021].

#### **R E F E R E N C E S**

[1] *G. Zhou, et al., „How many microplastics do we ingest when using disposable drink cups?”, in Journal of Hazardous Materials, vol. 441, January 2023, 129982.*

- [2] *K-D. Cox et al.*, „Human Consumption of Microplastics”, in Environmental Science and Technology, **vol. 53**, no. 12, June 2019, pp. 7068-7074.
- [3] *Q. Lin et al.*, „Potential risk of microplastics in processed foods: Preliminary risk assessment concerning polymer types, abundance, and human exposure of microplastics”, in Ecotoxicology and Environmental Safety, **vol. 247**, December 2022, 114260.
- [4] *S-D. Richardson and T-A. Ternes.*, „Water Analysis: Emerging Contaminants and Current Issues”, in Analytical Chemistry, **vol. 90**, no. 1, February 2018, pp. 398-428.
- [5] *S-B. Fournier et al.*, „Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy”, in Particle and Fibre Toxicology, **vol. 17**, October 2020, 55.
- [6] *S. Liu et al.*, „Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study”, in Science of the Total Environment, **vol. 854**, January 2023, 158699.
- [7] *C. Goedecke et al.*, „A first pilot study on the sorption of environmental pollutants on various microplastic materials”, in Journal of Environmental Analytical Chemistry, **vol. 4**, no. 1, January 2017, pp. 1-8.
- [8] *M. Oliveira et al.*, „Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby *Pomatoschistus microps* (Teleostei, Gobiidae)”, in Ecological Indicators, **vol. 34**, November 2013, pp. 641-647.
- [9] *C. Gomez and H. Gallart-Ayala*, „Metabolomics: a tool to characterize the effect of phthalates and bisphenol a”, in Environmental Reviews, **vol. 26**, no. 4, July 2018, pp. 351-357.
- [10] *Q. Luo et al.*, „Migration and potential risk of trace phthalates in bottled water: a global situation”, in Water Research, **vol. 147**, December 2018, pp. 362-372.
- [11] *W. Yan et al.*, „Individual and combined toxicogenetic effects of microplastics and heavy metals (Cd, Pb, and Zn) perturb gut microbiota homeostasis and gonadal development in marine medaka (*Oryzias melastigma*)”, in Journal of Hazardous Materials, **vol. 397**, October 2020, 122795.
- [12] *E. Fries and C. Zarfl*, „Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE)”, in Environmental Science and Pollution Research, **vol. 19**, May 2012, pp. 1296-1304.
- [13] *Y. Vieira et al.*, „Microplastics physicochemical properties, specific adsorption modeling and their interaction with pharmaceuticals and other emerging contaminants”, in Science of The Total Environment, **vol. 753**, January 2021, 141981.
- [14] *N. Parveen et al.*, „Occurrence and potential health risks due to trihalomethanes and microplastics in bottled water”, in Environmental Engineering Science, **vol. 39**, no. 6, June 2022, pp. 523-534.
- [15] *A-C. Wiesheu et al.*, „Raman microspectroscopic analysis of fibers in beverages”, in Analytical Methods, **vol. 8**, June 2016, pp. 5722-5725.
- [16] *Q. Zhang et al.*, „Microfiber fallout during dining and potential human intake”, in Journal of Hazardous Materials, **vol. 430**, May 2022, 128477.
- [17] *J-C. Prata et al.*, „An easy method for processing and identification of natural and synthetic microfibers and microplastics in indoor and outdoor air”, in MethodsX, **vol. 7**, no. 11, December 2019, 100762.

- [18] *Z. Sobhani et al.*, „Microplastics generated when opening plastic packaging”, in Scientific Reports, **vol. 10**, no. 1, March 2020, 4841.
- [19] *W. Cheddadi et al.*, „Migration of minerals and organic compounds between bottled water and its plastic packaging”, in Annals of the Romanian Society for Cell Biology, **vol. 25**, no. 6, May 2021, pp. 12829-12843.
- [20] *D. Schymanski et al.*, „Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water”, in Water Research, **vol 128**, February 2018, pp. 154-162.
- [21] *D. Li et al.*, „Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation”, in Nature Food, **vol. 1**, October 2020, pp. 746-754.
- [22] *A-L. Banica et al.*, „Assessment of microplastics in personal care products by microscopic methods and vibrational spectroscopy”, in Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, **vol. 24**, no. 2, June 2023, pp. 155-171.
- [23] *C. Radulescu et al.*, „Metoda rapida de izolare a microplasticelor din lapte, iaurt, smantana si unt”, 137927 A0, 00528/26.09.2023.
- [24] *Y. Chen et al.*, „Identification and quantification of microplastics using Fourier-transform infrared spectroscopy: current status and future prospects”, in Current Opinion in Environmental Science & Health, **vol. 18**, December 2020, pp. 14–19.
- [25] *W. Fu et al.*, „Separation, characterization and identification of microplastics and nanoplastics in the environment”, in Science of The Total Environment, **vol. 721**, June 2020, 137561.
- [26] *L. Hermabessiere et al.*, „Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics”, in Analytical and Bioanalytical Chemistry, **vol. 410**, July 2018, pp. 6663-6676.
- [27] *L. Montano et al.*, „Raman micro-spectroscopy evidence of microplastics in human semen”, in Science of The Total Environment, **vol. 901**, November 2023, 165922.
- [28] *C. Campanale et al.*, „Fourier Transform Infrared Spectroscopy to Assess the Degree of Alteration of Artificially Aged and Environmentally Weathered Microplastics”, in Polymers, **vol. 14**, no. 5, February 2023, 911.
- [29] *C. Radulescu et al.*, „Chemometric assessment of spectroscopic techniques and antioxidant activity for Hippophae rhamnoides L. extracts obtained by different isolation methods”, in Analytical Letters, **vol. 52**, no. 15, January 2019, pp. 2393–2415.
- [30] *C. Radulescu et al.*, „Chemometrics based-vibrational spectroscopy for Juglandis semen extracts investigation”, in Journal of Chemometrics, **vol. 34**, no. 6, March 2020, e3234.
- [31] *J-P Harrison et al.*, „The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments”, in Science of The Total Environment, **vol. 416**, February 2012, 455–463.
- [32] *P-A. da Costa-Filho et al.*, „Detection and characterization of small-sized microplastics ( $\geq 5$   $\mu\text{m}$ ) in milk products”, in Scientific Reports, **vol. 11**, no. 1, December 2021, 24046.
- [33] *D-L. Tomlinson et al.*, „Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index”, in Helgolander Meeresuntersuchungen, **vol. 33**, no. 1, March 1980, pp. 566–575.
- [34] *O-O. Fadare et al.*, „Microparticles and microplastics contamination in African table salts”, in Marine Pollution Bulletin, **vol. 164**, March 2021, 112006.

- [35] *W. G. Hopkins*, „A new view of statistics”, in Internet Society for Sport Science: <http://www.sportsci.org/resource/stats/>, 2000.
- [36] *A-B. Silva* et al. „Microplastics in the environment: Challenges in analytical chemistry - A review”, in *Analytica Chimica Acta*, **vol. 1017**, August 2018, pp. 1–19.