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In this paper, we propose an extended Riccati sub-ODE method to establish 
new exact solutions for nonlinear differential-difference equations. As a result, new 
exact solutions including hyperbolic function solutions, trigonometric function 
solutions and rational solutions are obtained for two nonlinear differential-
difference equations, and some of them are generalizations of some known results in 
the literature. 
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1. Introduction 

Nonlinear differential-difference equations (NDDEs) can find their 
applications in many aspects of mathematical physics such as condensed matter 
physics, biophysics, atomic chains, molecular crystals and quantum physics and 
so on. Since the work of Fermi, Pasta and Ulam in the 1960s [1], NDDEs have 
been the focus of many studies for nonlinear phenomena, and much attention have 
been paid to the research of the theory of NDDEs during the last decades (for 
example, see [2-10] and the references therein). Among these research works, the 
investigation of exact solutions of nonlinear differential-difference equations 
plays an important role in the study of nonlinear physical phenomena. As we all 
know, it is hard to generalize one method for nonlinear differential equations to 
solve NDDEs due to the difficulty to search for iterative relations from indices n  
to 1±n . Recently, the extensions of some effective methods have been presented 
and applied for solving some NDDEs successfully in the literature. For example, 
these methods include the known (G'/G)-expansion method [11-14], the exp-
function method [15], the exponential function rational expansion method [16-
17], the Jacobi elliptic function method [18-19], Hirota's bilinear method [20], the 
extended simplest equation method [21], the tanh function method [22] and so on. 

In this paper, we propose an extended Riccati sub-ODE method for solving 
NDDEs, in which the iterative relations from indices n  to 1±n  are established. In 
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Section 2, we give the description of the proposed method. Then in Section 3 and 
4 we apply the method to solve two nonlinear differential-difference equations: 
the discrete m-KdV lattice equation [12] and the Toda lattice system [17]. Some 
Conclusions are presented at the end of the paper. 

2. Description of the extended Riccati sub-ODE method  

The main steps of the extended Riccati sub-ODE method for solving NDDEs 
are summarized as follows: 

Step 1. Consider a system of M  polynomial NDDEs in the form 
0))(),...,(),...,(),...,(),...,(),...,(( )()(''

111
=++++++ xuxuxuxuxuxuP r

pn
r

pnpnpnpnpn kkk
, (2.1) 

where the dependent variable u  has M  components iu , the continuous variable 
x  has N  components jx  , the discrete variable n  has Q  components in , the k  

shift vectors Q
s Zp ∈  have Q  components sjp , and )()( xu r  denotes the 

collection of mixed derivative terms of order r . 
Step 2. Using a wave transformation 

1 1 1 1

( ) ( ), , ( ) ,
s s s s

Q Qn n

n p n p n p n i i j j n p i i si j j
i j i j

u x U d n c x d n p c xξ ξ ζ ξ ζ+ + + +
= = = =

= = + + = + + +∑ ∑ ∑ ∑
where ζ,, ji cd  are all constants, we can rewrite Eq. (2.1) in the following 
nonlinear ODE: 
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Step 3: Suppose the solutions of Eq. (2.2) can be denoted by 

0
( ) ( )

l
i

n n i n
i

U aξ φ ξ
=

= ∑                                                                     (2.3) 

where  0 ( ) 1nφ ξ = , ia  are constants to be determined later, l  is a positive integer 
that can be determined by balancing the highest order linear term with the 
nonlinear terms in Eq. (2.2), and ( )nφ ξ satisfies the known Riccati equation: 

' 2( ) ( )n nφ ξ σ φ ξ= +                                                                       (2.4) 

Step 4: We present some special solutions 1 6,...,φ φ for Eq. (2.4): 
         When 0<σ : 

1 0 1 0

1,2
1

1,2
1,2

1

( ) tanh( ), ( ) coth( )

( ) tanh( ) ,
( )

( )
1 tanh( )

s

n n n n
Q

n i si
i

n p Q
n

i si
i

c c

d p

d p

φ ξ σ σξ φ ξ σ σξ

φ ξ σ σ
φ ξ

φ ξ
σ

σ

=
+

=

⎧ = − − − + = − − − +
⎪
⎪⎪ − − −
⎨

=⎪
⎪ − −
⎪ −⎩

∑

∑

     (2.5) 
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where 0c  is an arbitrary constant. 
When 0>σ : 

 

3 0 4 0

3,4
1

3,4
3,4

1

( ) tan( ), ( ) cot( )

( ) tan( ) ,
( )

( )
1 tan( )

s

n n n n
Q

n i si
i

n p Q
n

i si
i

c c

d p

d p

φ ξ σ σξ φ ξ σ σξ

φ ξ σ σ
φ ξ

φ ξ
σ

σ

=
+

=

⎧ = + = − +
⎪
⎪⎪ +
⎨

=⎪
⎪ −
⎪⎩

∑

∑

                      (2.6) 

and 
 

5 0 0

(1) (2)
5 5

1 1
5 (1) (1)

5 5

1 1

( ) [tan(2 ) | sec(2 ) |]

( ) tan(2 ) ( )sec(2 ) ,
( )

( ) ( )1 tan(2 ) 1 tan(2 )
s

n n n
Q Q

n i si n i si
i i

n p Q Q
n n

i si i si
i i

c c

d p d p

d p d p

φ ξ σ σξ σξ

φ ξ σ σ φ ξ σ
φ ξ

φ ξ φ ξσ σ
σ σ

= =
+

= =

⎧ = + + +
⎪
⎪⎪ +
⎨

= +⎪
⎪ − −
⎪⎩

∑ ∑

∑ ∑

 (2.7) 

where (1) (2)
5 0 5 0( ) tan(2 ), ( ) | sec(2 ) |n n n nc cφ ξ σ σξ φ ξ σ σξ= + = + , and 0c  is an 

arbitrary constant. 
    When 0=σ : 
 

6
0

6
6

6
1

1( )

,( )( )
1 ( )

s

n
n

n
n p Q

n i si
i

c

d p

φ ξ
ξ
φ ξφ ξ

φ ξ
+

=

⎧ = −⎪ +⎪⎪
⎨ =⎪
⎪ −
⎪⎩

∑

                                                    (2.8) 

where 0c  is an arbitrary constant. 
Step 5: Substituting (2.3) into Eq. (2.2), by use of Eqs. (2.4)-(2.8), the left 

hand side of Eq. (2.2) can be converted into a polynomial in ( )nφ ξ . Equating each 
coeffcient of ( )i

nφ ξ  to zero, yields a set of algebraic equations. Solving these 
equations, we can obtain the values of jii cda ,,  . 

Step 6: Substituting the values of ia  into (2.3), and combining with the 
various solutions of Eq. (2.4), we can obtain a variety of exact solutions for Eq. 
(2.1). 
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2. Application of the extended Riccati sub-ODE method to the discrete 
m-KdV lattice equation  

In this section, we will apply the extended Riccati sub-ODE method to the 
discrete m-KdV lattice equation [12]: 

2
1 1( ) ( )( ),n n n nu t u u uα + −= − −

i
                                              (3.1) 

where ( ),n nu u t n Z= ∈ . 
      Using a wave transformation 

1 1( ), ,n n n nu U d n c tξ ξ ζ= = + +                                            (3.2) 
where 1 1, ,d c ζ  are all constants, Eq. (3.1) can be rewritten in the following 
ODE: 

' 2
1 1 1( )( ) 0.n n n ncU U U Uα + −− − − =                                        (3.3) 

Suppose the solutions ( )n nU ξ  for Eq. (3.3) can be denoted by 

0
( ) ( ),

l
i

n n i n
i

U aξ φ ξ
=

= ∑                                                 (3.4) 

where ( )nφ ξ satisfies Eq. (2.4). Balancing the order of '
nU  and 2

nU in Eq. (3.3) we 
obtain 1 2l l+ = , and then 1l = . So we have 

0 1( ) ( ).n n nU a aξ φ ξ= +                                                          (3.5) 
We will proceed to solve Eq. (3.3) in several cases. 
Case 1: If 0σ < , and assume (2.4) and (2.5) hold, then substituting (3.5), 

(2.4) and (2.5) into Eq. (3.3), collecting the coefficients of 1,2 ( )i
nφ ξ and equating 

them to zero, we obtain a series of algebraic equations: 
2 2

1 1 1 1( 1) : tanh ( ) 2 tanh( ) 0,a c d a dσ σ σ− − − − =  

1 1 0( 2) : 4 tanh( ) 0,a d a aσ σ− − − =  
3
22 2

1 1 1 1 1 1( 3) : tanh ( ) 2 tanh( ) 2( ) tanh( )a c d c d d aσ σ σ σ σ α σ σ− + + − − − − −  
2

1 02 tanh( ) 0,d aσ σ− − − =  
3
2

1 1 0( 4) : 4( ) tanh( ) 0,a d a aσ σ− − =  
2

1 1 1 1 0

1

( cosh( ) 2 sinh( ) 2 sinh( ) )( 5) : 0.
cosh( )

c d d d aa
d

σ σ σ σ σ α σ σ
σ

− + − − − − −
=

−
 

Solving these equations, yields 

         1 1 0 1 1 1 1
2tanh( ), 0, , tanh( ).a d a d d c dα ασ σ

σ σ
= ± − − = = = −

−
 

So we obtain the following solitary wave solutions: 
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1 1 1 0
2( ) tanh( ) tanh[ ( tanh( ) ) ],nu t d d n d t cαα σ σ σ ζ
σ

= ± − − + − + +
−

  (3.6) 

and 

1 1 1 0
2( ) tanh( )coth[ ( tanh( ) ) ],nu t d d n d t cαα σ σ σ ζ
σ

= ± − − + − + +
−

  (3.7) 

where 1 0,d c  are arbitrary constants. 
Case 2:  If 0σ > , and assume (2.4) and (2.6) hold, then substituting (3.5), 

(2.4) and (2.6) into Eq. (3.3), collecting the coefficients of 3,4 ( )i
nφ ξ and equating 

them to zero, we obtain a series of algebraic equations:  
2 2

1 1 1 1( 1) : tan ( ) 2 tan( ) 0,b c d d aσ σ σ− + =  

1 1 0( 2) : 4 tan( ) 0,b d a aσ σ =  
3
22 2

1 1 1 1 1 1( 3) : tan ( ) 2 tan( ) 2 tan( )b c d c d d aσ σ σ σ σ α σ σ− + − +  
2

1 02 tan( ) 0,d aσ σ+ =  
3
2

1 1 0( 4) : 4 tan( ) 0,b d a aσ σ =  
2

1 1 1 1 0

1

( cos( ) 2 sin( ) 2 sinh( ) )( 5) : 0.
cos( )

c d d d ab
d

σ σ σ σ σ α σ σ
σ

− +
=  

Solving these equations, yields 

       1 1 0 1 1 1 1
2tan( ), 0, , tan( ).a d a d d c dα ασ σ

σ σ
= ± = = =  

Then we have the following trigonometric function solutions: 

1 1 1 0
2( ) tan( ) tan[ ( tan( ) ) ],nu t d d n d t cαα σ σ σ ζ
σ

= ± + + +                 (3.8) 

and 

1 1 1 0
2( ) tan( ) cot[ ( tan( ) ) ],nu t d d n d t cαα σ σ σ ζ
σ

= ± + + +                 (3.9) 

where 1 0,d c  are arbitrary constants. 
     In [12, Eqs. (32) and (36)], Ayhan and Bekir presented some exact solutions 
for m-KdV lattice equation by the (G'/G)-expansion method as follows: 

2 2

2 1 2

1 2 2

1 2

4 4sinh( ) cosh( )4 2 2tanh( )( ),
2 4 4cosh( ) sinh( )

2 2

n n

n

n n

C C
u d

C C

λ μ λ μξ ξλ μ
α

λ μ λ μξ ξ

− −
+−

= ±
− −

+

 (3.10) 
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where 
2

1 12

44[ tanh( )] ,
24

n d n d tλ μαξ ζ
λ μ

−
= + +

−
 and 

2 2

2 1 2

1 2 2

1 2

4 4sin( ) cos( )4 2 2tan( )( ),
2 4 4cos( ) sin( )

2 2

n n

n

n n

C C
u d

C C

μ λ μ λξ ξμ λ
α

μ λ μ λξ ξ

− −
− +−

= ±
− −

+

 (3.11) 

where 
2

1 12

44[ tan( )] .
24

n d n d t
μ λαξ ζ

μ λ

−
= + +

−
 

         We note that our results (3.6) and (3.8) are solutions of more general forms 

than Eqs. (3.10) and (3.11). In fact, if we let 
2

2
0

1

4( ),
4

Cc arth
C

μ λσ −
= =  or 

2
1

0
2

4( ),
4

Cc arcoth
C

μ λσ −
= = , then our result (3.6) reduces to (3.10). If we let 

2
2

0
1

4arctan( ),
4

Cc
C

μ λσ −
= − =  or 

2
1

0
2

4( ),
4

Cc arccot
C

μ λσ −
= − =  , then our result 

(3.8) reduces to (3.11). 
Case 3: If 0σ > , and assume (2.4) and (2.7) hold, then substituting (3.6), 

(2.4) and (2.7) into Eq. (3.4), using (2) 2 (1) 2
5 5[ ( )] [ ( )]n nφ ξ σ φ ξ= + , collecting the 

coeffici-ents of (1) (2)
5 5[ ( )] [ ( )]i j

n nφ ξ φ ξ and equating them to zero, we obtain a series 
of alge-braic equations: 

2 2 2
1 1 1 1 1 1 1 1( 1) : 2 4 sin(2 ) 2 cos (2 ) 4 sin(2 ) cos(2 ) 0,c c d a c d d a dσ σ σ σ σ σ− + + + =

    1 1 0 1 1 1 0( 2) :4 sin(2 ) cos(2 ) 4 sin(2 ) 0,c d a a d d a aσ σ σ σ σ+ =  
3 3
2 2

1 1 0 1 1 1 0( 3) :4 sin(2 ) cos(2 ) 4 sin(2 ) 0,c d a a d d a aσ σ σ σ σ+ =  
2 2

1 1 1 1 1 1 1( 4) : 2 sin(2 )cos(2 ) ( 4 sin(2 ) cos (2 )c d d c a d c dσα σ σ σ σ σ− + − + +  
3
22 2

1 1 1 1 1 12 sin(2 ) cos(2 )) 4 sin(2 ) cos(2 ))d a d d a dσ σ σ σ σ σ σ+ +  
2 2

1 1 1 1 0 13 cos (2 ) 2 sin(2 ) cos(2 )) 0,c d c d a dσ σ σ σ σ σ+ − + =  
3
2 2 2

1 1 1 0 1( 5) :2 sin(2 ) 2 sin(2 ) 2 sin(2 )c d a d a dσ σ σ σ σ σ α+ −  
3
2 2 2

1 1 1 1 14 sin(2 ) cos(2 ) 2 cos (2 ) 0,d a d c dσ σ σ σ σ+ + =  
3 3
2 22 2 2

1 1 1 0 1 1 1( 6) : cos (2 ) 2 sin(2 ) cos(2 ) 2 sin(2 ) cos(2 )c c d d a d d dσ σ σ σ σ σ σ α σ+ −

            
3
2 2 2

1 1 1 1 1(2 sin(2 ) cos(2 ) cos (2 )) 0d a d c dσ σ σ σ σ σ+ + =  
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3
2

1 1 0 1( 7) :4 sin(2 ) cos(2 ) 0.c d a a dσ σ σ =  
Solving these equations, we get three families of values as follows: 

                 1 0 1 1
2, 0, , ,

4
a a d cα π α

σ σ σ
= ± = = − = −  

                   1 0 1 1
2, 0, , ,

4
a a d cα π α

σ σ σ
= ± = = =  

or 
    

2
1 1 1

1 0 1 1 1
1 1

2 sin (2 ) 2 cos(2 ) 2 (cos(2 ) 1), 0, , ,
sin(2 ) sin(2 )

d d da a d d c
d d

α α σ α σ α σ
σ σ σ σ

− − −
= ± = = = −  

So we obtain the following trigonometric function solutions: 

0 0
2 2( ) {tan[2 ( ) ] | sec[2 ( ) ]|},

4 4nu t n t c n t cπ α π αα σ ζ σ ζ
σ σ σ σ

=± + + + + + + + (3.12) 

0 0
2 2( ) {tan[2 ( ) ] | sec[2 ( ) ]|},

4 4nu t n t c n t cπ α π αα σ ζ σ ζ
σ σ σ σ

=± − − + + + − − + + (3.13) 

where 0c  is an arbitrary constant, and 
2

1 1 1
1 0

1 1

2 sin (2 ) 2 cos(2 ) 2 (cos(2 ) 1)( ) {tan[2 ( ) ]
sin(2 ) sin(2 )n

d d du t d n t c
d d

α α σ α σ α σσ ζ
σ σ σ σ

− − −
=± − + +

            1
1 0

1

2 (cos(2 ) 1)| sec[2 ( ) ]|},
sin(2 )

dd n t c
d

α σσ ζ
σ σ

−
+ − + +                                                  (3.14) 

where 1 0,d c  are arbitrary constants. 
Case 4: If 0σ = , and assume (2.4) and (2.8) hold, then substituting (3.5), 

(2.4) and (2.8) into Eq. (3.3), collecting the coefficients of 6 ( )i
nφ ξ and equating 

them to zero, we obtain a series of algebraic equations. Solving these equations, 
yields 

                                 1 1 0 1 1 1 1, 0, , 2 .a d a d d c dα α= ± = = =  

Then we obtain the following rational solution: 

1

1 1 0

( ) ,
2n

du t
d n d t c

α
α ζ

=±
+ + +

                                                        (3.15) 

where 1 0,d c  are arbitrary constants. 
 
Remark 1. We have obtained some exact solutions with more general forms than 
the known (G'/G)-expansion method for the discrete m-KdV lattice equation. In 
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fact, in the (G'/G)-expansion method, the solution ( )n nU ξ  is denoted by a 

polynomial in
' ( )( )
( )

n

n

G
G

ξ
ξ

, and ( )nG G ξ= satisfies 

'' ' 0,G G Gλ μ+ + =                                                                      (3.16) 

where  ,λ μ  are constants. If we let in Eq. (3.16)  
' 2( ) 4( ) , ,
( ) 2 4

n
n

n

G
G
ξ λ μ λφ ξ σ
ξ

−
=− − =  

then Eq. (3.16) can be turned into ' 2( ) ( )n nφ ξ σ φ ξ= + , which is the Riccati 

equation (2.4). So 
' ( )( )
( )

n

n

G
G

ξ
ξ

 can be expressed in ( )nφ ξ , and the solutions by the 

(G'/G)-expansion method can be expressed in those by the extended Riccati sub-
ODE method, which is to some extent in accordance with the analysis results in 
[23]. 
 
Remark 2. Our results (3.12)-(3.15) have not been reported by other authors so 
far to our best knowledge. 

4. Application of the extended Riccati sub-ODE method to the Toda 
lattice equation 

In this section, we will apply the extended Riccati sub-ODE method to the 
relativistic Toda lattice system [17]: 

 1

1 1 1

(1 )( )
,

( )

n n n n

n n n n n n

u u v v

v v u u v v

α

α α

−

+ + −

⎧ = + −⎪
⎨
⎪ = − + −⎩

i

i
                                           (4.1) 

where ( ), ( ),n n n nu u t v v t n Z= = ∈ . 
      Using a wave transformation 

               1 1( ), ( ), ,n n n n n n nu U v V d n c tξ ξ ξ ζ= = = + +                                         
where 1 1, ,d c ζ  are all constants, the system (4.1) can be rewritten as the following 
form: 

'
1 1

'
1 1 1 1

(1 )( )
( )

n n n n

n n n n n n

c U U V V
c V V U U V V

α
α α

−

+ + −

⎧ = + −
⎨

= − + −⎩
                                        (4.2) 

Suppose the solutions for (4.2) can be denoted by 
1

1
( ) ( ),

l
i

n n i n
i

U aξ φ ξ
=

=∑                                                        (4.3) 
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2

1
( ) ( ),

l
i

n n i n
i

V bξ φ ξ
=

=∑                                                         (4.4) 

where ( )nφ ξ satisfies Eq. (2.4). Balancing the order of '
nU  and n nU V in Eq. (4.3), 

and the order of '
nV  and n nV U in Eq. (4.4), we obtain 1 2 1l l= = . So we have 

0 1( ) ( ).n n nU a aξ φ ξ= +                                                                (4.5) 

0 1( ) ( ).n n nV b bξ φ ξ= +                                                                 (4.6) 
Similar to Section 3, we will also proceed to solve Eqs. (4.2) in several cases. 

        Case 1: If 0σ < , and assume (2.4) and (2.5) hold, then substituting (4.5), 
(4.6), (2.4) and (2.5) into (4.2), collecting the coefficients of 1,2 ( )i

nφ ξ and equating 
them to zero, we obtain a series of algebraic equations. Solving these equations, 
yields 

       
2

0 1 0 0 1
1 0 1

tanh( ) 1 tanh( ), , ,b d b b da a cα σ σ α α σ σ
σ α σ

− − + − −
= = − = −  

                                        0 1
1 0 0 1 1

tanh( ) , , .b db b b d dσ σ
σ

− −
= − = =  

So we obtain the following solitary wave solutions: 
 

2
0 1 0

0 1 1 0

0 1
0 1 1 0 0

tanh( ) 1( ) tanh( )tanh[ ( ) ]
,

tanh( )( ) tanh( )tanh[ ( ) ]

n

n

b d bu t b d d n t c

b dv t b d d n t c b

α σ σ αα σ σ ζ
σ α

α σ σσ σ ζ
σ

⎧ − − +
= − − − + + −⎪⎪

⎨
− −⎪ =− − − − + + +⎪⎩

(4.7) 

or 
 

2
0 1 0

0 1 1 0

0 1
0 1 1 0 0

tanh( ) 1( ) tanh( )coth[ ( ) ]
,

tanh( )( ) tanh( )coth[ ( ) ]

n

n

b d bu t b d d n t c

b dv t b d d n t c b

α σ σ αα σ σ ζ
σ α

α σ σσ σ ζ
σ

⎧ − − +
= − − − + + −⎪⎪

⎨
− −⎪ = − − − − + + +⎪⎩

(4.8) 

where 1 0 0, ,d c b  are arbitrary constants. 
         Case 2: If 0σ > , and assume (2.4) and (2.6) hold, then substituting (4.5), 
(4.6), (2.4) and (2.6) into (4.2), collecting the coefficients of 3,4 ( )i

nφ ξ and equating 
them to zero, we obtain a series of algebraic equations. Solving these equations, 
yields 

2
0 1 0 0 1

1 0 1
tan( ) 1 tan( ), , ,b d b b da a cα σ α α σ

ασ σ
+

=− =− =   0 1
1 0 0 1 1

tan( ) , , .b db b b d dσ
σ

= = =  

So we obtain the following solitary wave solutions: 
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2
0 1 0

0 1 1 0

0 1
0 1 1 0 0

tanh( ) 1( ) tan( ) tan[ ( ) ]
,

tanh( )( ) tan( ) tan[ ( ) ]

n

n

b d bu t b d d n t c

b dv t b d d n t c b

α σ αα σ σ ζ
ασ

α σσ σ ζ
σ

⎧ − +
= − + + + −⎪

⎪
⎨

−⎪ = − + + + +⎪⎩

  (4.9) 

or 
2

0 1 0
0 1 1 0

0 1
0 1 1 0 0

tanh( ) 1( ) tan( ) cot[ ( ) ]
,

tanh( )( ) tan( ) cot[ ( ) ]

n

n

b d bu t b d d n t c

b dv t b d d n t c b

α σ αα σ σ ζ
ασ

α σσ σ ζ
σ

⎧ − +
= + + + −⎪

⎪
⎨

−⎪ = − − + + + +⎪⎩

             (4.10) 

where 1 0 0, ,d c b  are arbitrary constants. 
Case 3: If 0σ > , and assume (2.4) and (2.7) hold, then substituting (4.5), 

(4.6), (2.4) and (2.7) into (4.2), using (2) 2 (1) 2
5 5[ ( )] [ ( )]n nφ ξ σ φ ξ= + , collecting the 

coefficients of (1) (2)
5 5[ ( )] [ ( )]i j

n nφ ξ φ ξ and equating them to zero, we obtain a series 
of algebraic equations. Solving these equations, we get three families of values as 
follows: 

1 1 0 1 1 0 1 1 1
1, , , 0, , ,

2
a b a b b b d c bπα α

α σ
= − = − = = = =  

                                        
2

1
1 1 0 1 1 0 1 1 1 1, , , , , ,

4
ba b a b b b b c b dα σ σ πα σ α
σα σ
+

= − = = = ± = = ±∓  

or 
2

1 0 0
1 0 1 1 0 0 1 1 12 2

0 1

2 11 arcsin( ), , , , , .
2 2

b b ba a b b b b c b d
b b

σ α πα
σ ασ σ

+
= = − = = = =

+
 

So we obtain the following trigonometric function solutions: 

1 1 0 1 0

1 1 0 1 0

1( ) {tan[2 ( ) ] | sec[2 ( ) ] |}
2 2 ,

( ) {tan[2 ( ) ] | sec[2 ( ) ] |}
2 2

n

n

u t b n b t c n b t c

v t b n b t c n b t c

π πα σ σ α ζ σ α ζ
ασ σ

π πσ σ α ζ σ α ζ
σ σ

⎧ = − + + + + + + + −⎪⎪
⎨
⎪ = + + + + + + +
⎪⎩

 (4.11) 

2
1

1 1 0 1 0

1 1 0 1 0 1

( ) {tan[2 ( ) ] |sec[2 ( ) ]|}
4 4 ,

( ) {tan[2 ( ) ] | sec[2 ( ) ]|}
4 4

n

n

bu t b n b t c n b t c

v t b n b t c n b t c b

α σ σπ πα σ σ α ζ σ α ζ
σ σ σα
π πσ σ α ζ σ α ζ σ
σ σ

⎧ +
=− ± + + + + ± + + +⎪⎪

⎨
⎪ = ± + + + + ± + + + ±⎪⎩

∓
 (4.12) 

where 1 0,b c  are arbitrary constants, and 
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1 0
1 02 2

0 1
2

0
1 0

1 1 0

1 0 0

21( ) arcsin( ){tan[2 ( ) ]
2 2

1| sec[2 ( ) ] |}
2 ,
( ) { tan[2 ( ) ]

2

| sec[2 ( ) ] |}
2

n

n

b bu t n b t c
b b

bn b t c

v t b n b t c

n b t c b

σ πσ α ζ
σσ σ

απσ α ζ
ασ

πσ α ζ
σ

πσ α ζ
σ

⎧
= + + +⎪ +⎪

⎪ +
⎪+ + + + −
⎪
⎨
⎪ = + + +⎪
⎪
⎪ + + + + +⎪⎩

                (4.13) 

where 1 0 0, ,b c b  are arbitrary constants. 
       Case 4: If 0σ = , and assume (2.4) and (2.8) hold, then substituting (4.5), 
(4.6), (2.4) and (2.8) into (4.2), collecting the coefficients of 6 ( )i

nφ ξ  and equating 
them to zero, we obtain a series of algebraic equations. Solving these equations, 
yields 

2
0

1 0 1 0 1 1 0 0 0 1 1 1 0 1
1, , , , , .ba b d a b d b b b d d c b dαα α

α
+

= − = − = = = =  

Then we obtain the following rational solutions: 
2

0 1 0

1 0 1 0

0 1
0

1 0 1 0

1( )
,

( )

n

n

b d bu t
d n b d t c

b dv t b
d n b d t c

α α
α ζ α

α ζ

⎧ +
= −⎪ + + +⎪

⎨
−⎪ = +

⎪ + + +⎩

                                                         (4.14) 

 
Remark 3. Our results (4.7)-(4.14) are new exact solutions for the Toda lattice 
system, and have not been reported by other authors so far to our best knowledge. 

5. Conclusions 

We have proposed an extended Riccati sub-ODE method for solving 
nonlinear differential-difference equations, and applied it to find exact solutions 
of the discrete m-KdV lattice equation and the Toda lattice system. As a result, 
some generalized exact solutions and solitary wave solutions for them have been 
successfully found. For the discrete m-KdV lattice equation, we have also 
compared this method with the known (G'/G)-expansion method. Comparison 
results show that more exact solutions are obtained by the proposed method than 
by the (G'/G)-expansion method. 
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