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ANALYSIS OF SCIENTIFIC COMPUTING ALGORITHMS
UNDER DIFFERENT NUMBER REPRESENTATION

SYSTEMS

S, tefan-Dan Cioĉırlan, Radu-Georgian Soare, Nicolae T, ăpus, , Ebru Resul,
Răzvan-Victor Rughinis,3

Scientific computing-based applications need a high load of compu-
tations. These computations are closely linked to the number representation
system (NRS). A benchmark for decimal accuracy, storage space, compu-
tation time and energy consumption using multiple NRSs is needed for the
base scientific computing algorithms. Eleven NRSs were evaluated under
four types of benchmarks: matrix multiplication, solving a linear system of
equations using the gradient conjugate method, integral calculation using
Simpson’s formula and N-body simulation. The results validate the posit
”golden zone” and offer a perspective on different NRSs accuracy related
to input ranges. IEEE754 performed well regarding decimal accuracy in all
four benchmarks (top 3).

Keywords: Number representation systems, IEEE754, Scientific Comput-
ing, N-body, Posit

1. Introduction

Scientific computing is an interdisciplinary field that combines technolo-
gies such as computer science and data science and it is used in physics, math-
ematics, and biology. Physical phenomena are modelled, simulations are run
and the data obtained is computed mathematically and statistically to reach
the optimal parameters of a system or to be able to make predictions about
the evolution of a phenomenon. This comes in handy when solving a problem
that cannot be determined experimentally (e.g. evolution of the weather), the
task is too dangerous (e.g. classification of toxic chemical elements), or when
simulations that do not allow physical trial and error are needed to get to an
optimal result (e.g. designing a satellite).

Regardless of the field from which the problem comes, it can be reduced
to numbers and operations. The scope is to have values with the best preci-
sion to obtain measurements and results as accurate as possible. For a long
time, the impediment to scientific computing was the limited computing power
available to scientists. With the exponential increase in computing power,
the bottleneck moved toward the accuracy with which the computers can per-
form computations and how much their energy consumption is for doing them.
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IEEE754 is the standard for the last 37 years. At this time, academics and
engineers had asserted its effectiveness and had found out the use cases where
it under-performs.

John Gustafson analysed the IEEE754 [1] in his book [8] and he pro-
posed new number representation systems as alternatives. The academia and
industry did not queue to adapt the proposed NRSs: Unum type 1 and Unum
type 2. The next proposed NRS by Gustafson, Posit [12], is more familiar
with the IEEE754 standard and had higher success in adoption. Academics
started to analyse its attributes in different domains as artificial intelligence
[13, 3, 7, 4, 19], specific scientific computing applications [17, 18, 20], hard-
ware implementation [25, 10, 21, 11], digital signal processing [24, 14]. In
terms of low-precision IEEE754 has half-precision. Industry came with their
alternative NRSs: bfloat16 (Google [2]), TensorFloat-32 (NVIDIA [16]), fp24
(AMD), PXR24 (Pixar).

Currently, scientific computing is dominated by the IEEE754 standard.
For other NRSs, such as Posit, to be considered as a direct replacement, proper
research, and extensive testing are needed. The first step is to analyse where
a NRS is bringing improvements and where it under-performs compared to
the current standard. This article proposes a benchmark with base scientific
computing algorithms and analyses their performance under different NRSs.
The benchmarks use the Scala number representation systems software library
(NRS-SL) 1. The library offers the most diverse palette of NRSs with the
possibility of custom modifications in terms of sizes, in contrast with other
NRSs libraries: SoftPosit 2, sfpy 3, Flexfloat [23], GMP 4, FloPoCo [6].

Tested algorithms within the application were chosen from relevant fields
of scientific computing (mathematics and physics): matrix multiplication: one
of the most common operations in mathematics; Solving linear system of equa-
tions: implemented using the gradient conjugate method; definite integral
computing: implemented using the approximation based on Simpson’s rule;
N-body Simulation.

Eleven NRSs were used for evaluation under all of the above four al-
gorithms. The decimal accuracy, bit-wise size, and computation time were
considered. The Posit standard offered better accuracy in most cases. An
interesting finding is the performance of low-precision NRSs.

The presented article is structured in six sections. The first section ex-
plains the motivation, introduces the concepts of scientific computing, NRSs,
decimal accuracy and briefly presents the solution proposed. The second sec-
tion presents the terminology from the NRS-SL. In the third section, the im-
plementation of the four base scientific computing algorithms is found. The

1https://repsy.io/mvn/sdcioc/nrs/ro/upb.nrs
2https://gitlab.com/cerlane/SoftPosit
3https://pypi.org/project/sfpy/
4https://gmplib.org/
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methodology is given in the fourth section. In the fifth section, the results of
the benchmarks are discussed. The last section presents the conclusion and
the future work of the article.

2. Terminology

Since the field of scientific computing has grown, the problem of optimiz-
ing the models used has arisen and one of the directions that development is
now focusing on is the NRS used by models. There is a need for comparing the
other NRSs with the current standard. There are multiple libraries that offer
a diversity of NRSs like SoftPosit, sfpy, Flexfloat [23], GMP, FloPoCo [6]. For
the current implementation, NRS-SL was chosen for its big palette of NRSs
and the possibility of custom sizes and attributes. Also, every time a NRS
will be added to the library the benchmarks for it can be run without writing
specific code. The library uses the next terminology for the name of the NRS:
precision, the existence of rounding and the mathematical set used. Precision
can be infinite (IP) or fixed (FP). A NRS can have rounding (R) or not (NR).
A NRS with rounding must also have set a rounding type. The NRS set can
be N (unsigned integers), Z (integers), Q (fractional numbers), FixedP (fixed-
point numbers), FloatP (floating point numbers, different from IEEE754 by
not having subnormals), IEEE754 (the current standard), and Posit. IEEE754
half-precision, bfloat, TensorFloat-32, AMD’s FP24 and PXR24 are considered
derived from IEEE754. Fixed precision is the arithmetic used in most of the
existing hardware and limits the binary size of the numbers usually to a value
range between 8 and 64 (mostly a power of 2). Infinite precision on the other
hand is a concept which states that the computations are only limited by
the available memory, so in theory, with an infinite amount of memory, using
this precision would translate to a result with the maximum accuracy possible
under the chosen NRS. FixedP, FloatP, IEEE754 and Posit are the same in
terms of accuracy in infinite precision. The n-order root, trigonometric, hy-
perbolic, logarithm, exponential and power functions are precise until a given
precision of iterations so infinite computation can be avoided if the result of
the operation is an irrational number (e.g.

√
2). There are also some number

representations which are derived from IEEE754 by changing the bit layout:
IEEE754 half-precision (5 exponent bits and 10 fraction bits), bfloat16 (8 ex-
ponent bits and 7 fraction bits), NVidia’s TensorFloat-32 (8 exponent bits and
10 fraction bits), AMD’s fp24 format (7 exponent bits and 16 fraction bits),
Pixar’s PXR24 format (8 exponent bits and 15 fraction bits).

3. Tested Algorithms

3.1. Matrix multiplication algorithm

We have two matrices: A of size NA×MA, B of size NB×MB ( MA = NB

) and we want to compute the result (C) of their multiplication.
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Algorithm 3.1 Matrix multiplication

Require: NA,MA, NB,MB, A,B
for i← 1 to NA do

for j ← 1 to MB do
Ci,j = 0
for k ← 1 to NB do

Ci,j+ = Ai,k ×Bk,j

end for
end for

end for
return C

3.2. Gradient conjugate method algorithm

The gradient conjugate method is an algorithm commonly used for a
particular type of linear systems, namely those that have positive definite ma-
trices. For solving a linear system of equations with this method the following
equation system needs to be solved:

Ax = b (1)

Where A - matrix of size N ×N , symmetric and positive definite, known; b -
column vector, known;x - column vector, the unknown system solution.

Algorithm 3.2 Gradient Conjugate Method [22]

Require: x0, A, b
r0 ← b− A x0

p0 ← r0
for k = 0, k ← k + 1, while k ≤ N do

αk ←
rTk ×rk

pTk ×A×pk
xk+1 ← xk + αk × pk
rk+1 ← rk − αk × A× pk

βk ←
rTk+1×rk+1

rTk ×rk

pk+1 ← rk+1 + βk × pk
end for
return xk+1

3.3. Integral calculation algorithm

To approximate the value of a definite integral, we chose to use Integra-
tion by Simpson’s formula. We want to approximate the value of the integral:∫ b

a

f(x) dx (2)
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Algorithm 3.3 Integration by Simpson’s formula [15]

Require: f, a, b
N ← 1000
h← b−a

N
s← f(a) + f(b)
for k ← 1 to N − 1 do

x← a+ h× k
if k is even then

s← s+ f(x)× 2
else if k is odd then

s← s+ f(x)× 4
end if

end for
s← s ∗ h

3
return s

3.4. N-Body simulation algorithm

N-Body simulation is done to observe how N particles are moving under
the influence of gravity and under the attraction force of the other particles,
tracking the evolution of their velocity and position in time. Assumptions:
the initial velocity and position of the particles are known, and acceleration is
uniform during an iteration.

vi+1 = vi + ax ×∆t − velocity change after an iteration (3)

pi+1 = pi + vi+1 ×∆t − position change after an iteration (4)

Fxy = G
mx ×my

r2xy
− newton’s law of universal gravitation (5)

Fx =
∑

y∈B−{x}

Fxy − total force acting on the body x (6)

4. Benchmarks methodology

The tests implement algorithms that solve problems often encountered
in scientific computing and numerical methods. The benchmarks evaluate the
number of exact decimals (decimal accuracy), decimal error, and computation
time. Every algorithm was implemented in such a way that it can be run using
any NRS implemented in the library. Firstly, the algorithm will run using the
reference NRS (one representation that is considered the absolute truth) so
that the other NRSs can be compared to it. Then every other NRS within the
library will be used by the same algorithm in the same conditions. With the
results calculated for every NRS, the metrics can be computed. Computation
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Algorithm 3.4 N-Body Simulation Algorithm

Require: N,M, p0, v0,m ▷ Number of particles, Number of iterations, initial
position of particles, initial velocity of particles, mass of particles
for i← 1 to M do

for j ← 1 to N do
Fi,j ← get total force(m, pi−1) ▷ Total force exerted on the jth

particle
ai,j ← Fi,j

mj

vi,j ← vi−1,j + ai,j × iteration time step ▷ Update velocity
pi,j ← pi−1,j + vi,j × iteration time step ▷ Update position

end for
end for

time is computed during the actual algorithm execution. Decimal error is
computed using the formula suggested in [9] to the detriment of absolute error
and relative error which were not considered relevant enough for this kind of
test:

decimal error = |log10
xcomputed

xexact
|

Where xexact is the value computed using the reference NRS and xcomputed is the
value obtained using the currently tested NRS. Decimal accuracy is computed
using the formula:

decimal accuracy = |log10 1
decimal error

|
Next, the general steps for every benchmark are presented: (1) random

input values are generated, except for Simpson’s Integration where the func-
tions are chosen and the a, b and N are set; (2) the algorithm is run under the
reference NRS (IP NR Q or FP R Q); (3) the algorithm is run under every
tested NRS and the results are converted to reference NRS. The decimal error
and decimal accuracy are computed.

For matrix multiply the specific steps are: (1) a list of randomly gener-
ated matrix pairs of type 64-bit IEEE754, size N ×N with values in the range
of [−10power, 10power] (where power is a number between 0 and max power);
(2) Every element of the result matrix is iterated and the decimal error and
decimal accuracy are computed with the same position element in the refer-
ence result matrix; (3) the average is computed on the decimal accuracy and
the decimal error matrices.

In the conjugate gradient method experiment the next steps are taken:
(1) a list of randomly generated tuples (A, b, x0) of type 64-bit IEEE754 with
values in the range of [0, 10power] (where power is a number between 0 and max
power); the next steps are similar to matrix multiply steps (2) and (3).

For Simpson’s Integration Rule first step (1) is to choose the functions,
the range [a, b] and the number of steps N . (2) A vector with the result for
every function is computed. With the tested NRS vector and reference NRS
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vector, two vectors for decimal accuracy and decimal error are computed. The
last step (3) is to add all the elements inside a vector.

In N-body simulation there are the next steps: (1) the number of par-
ticles is set, the number of iterations is set, the iteration time step is set,
a list of particles is randomly generated by initial position, initial velocity
and mass; (2) the next formula is used for computing ”normalised” velocity√

velocity.x2 + velocity.y2 using IP NR Q; (3) the decimal accuracy and dec-
imal error for every particle is computed. The average of the results is done;
(4) the euclidean distances between tested NRS and reference NRS velocities
are computed. The average of the results is done.

5. Results

For the below benchmarks, the next eleven NRSs were used: 32-bit
IEEE754 (8 bits exponent and 23 bits mantissa) called IEEE754, 32-bit Posit
(2 bits exponent) called Posit, 16-bit IEEE754 (5 bits exponent and 10 bits
mantissa) called half-IEEE754, 16-bit IEEE754 (8 bits exponent and 7 bits
mantissa) called bfloat16, 19-bit IEEE754 (8 bits exponent and 10 bits man-
tissa) called TF32, 24-bit IEEE754 (7 bits exponent and 16 bits mantissa)
called FP24, 24-bit IEEE754 (8 bits exponent and 15 bits mantissa) called
PXR24, 32-bit floating-point (8 bits exponent and 23 bits mantissa) called
FloatP, 32-bit fixed-point (15 bits integer and 16 bits fractional) called FixedP,
infinite precision fixed-point called IP NR FixedP, infinite precision floating-
point called IP NR FloatP. The rounding method used was rounding to the
nearest tie to even.

5.1. Matrix multiplication benchmark

For matrix multiplication benchmark the reference NRS is IP NR Q,
NA = NB = MA = MB = 3, MAX POWER = 8. Figure 1 confirms the

Figure 1. Decimal accuracy, decimal error and computation
time for matrix multiplication benchmark

existence of the Posit Golden Zone [5]. It can be seen that Posit has higher
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accuracy compared to the following most accurate representation when the
elements of the matrix are generated in the range [10−3, 103]. This means that
the resulting elements are in the range [10−6, 106] because in the worst case
two numbers of magnitude order 3 are multiplied. Another thing worth noting
is the comparison between the fixed-point and floating-point. FloatP cannot
be seen on the graph because it overlaps with IEEE754 which makes it the
representation with the second-best accuracy. On the other hand, FixedP ends
abruptly because after the values become excessively high it cannot represent
them so it returns not representable (NR). The good results obtained by
FloatP to the detriment of FixedP are related to the large number range from
which the input data was chosen which FloatP handles much better. In Figure
1, the half-IEEE754 overlaps with TF32 in the range [10−2, 102] even though
the first one uses 3 bits less than the second one. However, at one point half-
IEEE754 could no longer represent the values, so it returned NR. Regarding the
error, the values are inversely proportional to those of accuracy, which means
that high accuracy results in a low error. Regarding the computing time, there
are no significant differences between the representations even though we can
see FixedP as an outlier. That is explained by the fact that it returned NR
which means that from that point every operation would result in NR, so
no heavy computing was done. IP NR FloatP and IP NR FixedP were not
plotted on the chart because they obtained the same result as the reference
NRS, which implies that the accuracy was theoretically infinite and the error
was 0. This happens because the input is in 64-bit IEEE754 and this means
that in fractional NRS they are numbers with a denominator power of two.
If two of these numbers are multiplied, the result is also a number with a
denominator power of two.

5.2. Conjugate gradient method benchmark

For conjugate gradient method benchmark, the reference NRS is 1024-bit
FP R Q (512 bits integer nominator and 512 bits unsigned integer denomina-
tor), N = 5, MAX POWER = 3. Because multiple matrix multiplications are
executed on every iteration of the algorithm, the magnitude order of the values
used grows fast during the execution. This is the reason why high magnitude
order numbers were not generated as input. Again, the advantage of Posit
on small numbers can be noticed, but its disadvantage with large numbers
stands out even more in this test. It can be seen that it loses half of its ac-
curacy during the test which makes it even less accurate than PXR24 which
uses 8 bits less than Posit. TF32 shows a behaviour that is a little harder
to predetermine. After multiple iterations of the algorithms as can be seen
in the Figure 2, its accuracy does not seem to take into account the order of
the input values. It follows an irregular pattern that increases and decreases
with many exact decimals in general, although for a few runs it kept a con-
stant difference of one decimal. Regarding the time, the results were pretty
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Figure 2. Decimal accuracy, decimal error and computation
time for conjugate gradient method benchmark

predictable. IEEE754 and Posit need the most time, but they also produce
the most accurate results. Regardless of the number of bits used and the
accuracy obtained, the other NRSs had about the same running time range.
IP NR FloatP and IP NR FixedP were not plotted on the chart because they
return NR regardless of the order of the numbers used.

5.3. Simpson’s Integration benchmark

For Simpson’s integration benchmark the reference NRS is 1024-bit FP R Q
(512 bits integer nominator and 512 bits unsigned integer denominator) ,

N = 1000, [a, b] is [0, 10], and the functions are: x2, x3,
√
x, 3
√
x, 3

√
x2+

√
x

x+7
,

( 5
√
x2 + 34×x3)

3
4 . Being an algorithm that does not perform so many complex

Figure 3. Decimal accuracy and computation time for Simp-
son’s integration benchmark

calculations, the accuracy does not differ too much between the representa-
tions with the same number of bits (Figure 3 e.g. Posit, IEEE754, FloatP).
In this test, the computing time becomes relevant because it can be seen that
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even though those 3 NRSs using 32 bits got the same accuracy, the difference
in time strongly disadvantages Posit which runs for twice as long as IEEE754.

5.4. N-body simulation benchmark

For N-body simulation benchmark the reference NRS is 1024-bit FP R Q
(512 bits integer nominator and 512 bits unsigned integer denominator) ,
N = 5, M = 10, iteration time step = 1 (second), G = 6.67498 × 10−11.
Positions, velocities and mass were separated in two magnitude order ranges
(low and high). For high magnitude order range, positions x and y of every
particle are generated in the interval [−1011, 1011], velocities x and y of every
particle are generated in the interval [30, 5 × 106] and mass of every particle
is generated in the interval [1, 6× 105]. For low magnitude order range, posi-
tions x and y of every particle are generated in the interval 0, 104], velocities x
and y of every particle are generated in the interval [30, 50] and mass of every
particle is generated in the interval [10, 60]. Figure 4 suggests the superior-

Figure 4. Decimal accuracy fro N-body simulation benchmark

ity of Posit, by obtaining almost three more exact decimals than the current
standard IEEE754 and one more exact decimal than the second most accurate
NRS FixedP. However, the remarkable performance of Posit and FixedP can
be easily explained by the ranges from which the input data for each particle
were chosen. Small numbers for particle coordinates were chosen to have them
close enough to each other so that the attraction force between them is notice-
able. Using high magnitude order values (even outside of the Golden Zone)
made FixedP to return NR. Posit kept its high accuracy compared with the
other NRSs even though the values used were theoretically outside of its best
performance range.

6. Conclusion

In this current article, a benchmark for base scientific computing algo-
rithms under different NRSs was proposed. The benchmark used four types
of algorithms: matrix multiplication, solving a linear system of equations by
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gradient conjugate method, integration by Simpson’s formula, and N-body
simulation. The input of the algorithm was varied so the performance of all
eleven NRSs can be seen under different circumstances. The results of the
simulations offer a perspective of the trade-off between different NRSs.

The gold zone of Posit [5] is validated through all experiments. The
possibility of using IEEE754 half-precision in some specific cases where the
number range does not surpass its dynamic range is an interesting result. It
can be seen as a faster and more energy-efficient NRS solution for a scientific
computing application. If the developers desire a faster solution, fixed-point
NRS can be their option given the requirements offered in this article.

The replacement of the current standard with a new NRS might seem
necessary given the results presented. However, the lack of hardware imple-
mentation and the lack of industry adoption will delay the process.
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