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EXTENDED RICCATI SUB-ODE METHOD FOR
NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS

Bin Zheng'

In this paper, we propose an extended Riccati sub-ODE method to establish
new exact solutions for nonlinear differential-difference equations. As a result, new
exact solutions including hyperbolic function solutions, trigonometric function
solutions and rational solutions are obtained for two nonlinear differential-
difference equations, and some of them are generalizations of some known results in
the literature.
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1. Introduction

Nonlinear differential-difference equations (NDDEs) can find their
applications in many aspects of mathematical physics such as condensed matter
physics, biophysics, atomic chains, molecular crystals and quantum physics and
so on. Since the work of Fermi, Pasta and Ulam in the 1960s [1], NDDEs have
been the focus of many studies for nonlinear phenomena, and much attention have
been paid to the research of the theory of NDDEs during the last decades (for
example, see [2-10] and the references therein). Among these research works, the
investigation of exact solutions of nonlinear differential-difference equations
plays an important role in the study of nonlinear physical phenomena. As we all
know, it is hard to generalize one method for nonlinear differential equations to
solve NDDEs due to the difficulty to search for iterative relations from indices »
to n+1. Recently, the extensions of some effective methods have been presented
and applied for solving some NDDEs successfully in the literature. For example,
these methods include the known (G'/G)-expansion method [11-14], the exp-
function method [15], the exponential function rational expansion method [16-
17], the Jacobi elliptic function method [18-19], Hirota's bilinear method [20], the
extended simplest equation method [21], the tanh function method [22] and so on.

In this paper, we propose an extended Riccati sub-ODE method for solving
NDDEs, in which the iterative relations from indices n to n+1 are established. In
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Section 2, we give the description of the proposed method. Then in Section 3 and
4 we apply the method to solve two nonlinear differential-difference equations:
the discrete m-KdV lattice equation [12] and the Toda lattice system [17]. Some
Conclusions are presented at the end of the paper.

2. Description of the extended Riccati sub-ODE method

The main steps of the extended Riccati sub-ODE method for solving NDDEs
are summarized as follows:
Step 1. Consider a system of M polynomial NDDEs in the form

f)(un-%—pl (x)""’un+pA (x)""’un+[)1 (x)""’u}I’H-pA (x)""’z’lr(lz—)p1 (x)""’ufl:-)pA (x)) = 0’ (21)
where the dependent variable » has A components u,, the continuous variable
x has N components x; , the discrete variable » has O components »,, the k
shift vectors p, €Z° have Q components p, » and u) (x) denotes the

collection of mixed derivative terms of order r.
Step 2. Using a wave transformation

0 n 9 n
un+p‘ (x) = U}’H—pv (§n+p‘ )7 én = Zdini + chxj + ;’ g)ﬁ-pX = zdz (ni + psi) + chxj + é/’
i=1 j=1 i=1 j=1

where d,,c;,& are all constants, we can rewrite Eq. (2.1) in the following

nonlinear ODE:
P, Eop )l G Vool G ool (€ )0, (€U, (E,,,0)=0(2:2)
Step 3: Suppose the solutions of Eq. (2.2) can be denoted by

U, (&)= Za,-qﬁ" () (2.3)

where ¢°(&,) =1, a, are constants to be determined later, / is a positive integer

that can be determined by balancing the highest order linear term with the
nonlinear terms in Eq. (2.2), and ¢(&, ) satisfies the known Riccati equation:

¢ (&) =0+4"(,) (2.4)
Step 4: We present some special solutions ¢,,..., ¢, for Eq. (2.4):
When o <0:
(&) =—J-0 tanh(vV=c¢, +¢,), 4(&,) =—J/-0 coth(v=c¢, +¢,)
0
#,(£)—~-otanh(N-c Y d p,) @5
¢1'2 (ég“ps )= $,(&,) 2 .
1—fa”tanh(\/$; d.p,)
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where ¢, is an arbitrary constant.
When o > 0:

4,(&,) =No tan(Na &, +¢,), 4, (£,) = o cot(Na g, +¢,)
[
bo(&)+on(o Y dp,) | 2.6)

=
1- ¢3z1/(o‘-_fn) tan(\/g; d,p,)

¢3,4 (é:nﬂ,s ) =

and

(&) =Voltan(2/o&, +c,)+| sec(VoE, +,) ]
Y Y
¢é1>(5n)+£tan(2£;d,-pﬂ) ¢é2>(5n>sec(2£§d,-ps,.) @27)

(1) 0 + 1) 0
1—¢i/(_j”)tan(2\/g;di p.) 1—¢5\/(_j”)tan(2\/;;di ».)
where ¢® (£ ) =Jo tan(2Jo &, +¢,), 42 (£,) =Jo | sec(2Va &, +¢,) |, and ¢, is an

arbitrary constant.

#(Sp) =

When o =0
1
# (&) =~ T
' 2.8
$ (S, ) = &5 (f,b) 28)
1-4¢, (Sgn)Zdipsi

where ¢, is an arbitrary constant.

Step 5: Substituting (2.3) into Eq. (2.2), by use of Egs. (2.4)-(2.8), the left
hand side of Eq. (2.2) can be converted into a polynomial in ¢(¢,) . Equating each

coeffcient of ¢'(£,) to zero, yields a set of algebraic equations. Solving these
equations, we can obtain the values of a,,d,,c; .
Step 6: Substituting the values of g4, into (2.3), and combining with the

various solutions of Eq. (2.4), we can obtain a variety of exact solutions for Eq.
(2.2).
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2. Application of the extended Riccati sub-ODE method to the discrete
m-KdV lattice equation

In this section, we will apply the extended Riccati sub-ODE method to the
discrete m-KdV lattice equation [12]:

un(t) = (a _uj)(unu —u, ), (3.1)
where u, =u, (t),neZ.
Using a wave transformation
u,=U,(&).& =dn+ct+¢, (3.2)
where d;,¢;,¢ are all constants, Eq. (3.1) can be rewritten in the following
ODE:

clUrly —(a- U:)(UrHl -U,,)=0. (3.3)
Suppose the solutions U, (&) for Eq. (3.3) can be denoted by
/ .
Un (én) = zai¢l (gn)’ (34)
i=0

where ¢(&,) satisfies Eq. (2.4). Balancing the order of U, and U’ in Eq. (3.3) we
obtain /+1=2/, and then /=1. So we have

U,(S,) =ay, +ag(S,). (3.5)
We will proceed to solve Eq. (3.3) in several cases.
Case 1: If 0 <0, and assume (2.4) and (2.5) hold, then substituting (3.5),

(2.4) and (2.5) into Eq. (3.3), collecting the coefficients of ¢,(&,)and equating
them to zero, we obtain a series of algebraic equations:

(al) : ¢, tanh? (v—=od,) - 2a*-o tanh(v-od,) = 0,

(a2) : —4—o tanh(~=cd,)a,a, =0,

(a3): c,otanh?(V=cd,) + c,o + 24/ tanh(v=cd,) o — 2(~0)* tanh(v-cd, )a?
—2y/-o tanh(/=od,)a? =0,

(ad) : 4(-0)? tanh(v-od,)a,a, =0,

.o(¢o cosh(v—od,) + 2y—o sinh(v—od))a — 27/~ sinh(v'-od,)a5) _

cosh(v-od,) 0

(a5)

Solving these equations, yields

a, =+, /—Z tanh(v-od,),a,=0,d, =d,,c, = 2—Oltanh(\/—O'a’l).
o \N-o

So we obtain the following solitary wave solutions:
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u, (t) = +Ja tanh(v—od,) tanh[v—o (d,n +
and

u, () = +va tanh(v-od,) coth[v—o (dyn +——

\/_
where d,,c, are arbitrary constants.
Case 2: If >0, and assume (2.4) and (2.6) hold, then substituting (3.5),
(2.4) and (2.6) into Eq. (3.3), collecting the coefficients of ¢;,(£,)and equating

them to zero, we obtain a series of algebraic equations:
(b1) : —c, tan’(Nod,) + 2Jo tan(/od,)a? =0,
(b2) : 4o tan(od,)a,a, =0,
(b3) 1 —c,otan?(Vod,) + ¢,o — 2\o tan(Nod,)a + 26 tan(v/o d, ) a?
+23Jo tan(\od,)a? =0,
(b4) : 4o” tan(Nod,)a,a, =0,
o(¢,ocos(\od,) -2\ sin(od,)a + 24/o sinh(Vod,)a?)
cos(x/gdl)

rtanh(J_ od)t+¢)+¢,], (3.6)

2 tanh(V=cd)t+&) +¢,], (3.7)

=0.

(b5):

Solving these equations, yields

2a

—tan(vod,).
/O_ 1

Then we have the following trigonometric function solutions:

u (1) = +a tan(Jord,) tan[/o (d,n + ZTatan(\/Edl)t +O) el (3.8)
(o2

a = i\/gtan(\/;dl), a,=0,d, =d,,c, =

and

u, () = +va tan(od,) cot[o (d1n+ 2 tan(Jod,)t+¢) +c,], (3.9)

-

where d,, ¢, are arbitrary constants.

In [12, Egs. (32) and (36)], Ayhan and Bekir presented some exact solutions
for m-KdV lattice equation by the (G /G) expansion method as follows

\/7 G, smh(" E)+C, cosh(“ § )
u, =+~or tanh( d,)( \/_ \/_
C, cosh(-—— 4u &)+ C,sinh(-—— ’u

) (3.10)
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where & =dn+[ da tanh(“ d)]t+§ and

VA —au
10— 12 —Clsm(“ én)+C cos("4'u_/12 &)

=+ tan(EL ) 2 ), (3.12)

2 JAu

§)+C sm(“‘w_/12 £)

C,cos(-——¢, i

where & =dn+[ 4a tan(“ d)]t+§

\/4,u—/12
We note that our results (3.6) and (3.8) are solutions of more general forms
_ 72
than Egs. (3.10) and (3.11). In fact, if we let cozarth(%),az# or
1

4;1 A?

IR —arcoth(F) , then our result (3.6) reduces to (3.10). If we let

2

Au—A° bu— N7

C C,
¢, =arctan(——%),0 = or ¢, = arccot(——L%),0 = , then our result
C, C

1 2

(3.8) reduces to (3.11).
Case 3: If o >0, and assume (2.4) and (2.7) hold, then substituting (3.6),

(2.4) and (2.7) into Eq. (3.4), using [¢ ()] =o+[4" (&), collecting the
coeffici-ents of [ (&)]'[4” (£,)) and equating them to zero, we obtain a series
of alge-braic equations:
() : —2¢, + & o sin@od))a? +2¢, cos? (2N od) + 4o sin@od,)a? cos(2od,) =0,
(c2): 4o sin(2Vod,))aa, cos(2\od) + 4o sin(Nod,)aa, =0,
(c3): 407 sin(2od))aa, cos(2Nod,) + 4o sin(2od,)a,a, =0,
(cd):—2Joasin(od ) cos(2Vod,) + (¢, + 4Jod sin@od,) + ¢, cos* (2 od,)
+2Josin(Vod,)d? cos(Nod,))o +4c” sin(2od,)a? cos(2ad,))
+3¢,0¢052 (2o d,) — .o+ 2o sin(2od,)a? cos(2Vad,)) =0,
(c5) 1 207 sin(2Jod))d? + 2o sin(2Vod) a2 — 2o sin@Vod))a
+4o7 sin(2y/od,)a? cos(2Nod,) + 2¢,0 cos? (2N/od,) =0,
(c6): ;07 cos? (AN od,) + 207 sin(2\od, )a? cos(2Nod,) - 267 sin(2\od, ) o cos(2/od,)
+(20° sin(2\od,)a? cos(2\/od,) + ¢,o cos? (2N od,))o =0
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(c7): 40 sin(2od,)a,a, cos(2od,) =O0.
Solving these equations, we get three families of values as follows:

a T 2a
a =J_r,/—,a =0,d, =——F,¢, =———,
1 o 0 1 4\/5 1 \/g
a Vi 2
a =J_r,/—,a =0,d, =——,¢c, =—,
1 o 0 1 4\/5 1 \/g

or

\/Za osin® (o) -2acos@od) o 2alcos2od)-])
Josin@2Jod,) TR Aas Josin@2Jod,)

So we obtain the followmg trlgonometric function solutions:

u () = teftan[2V o (— = e \/_t+4’)+co]+|sec[2\/_ o(—= e \/_t+§)+co]|} (3.12)

u (1) =/ a{tan 2x/g' —————n——=1t+{)+¢ +SeCZ\/;——n——t+ +c ][}, (3.13
,(0) {[(46£470]|[(4\F0J;§)o]|}()
where ¢, is an arbitrary constant, and

20— arsin® (2 od,) - 2cccos(2\od,)

2a(cos(2od,) 1)

u (f)=+ Toonlod) {tan[2J/o (dn Toinlod) 1+0)+¢)]
+|sec2or(dn 203%"?5(5%;;1)”@ el (3.14)

where d,,c, are arbitrary constants.

Case 4: Ifo =0, and assume (2.4) and (2.8) hold, then substituting (3.5),
(2.4) and (2.8) into Eq. (3.3), collecting the coefficients of ¢;(&,) and equating
them to zero, we obtain a series of algebraic equations. Solving these equations,
yields

a, =tJad,,a,=0,d, =d,,c, =2da.
Then we obtain the following rational solution:

0 (f)=+ Joad, (3.15)
din+2d,ot +¢ +c,

where d,,c, are arbitrary constants.

Remark 1. We have obtained some exact solutions with more general forms than
the known (G'/G)-expansion method for the discrete m-KdV lattice equation. In
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fact, in the (G'/G)-expansion method, the solution U, (&) is denoted by a

polynomial in (%), and G =G(&,)satisfies

n

G"+AG'+ uG =0, (3.16)
. G() A du—7
where A, are constants. If we let in Eq. (3.16) e =—H(E)——, =0,
G(8) 2 4
then Eq. (3.16) can be turned into ¢ (&) =o +¢*(£,), which is the Riccati

equation (2.4). So (%5:”))) can be expressed in ¢(&,), and the solutions by the

n

(G'/G)-expansion method can be expressed in those by the extended Riccati sub-
ODE method, which is to some extent in accordance with the analysis results in
[23].

Remark 2. Our results (3.12)-(3.15) have not been reported by other authors so
far to our best knowledge.

4. Application of the extended Riccati sub-ODE method to the Toda
lattice equation

In this section, we will apply the extended Riccati sub-ODE method to the
relativistic Toda lattice system [17]:

| u,=1+au,)v,-v,,) 1 1)
Vn = Vn (un+l - un + aerl - avn—l)
where u, =u, (t),v, =v, (t),neZ.
Using a wave transformation
u, =U, (&), =V,(5,).¢, =dn+ct+C,
where d,,c;,¢ are all constants, the system (4.1) can be rewritten as the following
form:
{ U, =@+aU )0, ~V,.) 42)
o, =V,(U,,-U,+aV, -aV, )

n+l n+l
Suppose the solutions for (4.2) can be denoted by

U.(E) =2 ad' ) 43)
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AT (@4

where ¢(&,) satisfies Eq. (2.4). Balancing the order of U, and U, V,in Eq. (4.3),

and the order of ¥, and VU, in Eq. (4.4), we obtain /, =1, =1. So we have
U,(8,)=a, +aé(s,). (4.5)
V.(6,) = by +bg(S,). (4.6)

Similar to Section 3, we will also proceed to solve Egs. (4.2) in several cases.
Case 1. If 0<0, and assume (2.4) and (2.5) hold, then substituting (4.5),

(4.6), (2.4) and (2.5) into (4.2), collecting the coefficients of ¢/, (<,)and equating
them to zero, we obtain a series of algebraic equations. Solving these equations,

yields
o= ab,N—o tanh(v-od,) 0 = bya’® +1 . abyN—o tanh(v-od,)
- WUy =TT =- 3

1 1
a
_byN-otanh(v-od,)
o

o (o3

b = by =by,d, =d,.

So we obtain the following solitary wave solutions:

_b0a2 +1

abN—otanh(\—od)) )
(o2
ab~N-o tanh(v-od))

u (1) = oy, tanh(v—od, ) tanh[\'—o (d,n +6,]

,(4.7)

v, (£) =—b, tanh(v/—od, ) tanh[\/—o (d,n

t+4)+c,]+b,
or
b+l
@ (4.8)

t+4)+c,]+b,

ab,N—-o tanh(v-od,)
o

u, (£) = ab, tanh(v'-o'd,) coth[v/—o (d,n — 1+)+¢]

abyN-o tanh(v-od))
(o2

v, (1) =—b, tanh(N'—od,) coth[v—c (d,n —

where d,, c,,b, are arbitrary constants.
Case 2: Ifo>0, and assume (2.4) and (2.6) hold, then substituting (4.5),
(4.6), (2.4) and (2.6) into (4.2), collecting the coefficients of ¢;,(¢,)and equating
them to zero, we obtain a series of algebraic equations. Solving these equations,
yields
_ aptn(Wod)  hP+l  aptan(Jod) | htan(od,)
7 Y = R =

So we obtain the following solitary wave solutions:

by =byd,=d,.
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_ 2
(1) =—ab, | A 0 AV +co—a
u (t) = —ab, tan(Nord, ) tan[</o (d.n + 22 ta”? D i ryre]-or L
(o2 (04
, (4.9
ab, tanh(v-od
()=, A —-o(d, 0 i +¢,]+ b,
v (1) = b, tan(ord,) tan[N—o (d.n + f_ DY re]4h
(o2
or
u, () = ab, tan(\/Edl)cot[\/E(dln+% ““’dl)H;) O]—b o 41 (4.10)
(o2 .
. () = —b, tan(JJod,) cot[N=o (d,n + % V=0h) , \ £y s e ]+ b,
(o2

where d,,c,,b, are arbitrary constants.

Case 3: If o >0, and assume (2.4) and (2.7) hold, then substituting (4.5),
(4.6), (2.4) and (2.7) into (4.2), using [4? (&)1 = o +[¢" (&), collecting the
coefficients of [¢ (&) [4? (£,)] and equating them to zero, we obtain a series

of algebraic equations. Solving these equations, we get three families of values as
follows:

1 V4
al=—bla,a0=—5,b1=bl,bo=0,dl=m,cl=bla,
2
bo +
alz—bla,ao:J—raj‘?T\/;,blzbl,bo:ibl\/;,clzbla,dl:idrj/rg,
or
1 _ 2bby~o a’by+1 z
al:zﬁarCSIn(bz = ), a :—+,b1=b1,bo=b0,c1=b1a,d1=ﬁ.

So we obtain the following trigonometric function solutions:
u (1) =—baoftan[2Vo (—— T n+bat+¢)+c | sec[ 2o (——

v, (£) = b o {tan[2Jo (—— \/_n+b1m+g)+co]+|sec[2f o(——

n+bat+4)+¢] |}—l

NE @ (4.11)
o n+boat+8)+¢] [}
a2b10'+x/_

u ()= _gﬁa\/;{tan[zf (+Tn+blat+§)+co]+lsec[2\/_ (+Tﬂ+blaf +O)+ollF—F—— Jou (4.12)

v, () = often[2o(E——n+hat + Q)+ | selNo(t—=n+hat + ) +¢ ] 1ho

e

where b, ¢, are arbitrary constants, and

2o
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u, (1) = J_arcsun(b */_){t n[2vo (—— \/_n+bat+§)+c0]
O
+|Sec[2x/;(#n+b1at+g“)+c0]|}— d 1’;” (4.13)

v (1) = bl{tan[Z\/g(zj;_ n+bat+ )+,

v
+|sec[2\/;(2\/o__

where b, c,, b, are arbitrary constants.
Case 4: If 0=0, and assume (2.4) and (2.8) hold, then substituting (4.5),
(4.6), (2.4) and (2.8) into (4.2), collecting the coefficients of #;(¢,) and equating

them to zero, we obtain a series of algebraic equations. Solving these equations,
yields

n+bat+)+c,l1}+ b,

by’ +1

a, =—abyd,, a, = — b, =dby b, =by,d, =d,,c, = abyd,.

Then we obtain the following rational solutions:

2
() = ab,d, _ha'+l
din+abydt+¢ +c, a (4.14)
nO=——
dn+abydt+¢ +c,

Remark 3. Our results (4.7)-(4.14) are new exact solutions for the Toda lattice
system, and have not been reported by other authors so far to our best knowledge.

5. Conclusions

We have proposed an extended Riccati sub-ODE method for solving
nonlinear differential-difference equations, and applied it to find exact solutions
of the discrete m-KdV lattice equation and the Toda lattice system. As a result,
some generalized exact solutions and solitary wave solutions for them have been
successfully found. For the discrete m-KdV lattice equation, we have also
compared this method with the known (G'/G)-expansion method. Comparison
results show that more exact solutions are obtained by the proposed method than
by the (G'/G)-expansion method.
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