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COMMON SOLUTION OF SPLIT EQUILIBRIUM PROBLEM AND

FIXED POINT PROBLEM WITH NO PRIOR KNOWLEDGE OF

OPERATOR NORM

H.A. Abass1, F.U. Ogbuisi2, O.T. Mewomo3

In this paper, we introduce an iterative algorithm that does not require any
knowledge of the operator norm for finding a common solution of split equilibrium prob-

lem and fixed point problem for infinite family of quasi-nonexpansive multi-valued map-
pings in real Hilbert spaces. Using our iterative algorithm, we state and prove a strong
convergence result for approximating a common solution of split equilibrium problem
and fixed point problem for infinite family of quasi-nonexpansive multi-valued mappings

which also solves some variational inequality problem in real Hilbert spaces. An appli-
cation and a numerical example were also given. Our result complement some related
results in literature.
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1. INTRODUCTION

Let H be a real Hilbert space and C a nonempty, closed and convex subset of H. Let
CB(C),K(C) and P (C) denote the families of nonempty closed and bounded subsets,
nonempty and compact subsets and nonempty proximinal subset of C respectively. The
Pompeiu Hausdorff metric on CB(C) is defined by

H(A,B) = max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
,

for all A,B ∈ CB(C) where d(x,B) = infb∈B ||x− b||.
A point p ∈ C is called a fixed point of a multi-valued mapping T, if p ∈ Tp. We denote the
set of fixed point of T by F(T).

Definition 1.1. A multivalued mapping T : C → CB(C) is said to be
(i) a contraction if there exists a constant k ∈ (0, 1) such that

H(Tx, Ty) ≤ k||x− y||, ∀ x, y ∈ C; (1)

(ii) nonexpansive if

H(Tx, Ty) ≤ ||x− y||, ∀ x, y ∈ C; (2)

(iii) quasi-nonexpansive if

H(Tx, Tp) ≤ ||x− p||, ∀ x ∈ C, p ∈ F (T ). (3)
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It is well-known that every nonexpansive multi-valued mapping T with F (T ) ̸= ∅ is quasi-
nonexpansive, but not all quasi-nonexpansive mapping are nonexpansive. (Check Example
(4.1) in [20] to see that the inclusion is proper).

Definition 1.2. A bounded linear operator D on H is called strongly positive if there exists
a constant α > 0 such that

⟨Dx, x⟩ ≥ α||x||2, ∀ x ∈ C.

Definition 1.3. A multi-valued mapping T : H → CB(H) is said to be demi-closed at the
origin if for any sequence {xn} ⊂ H such that xn converges weakly to x and d(xn, Txn) → 0,
we have x ∈ Tx.

Let C be a nonempty, closed and convex subset of a real Hilbert space H. For every point
x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

||x− PC(x)|| ≤ ||x− y||, ∀ y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a nonexpansive
mapping of H onto C and satisfies:

||PC(x)− PC(y)|| ≤ ⟨x− y, PC(x)− PC(y)⟩. (4)

Moreover, PC(x) is characterized by the following properties:

⟨x− PC(x), y − PC(x)⟩ ≤ 0, (5)

and

||x− y||2 ≥ ||x− PC(x)||2 + ||y − PC(x)||2, ∀ x ∈ H, y ∈ C. (6)

For all x, y ∈ H, it is well known that every nonexpansive operator T : H → H satisfies the
inequality below

⟨(x− T (x))− (y − T (y)), T (y)− T (x)⟩ ≤ 1

2
||(T (x)− x)− (T (y)− y)||2, (7)

and therefore, we have that for all x ∈ H and y ∈ F (T ).

⟨x− T (x), y − T (x)⟩ ≤ 1

2
||T (x)− x||2. (8)

Equilibrium problem was introduced by Blum and Oettli [1] and this problem have had
a great impact and influence in the development of several branches of pure and applied
sciences, (see [8],[14],[18],[27],[28], [29],[30],[31]).
Let H be a real Hilbert space and C a nonempty, closed and convex subsets of H . Let
F : C × C → R be a nonlinear bifunction, then the Equilibrum Problem (EP) is to find
x∗ ∈ C such that

F (x∗, y) ≥ 0, ∀ y ∈ C. (9)

For solving EP, let C be a nonempty, closed and convex subset of Hilbert space H and
F : C × C → R be a bifunction satisfying the following assumptions:
(L1) F (x, x) = 0, ∀ x ∈ C;
(L2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀x ∈ C;
(L3) for each x, y, z ∈ C, lim supt→0 F (tz + (1− t)x, y) ≤ F (x, y);
(L4) for each x ∈ C, y → F (x, y) is convex and lower semi-continuous.
Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀ y ∈ C. (10)

Assumptions (L1)-(L4) stated above was first used in [1].
In 2013, Kazmi and Rizvi [9] introduced and studied the following Split Equilibrium Problem
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(SEP):
Let H1 and H2 be two real Hilbert spaces and C and Q be nonempty closed and convex
subsets of H1 and H2 respectively. Let F1 : C × C → R, F2 : Q×Q → R be two nonlinear
bifunctions and A : H1 → H2 be a bounded linear operator, then the SEP is to find x∗ ∈ C
such that

F1(x
∗, x) ≥ 0, ∀ x ∈ C, (11)

and such that

y∗ = Ax∗ ∈ Q solves F2(y
∗, y) ≥ 0, ∀y ∈ Q. (12)

The inequalities (11) and (12) constitute a pair of equilibrium problems. The image y∗ =
Ax∗ of the solution of (11) in H1 under a given bounded linear operator A, is also the
solution of (12) in H2. We denote the solution set of (11) and (12) by EP (F1) and EP (F2)
respectively.
The solution set of SEP (11) and (12) is denoted by Θ :=

{
p ∈ EP (F1) : Ap ∈ EP (F2)

}
.

Recently, Kazmi and Rizvi [9] introduced the following iterative scheme to approximate a
common solution of SEP, a variational inequality problem and a fixed point problem for
nonexpansive mapping S in real Hilbert spaces.

un = TF1
rn (xn + γA∗(TF2

rn − I)Axn);

yn = Pc(un − λnDun);

xn+1 = αnv + βnxn + γnSyn;

(13)

where rn ⊂ (0,∞), λn ∈ (0, 2τ), D : C → H1 is a τ− inverse strongly monotone mapping
and {αn}, {βn}, {γn} are sequences in (0, 1). They proved a strong convergence result using
iterative algorithm (13)
Very recently, Deepho et al.[6] considered an iterative scheme to approximate a common
element of the set of solutions of split variational inclusion problem and the set of common
fixed point problem of a finite family of k-strictly pseudo-contractive nonself mappings. A
strong convergence theorem was established under suitable conditions, which also solves
some variational inequality problem in real Hilbert spaces. They denote the solution set of
the split variational inclusion problem by Γ and proved the following theorem.

Theorem 1.1. Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1 and Q ⊆ H2 be
nonempty, closed and convex subsets. Let A : H1 → H2 be a bounded linear operator and
D a strongly positive bounded linear operator on H1 with a coefficient τ > 0. Assume that
{Ti}Ni=1 : C → H1 is a finite family of ki− strict pseudo-contraction mappings such that
Υ := ∩N

i F (Ti) ∩ Γ ̸= ∅. Let f be a contraction mapping with a coefficient ρ ∈ (0, 1) and∑N
i=1 η

n
i = 1 for all n ≥ 0, for a given x0 ∈ C,αn, βn ∈ (0, 1) and 0 < τ < τ

ρ . Let {xn} be

a sequence generated as follows:
un = JB1

λ (xn + γA∗(JB2

λ − I)Axn),

yn = βnun + (1− βn)
∑N

i=1 η
n
i=1Tiun,

xn+1 = αnτf(xn) + (I − αnD)yn, n ≥ 1,

(14)

where λ > 0 and JBi

λ (i = 1, 2) is the resolvent of the maximal monotone mappings Bi(i =
1, 2) respectively. Suppose the following conditions are satisfied;
(C1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and

∑∞
n=1 |αn − αn−1| < ∞;

(C2) ki ≤ βn ≤ l < 1, lim∞
n=1 βn = l and

∑∞
n=1 |βn − βn−1| < ∞;

(C3)
∑∞

n=1

∑N
i=1 |η

(n)
i − η

(n−1)
i | < ∞.

Then the sequence {xn} generated by the iterative scheme converges strongly to q ∈ Υ which
solves the variational inequality ⟨(D − τf)q, q − p⟩ ≤ 0 ∀ p ∈ Υ.
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Also, Suantai et al. [24] introduced an iterative scheme for solving SEP and fixed point
problem of nonspreading multi-valued mappings in real Hilbert spaces and proved that a
modified Mann iteration converges weakly to a common solution of the considered problems.
Motivated by the works of Suantai et al. [24], Deepho et al. [6], Kazmi and Rizvi [9], we
introduce an iterative method that does not require any knowledge of the operator norm for
approximating a common solution of SEP (11)- (12) and fixed point problem of an infinite
family of quasi-nonexpansive multi-valued mappings.
Furthermore, we obtain a strong convergence theorem for approximating the common solu-
tion of SEP and fixed point problem for infinite family of quasi-nonexpansive multi-valued
mappings which also solves some variational inequality problem in real Hilbert spaces. The
result presented in this paper improves and complements some recent corresponding known
results in this research area (see [6]).

2. PRELIMINARIES

In this section, we state some well known results which will be used in the sequel. Through-
out this paper, we denote the weak and strong convergence of a sequence {xn} to a point
x ∈ H by xn ⇀ x and xn → x respectively.
Let H be a real Hilbert space, then the following inequalities hold

||u− v||2 = ||u||2 − ||v||2 − 2⟨u− v, v⟩, (15)

||u+ v||2 ≤ ||u||2 + 2⟨v, u+ v⟩, (16)

and

||λu+ (1− λ)v||2 = λ||u||2 + (1− λ)||v||2 − λ(1− λ)||u− v||2, (17)

for all u, v ∈ H and λ ∈ [0, 1].

Lemma 2.1. [5] Let C be a nonempty, closed and convex subset of a real Hilbert space H
and F : C × C → R be a bifunction satisfying (L1)− (L4). For r > 0 and x ∈ H, define a
mapping TF

r : H → C as follows:

TF
r x =

{
z ∈ C : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then the following hold:
(i) TF

r is nonempty and single-valued;
(ii) TF

r is firmly nonexpansive, that is ∀ x, y ∈ H,

||TF
r x− TF

r y||2 ≤ ⟨TF
r x− TF

r y, x− y⟩;

(iii) F (TF
r ) = EP (F );

(iv) EP (F ) is closed and convex.

Lemma 2.2. [13] Assume D is a strongly positive bounded linear operator on a Hilbert space
H with a coefficient τ > 0 and 0 < µ < ||D||−1. Then ||I − µD|| ≤ 1− µτ.

Lemma 2.3. [19] Every Hilbert space H satisfies the Opial condition that is, for any se-
quence {xn} with xn ⇀ x, the inequality lim infn→∞ ||xn−x|| < lim infn→∞ ||xn− y||, holds
for every y ∈ H with y ̸= x.

Lemma 2.4. [26] Assume {an} is a sequence of nonnegative real sequence such that

an+1 ≤ (1− σn)an + σnδn, n > 0,

where {σn} is a sequence in (0, 1) and {δn} is a real sequence such that
(i)

∑∞
n=1 σn = ∞,
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(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=1 |σnδn| < ∞.
Then limn→∞ an = 0.

Lemma 2.5. [13] Let C be a nonempty, closed and convex subset of a Hilbert space H.
Assume that f : C → C is a contraction with coefficient µ ∈ (0, 1) and D is a strongly
positive linear bounded operator with a coefficient σ > 0. Then, for 0 < σ < σ

µ ,

⟨x− y, (D − σf)x− (D − σf)y⟩ ≥ (σ − σµ)||x− y||2, x, y ∈ H.

That is, D − σf is strongly monotone with coefficient σ − σµ.

Lemma 2.6. [3] Let E be a uniformly convex real Banach space. For arbitrary r > 0, let
Br(0) := {x ∈ E : ||x|| ≤ r}. Then, for any given sequence {xi}∞i=1 ⊂ Br(0) and for any
given sequence {λi}∞i=1 of positive numbers such that

∑∞
i=1 λi = 1, there exists a continuous

strictly increasing convex function

g : [0, 2r] → R, g(0) = 0,

such that for any positive integers i, j with i < j, the following inequality holds:

||
∞∑
i=1

λixi||2 =

∞∑
i=1

λi||x||2 − λiλjg(||xi − xj ||).

Lemma 2.7. [11](Demiclosedness principle) Let C be a nonempty, closed and convex subset
of a real Hilbert space H and T : C → K(C) be a quasi-nonexpansive multi-valued mapping
. Let {xn} be a sequence in C such that xn ⇀ p and limn→∞ d(xn, Txn) = 0, then p ∈ Tp.

3. MAIN RESULT

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces, C and Q be nonempty, closed and
convex subsets of H1 and H2 respectively. Let A : H1 → H2 be a bounded linear operator
and D be a strongly positive bounded linear operator on H1 with coefficient τ > 0. Let Ti :
C → K(C), i = 1, 2, 3, ..., be an infinite family of quasi-nonexpansive multi-valued mappings
and F1 : C × C → R, F2 : Q × Q → R be bifunctions satisfying assumptions (L1) − (L4),
where F2 is upper semi-continuous in the first argument. Suppose Γ := ∩∞

i=1F (Ti) ∩ Θ ̸= ∅
and f is a contraction mapping with coefficient µ ∈ (0, 1). Let the sequences {un}, {yn} and
{xn} be generated by 

un = TF1
rn (xn + ξnA

∗(TF2
rn − I)Axn);

yn = λ0un +
∑∞

i=1 λiz
i
n;

xn+1 = γnτf(xn) + (I − γnD)yn, n ≥ 1;

(18)

where zin ∈ Tiun, rn ⊂ (0,∞) and the step size ξn be chosen in such a way that for
some ε > 0,

ξn ∈
(
ε,

||(TF2
rn − I)Axn||2

||A∗(TF2
rn − I)Axn||2

− ε

)
,

for all TF2
rn Axn ̸= Axn and ξn = ξ otherwise (ξ being any nonnegative real number)with the

sequences γn and rn satisfying the following conditions;
(i) limn→∞ γn = 0 and

∑∞
n=1 γn = ∞;

(ii) γn ∈ (0, 1), 0 < τ < τ
µ and 0 < γn < 2µ;

(iii) lim infn→∞ rn > 0;
(iv) λ0, λi ∈ (0, 1) such that

∑∞
i=0 λi = 1. Then the sequence {xn} generated by (3.1)

converges strongly to q ∈ Γ which solves the variational inequality

⟨(D − τf)q, q − p⟩ ≤ 0, ∀ p ∈ Γ.
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Proof. We first show that {xn} is bounded. For any x, y ∈ C, we need to show that I − γD
is nonexpansive.
Now since 2µ > γn, we have

||(I − γnD)x− (I − γnD)y||2 = ||(x− y)− γn(Dx−Dy)||2

≤ ||x− y||2 − 2γn⟨x− y,Dx−Dy⟩+ γ2
n||Dx−Dy||2

≤ ||x− y||2 − 2µγn||Dx−Dy||2 + γ2
n||Dx−Dy||2

= ||x− y||2 − γn(2µ− γn)||Dx−Dy||2

≤ ||x− y||2.

Thus the mapping I − γnD is nonexpansive.
Let p ∈ Γ, we have TF1

rn p = p,Ap = TF2
rn Ap, then

||un − p|| = ||TF1
rn (xn + ξnA

∗(TF2
rn − I)Axn)− p||2

≤ ||xn + ξnA
∗(TF2

rn − I)Axn − p||2

≤ ||xn − p||2 + ξ2n||A∗(TF2
rn − I)Axn||2 + 2ξn⟨xn − p,A∗(TF2

rn − I)Axn⟩. (19)

Where

2ξn⟨xn − p,A∗(TF2
rn − I)Axn⟩ (20)

= 2ξn⟨A(xn − p), (TF2
rn − I)Axn⟩

= 2ξn⟨A(xn − p) + (TF2
rn − I)Axn − (TF2

rn − I)Axn, (T
F2
rn − I)Axn⟩

= 2ξn
{
⟨TF2

rn Axn −Ap, (TF2
rn − I)Axn⟩ − ||(TF2

rn − I)Axn||2
}

≤ 2ξn
{1
2
||(TF2

rn − I)Axn||2 − ||(TF2
rn − I)Axn||2

}
≤ −ξn||(TF2

rn − I)Axn||2. (21)

Hence,

||un − p||2 ≤ ||xn − p||2 + ξ2n||A∗(TF2
rn − I)Axn||2 − ξn||(TF2

rn − I)Axn||2

= ||xn − p||2 − ξn[||(TF2
rn − I)Axn||2 − ξn||A∗(TF2

rn − I)Axn||2]. (22)

Since ξn ∈
(
ε,

||(TF2
rn

−I)Axn||2

||A∗(T
F2
rn −I)Axn||2

− ε

)
, we obtain

||un − p||2 ≤ ||xn − p||2. (23)
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Since Ti : C → K(C) is an infinite family of a quasi-nonexpansive multi-valued mapping,
we have that

||yn − p|| = ||λ0(un − p) +
∞∑
i=1

λi(z
i
n − p)||

≤ λ0||un − p||+
∞∑
i=1

λi||zin − p||

≤ λ0||un − p||+
∞∑
i=1

λid(z
i
n, Tip)

≤ λ0||un − p||+
∞∑
i=1

λiH(Tiun, Tip)

≤ λ0||un − p||+
∞∑
i=1

λi||un − p||

= ||un − p||
≤ ||xn − p||. (24)

Moreover, by Lemma 2.2, we have

||xn+1 − p|| = ||γn[τf(xn)−Dp] + (I − γnD)(yn − p)||
≤ (1− γnτ)||yn − p||+ γn||τf(xn)−Dp||
≤ (1− γnτ)||yn − p||+ γn[||τf(xn)− τf(p)||+ ||τf(p)−Dp||]
≤ [1− (τ − τµ)γn]||xn − p||+ γn||τf(p)−Dp||.

It follows by induction that

||xn − p|| ≤ max
{
||x0 − p||, ||τf(p)−Dp||

τ − τµ

}
, n ≥ 1. (25)

Hence {xn} is bounded and consequently, we deduce that {un} and {yn} are bounded.
Applying Lemma 2.2 and (22), we have that

||xn+1 − p||2 = ||γn[τf(xn)−Dp] + (I − γnD)(yn − p)||2

≤ (1− γnτ)
2||yn − p||2 + γ2

n||τf(xn)−Dp||2

+ 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||
≤ (1− γnτ)

2||un − p||2 + γ2
n||τf(xn)−Dp||2

+ 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||
≤ (1− γnτ)

2[||xn − p||2 + ξ2n||A∗(TF2
rn − I)Axn||2

− ξn||(TF2
rn − I)Axn||2] + γ2

n||τf(xn)−Dp||
+ 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||
≤ (1− γnτ)

2||xn − p||2 + ξn[ξn||A∗(TF2
rn − I)Axn||2

− ||(TF2
rn − I)Axn||2] + γ2

n||τf(xn)−Dp||2

+ 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||. (26)



182 H.A. Abass, F.U. Ogbuisi, O.T. Mewomo

It follows from (26) and the condition ξn ∈
(
ε,

||(TF2
rn

−I)Axn||2

||A∗(T
F2
rn −I)Axn||2

− ε

)
that

||xn+1 − p||2 ≤ (1− γnτ)
2||xn − p||2 − ε||A∗(TF2

rn − I)Axn||2

+ γ2
n||τf(xn)−Dp||2 + 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||. (27)

We now consider two cases.
CASE A: Assume that {||xn−p||} is a monotonically decreasing sequence. Then {||xn−p||}
is convergent and clearly,

lim
n→∞

||xn − p|| = lim
n→∞

||xn+1 − p||.

Since {xn} is bounded and ξn ∈
(
ε,

||(TF2
rn

−I)Axn||2

||A∗(T
F2
rn −I)Axn||2

− ε

)
, then we deduce from (27) that

ε||A∗(TF2
rn − I)Axn||2 ≤ (1− γnτ)

2||xn − p||2 − ||xn+1 − p||2 + γ2
n||τf(xn)−Dp||2

+ 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||.

Hence,

lim
n→∞

||A∗(TF2
rn − I)Axn|| = 0. (28)

Furthermore, from (27), we have

ξn||(TF2
rn − I)Axn||2 ≤ (1− γnτ)

2||xn − p||2 − ||xn+1 − p||2

+ ξ2n||A∗(TF2
rn − I)Axn||2 + γ2

n||τf(xn)−Dp||2

+ 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||. (29)

Therefore, since limn→∞ γn = 0, from (28) and the condition

ξn ∈
(
ε,

||(TF2
rn

−I)Axn||2

||A∗(T
F2
rn −I)Axn||2

− ε

)
, we have that

lim
n→∞

||(TF2
rn − I)Axn||2 = 0. (30)

Next, we show that ||un − xn|| → 0 as n → ∞. Since p ∈ Γ, we obtain

||un − p||2 = ||TF1
rn (xn + ξA∗(TF2

rn − I)Axn − p||2

≤ ⟨un − p, xn + ξA∗(TF2
rn − I)Axn − p⟩

=
1

2

{
||un − p||2 + ||xn + ξA∗(TF2

rn − I)Axn − p||2

− ||(un − p)− [xn + ξA∗(TF2
rn − I)Axn − p]||2

}
=

1

2

{
||un − p||2 + ||xn − p||2 + ξ(Lξ − 1)||(TF2

rn − I)Axn||2

− ||un − xn − ξA∗(TF2
rn − I)Axn||2

}
≤ 1

2

{
||un − p||2 + ||xn − p||2 − [||un − xn||2

+ ξ2||A∗(TF2
rn − I)Axn||2 − 2ξ⟨un − xn, A

∗(TF2
rn − I)Axn⟩]

}
≤ 1

2

{
||un − p||2 + ||xn − p||2 − ||un − xn||2

+ 2ξ||A(un − xn)|| ||(TF2
rn − I)Axn||

}
.

Hence, we obtain

||un − p||2 ≤ ||xn − p||2 − ||un − xn||2 + 2ξ||A(un − xn)|| ||(TF2
rn − I)Axn||. (31)
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From (26) and (31), we have

||xn+1 − p||2 ≤ (1− γτ)2||un − p||2 + γ2
n||τf(xn)−Dp||2

+ 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||
≤ (1− γnτ)

2[||xn − p||2 − ||un − xn||2

+ 2ξ||A(un − xn)|| ||(TF2
rn − I)Axn||]

+ γ2
n||τf(xn)−Dp||2 + 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||

= (1− 2γnτ + (γnτ)
2)||xn − p||2 − (1− γnτ)

2||un − xn||2

+ 2ξ(1− γnτ)
2||A(un − xn)|| ||(TF2

rn − I)Axn||
+ γ2

n||τf(xn)−Dp||2 + 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||
≤ ||xn − p||2 + (γnτ)

2||xn − p||2 − (1− γnτ)
2||un − xn||2

+ 2ξ(1− γnτ)
2||A(un − xn)|| ||(TF2

rn − I)Axn||
+ γ2

n||τf(xn)−Dp||2 + 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||,

which gives

(1− γnτ)
2||un − xn||2 ≤ ||xn − p||2 − ||xn+1 − p||2 + (γnτ)

2||xn − p||2

+ 2ξ(1− γnτ)
2||A(un − xn)|| ||(TF2

rn − I)Axn||
+ γ2

n||τf(xn)−Dp||2

+ 2γn(1− γnτ)||τf(xn)−Dp|| ||yn − p||. (32)

Since {xn}, {yn} are bounded and from condition (i) of (3.1), (30), we have that

lim
n→∞

||un − xn|| = 0. (33)

Since Ti is an infinite family of a quasi-nonexpansive multi-valued mapping, then applying
Lemma 2.6, we have

||yn − p||2 = ||λ0un +

∞∑
i=1

λiz
i
n − p||2

≤ λ0||un − p||2 +
∞∑
i=1

λi(d(z
i
n, Tip))

2 − λ0λig(||un − zin||)

≤ λ0||un − p||2 +
∞∑
i=1

λi(H(Tiun, Tip))
2 − λ0λig(||un − zin||)

≤ λ0||un − p||2 +
∞∑
i=1

λi||un − p||2 − λoλig(||un − zin||)

= ||un − p||2 − λ0λig(||un − zin||)2

≤ ||xn − p||2 − λ0λig(||un − zin||)2.

This implies that

0 < λ0λig(||un − zin||) ≤ ||xn − p||2 − ||yn − p||2,

hence limn→∞ g(||un − zin||) = 0. By property of g (see Lemma 2.6), we have limn→∞ ||un −
zin|| = 0. Since {xn} and {yn} are bounded, we have that

lim
n→∞

d(un, Tiun) ≤ lim
n→∞

||un − zin|| = 0. (34)
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From (3.1), we have that

||yn − un|| = ||λ0un −
∞∑
i=1

λiz
i
n − un||

= ||λ0(un − un) +
∞∑
i=1

λi(z
i
n − un)||

≤
∞∑
i=1

λi||zin − un||. (35)

From (34), we have that

lim
n→∞

||yn − un|| = 0. (36)

Also, we have

||yn − xn|| ≤ ||yn − un||+ ||un − xn||. (37)

From (33) and (36), we have that

lim
n→∞

||yn − xn|| = 0. (38)

From (3.1), we have

||xn+1 − xn|| = ||xn+1 − yn||+ ||yn − xn||
||γnτf(xn) + (I − γnD)yn − yn||+ ||yn − xn||
≤ γn||τf(xn)−Dyn||+ ||yn − xn|| (39)

From condition (i) of (3.1) and (38), we have that

lim
n→∞

||xn+1 − xn|| = 0. (40)

Now, we need to show that ω(xn) ⊂ Γ, where
ω(xn) := {x ∈ H1 : xnk

⇀ x, {xnk
} ⊂ {xn}}.

Since {xn} is bounded and H1 is reflexive, ω(xn) is nonempty. Let q∗ ∈ ω(xn) be an
arbitrary element, then there exists a subsequence {xnk

} of {xn} which converges weakly to
q∗. From (33), we have that unk

⇀ q∗ as k → ∞. By the demiclosedness principle and (34),
we obtain q∗ ∈ ∩∞

i=1F (Ti).
Let us show that q∗ ∈ EP (F1). Since un = TF1

rn (xn + ξA∗(TF2
rn − I)Axn, we have

F1(un, y) +
1

rn
⟨y − un, un − xn − ξA∗(TF2

rn − I)Axn⟩ ≥ 0,

for all y ∈ C, which implies that

F1(un, y) +
1

rn
⟨y − un, un − xn⟩ −

1

rn
⟨y − un, ξA

∗(TF2
rn − I)Axn⟩ ≥ 0,

for all y ∈ C. From (L2), we have:

1

rnk

⟨y − unk
, unk

− xnk
⟩ − 1

rnk

⟨y − unk
, ξA∗(TF1

rnk
− I)Axnk

⟩ ≥ F1(y, unk
),

for all y ∈ C. From lim infn→∞ rn > 0, (30), (33) and (L4), we have that
F1(y, q

∗) ≤ 0, ∀ q∗ ∈ C. For any 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)q∗. Since
y ∈ C, q∗ ∈ C, we get yt ∈ C and hence F1(yt, q

∗) ≤ 0. Therefore from (L1) and (L4), we
have that

0 = F1(yt, yt) ≤ tF1(yt, y) + (1− t)F1(yt, q
∗) ≤ tF1(yt, y).
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Hence 0 ≤ F1(yt, y). Applying (L3), we have that
0 ≤ F1(q

∗, y). This implies that q∗ ∈ EP (F1). Since A is a bounded linear operator, Axnk
⇀

Aq∗. From (30), we have that

TF2
rnk

Axnk
⇀ Aq∗, (41)

as k → ∞. By the definition of TF2
rnk

Axnk
, we have

F2(T
F2
rnk

Axnk
, y) +

1

rnk

⟨y − TF2
rnk

Axnk
−Axnk

⟩ ≥ 0,

for all y ∈ C. Since F2 is upper semi-continuous in the first argument and from (41), it
follows that

F2(Aq∗, y) ≥ 0, ∀y ∈ C.

This implies that Aq∗ ∈ EP (F2) and hence q∗ ∈ Θ.
We now show that lim supk→∞⟨(D − τf)q, q − xn⟩ ≤ 0, where
q = PΓ(I − τf +D)q.
Indeed, we can choose a subsequence {xnk

} of {xn} such that

lim sup
n→∞

⟨(D − τf)q, xn − q⟩ = lim
n→∞

⟨(D − τf)q, xnk
− q⟩. (42)

We also assume that xnk
⇀ q∗. Therefore

lim sup
n→∞

⟨(D − τf)q, xn − q⟩ = lim
nk→∞

⟨(D − τf)q, xnk
− q⟩

= ⟨Dq − τf(q), q∗ − q⟩
= ⟨(I − τf +D)q − q, q∗ − q⟩
= ⟨(I − τf +D)q − PΓ(I − τf +D)q, q∗ − PΓ(I − τf +D)q⟩
≤ 0.

Furthermore, we show the uniqueness of a solution of the variational inequality

⟨(D − τf)x, x− q⟩ ≤ 0, q ∈ Γ. (43)

Suppose q ∈ Γ and q∗ ∈ Γ, both are solutions of (43), then

⟨(D − τf)q, q − q∗⟩ ≤ 0, (44)

and

⟨(D − τf)q∗, q∗ − q⟩ ≤ 0. (45)

Adding (44) and (45), we have

⟨(D − τf)q − (D − τf)q∗, q − q∗⟩ ≤ 0.
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By Lemma 2.5, the strong monotonicity ofD−τf, we have that q = q∗. Hence the uniqueness
is proved. Lastly, we prove that xn → q as n → ∞. From (3.1) and (24), we have that

||xn+1 − q||2 = ⟨γnτf(xn) + (I − γnD)yn − q, xn+1 − q⟩
= γn⟨τf(xn)− f(q), xn+1 − q⟩+ ⟨(I − γnD)(yn − q), xn+1 − q⟩
≤ γnτ⟨f(xn)− f(q), xn+1 − q⟩+ γn⟨τf(q)−Dq, xn+1 − q⟩
+ (1− γnτ)||yn − q|| ||xn+1 − q||
≤ γnτµ||xn − q|| ||xn+1 − q||+ γn⟨τf(q)−Dq, xn+1 − q⟩
+ (1− γnτ)||xn − q|| ||xn+1 − q||
= [1− (τ − τµ)γn]||xn − q||||xn+1 − q||+ γn⟨τf(q)−Dq, xn+1 − q⟩

≤ 1− (τ − τµ)γn
2

(||xn − q||2 + ||xn+1 − q||2) + γn⟨τf(q)−Dq, xn+1 − q⟩

≤ 1− (τ − τµ)γn
2

||xn − q||2 + 1

2
||xn+1 − q||2 + γn⟨τf(q)−Dq, xn+1 − q⟩.

Then, it follows that

||xn+1 − q||2 ≤ [1− (τ − τµ)γn]||xn − q||2 + γn(τ − τµ)
2⟨τf(q)−Dq, xn+1 − q⟩

(τ − τµ)
. (46)

From 0 < τ < τ
µ , condition (i) of (3.1), then we conclude that limn→∞ ||xn − q|| = 0 using

Lemma 2.4.

CASE B: Assume that {||xn − p||} is not a monotonically decreasing sequence. Then, we
define an integer sequence {σ(n)} for all n ≥ n0 (for some n0 large enough) by

σ(n) := max{k ∈ N; k ≤ n : ||xk − p|| < ||xk+1 − p||}.

Clearly, σ is a nondecreasing sequence such that σ(n) → ∞ as n → ∞ and for all n ≥ n0.
From (27), we have

ξσ(n)||(TF2
rσ(n)

− I)Axσ(n)||2

≤ (1− γσ(n)τ)
2||xσ(n) − p||2 − ||xσ(n+1) − p||2

+ ξ2σ(n)||A
∗(TF2

rσ(n)
− I)Axσ(n)||2 + γ2

σ(n)||τf(xσ(n))−Dp||2

+ 2γσ(n)(1− γσ(n)τ)||τf(xσ(n))−Dp|| ||yσ(n) − p||. (47)

Therefore, since limn→∞ γσ(n) = 0, from (28) and the condition

ξσ(n) ∈
(
ε,

||(TF2
rσ(n)

−I)Axσ(n)||2

||A∗(T
F2
rσ(n)

−I)Axn||2
− ε

)
, we have that

lim
n→∞

||(TF2
rσ(n)

− I)Axσ(n)||2 = 0. (48)

Following the same argument as in CASE A, we conclude that there exist a subsequence
{xσ(n)} which converges weakly to p ∈ Γ. Now for all n ≥ n0, we have

0 ≤ ||xσ(n+1) − q||2 − ||xσ(n) − q||2

≤ (1− γσ(n)τ)||xσ(n) − q||2 + γ2
σ(n)||τf(xσ(n))−Dq||2

+ 2γσ(n)(1− γσ(n)τ)||τf(xσ(n))−Dq|| ||xσ(n) − q|| − ||xσ(n) − q||2

= −γσ(n)τ ||xσ(n) − q||2 + γ2
σ(n)||τf(xσ(n))−Dq||2

+ 2γσ(n)(1− γσ(n)τ)⟨τf(xσ(n) −Dq, xσ(n+1) − q⟩.
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Thus

||xσ(n) − q||2 ≤
γσ(n)

τ
||τf(xσ(n))−Dq||2 +

2(1− γσ(n)τ)

τ
⟨τf(xσ(n) −Dq, xn+1 − q⟩.

Since limn→∞ γn → 0 as n → ∞ and lim sup⟨τf(xσ(n)−Dp, xn+1−q⟩ ≤ 0, then we conclude
that {xn} converges strongly to q. This complete the proof. �

Corollary 3.1. In Theorem 3.1, if we let Ti : C → K(C), i = 1, 2 · · · be an infinite
family of multivalued nonexpansive mappings, we obtain a strong convergence theorem for
approximating the common solution of SEP and fixed point problem for infinite family of
nonexpansive multi-valued mappings which also solves some variational inequality problem
in real Hilbert spaces.

4. APPLICATIONS AND NUMERICAL EXAMPLE

4.1. Application to Optimization Problem

Let H1, H2 be two real Hilbert spaces, C and Q be nonempty, closed and convex subsets of
H1 and H2 respectively. Let f : C → R, g : Q → R be two operators and A : H1 → H2 be
a bounded linear operator, then the optimization problem is to find:

x∗ ∈ C such that f(x∗) ≤ f(x), ∀ x ∈ C,

and y∗ = Ax∗ such that g(y∗) ≤ g(y), ∀ y ∈ Q. (49)

We denote the set of solutions of (49) by Ω and assume that Ω ̸= ∅. Let F1(x, y) := f(y)−f(x)
for all x, y ∈ C and F2(x, y) := g(y)− g(x) for all x, y ∈ Q respectively. Then F1(x, y) and
F2(x, y) satisfy conditions (L1)−(L4) provided f and g are convex and lower semi-continuous
on C and Q respectively, Clearly, Θ = Ω. Thus from Theorem 3.1, we obtain a strong
convergence theorem for approximating the common solution of split minimization problem
and fixed point problem for infinite family of quasi-nonexpansive multi-valued mappings
which also solves some variational inequality problem in real Hilbert spaces.

4.2. Numerical Example

Let H1 = H2 = R and C = Q = R. Let F1(u, v) = −11u2 + uv + 10v2, then we derive our
resolvent function TF1

r using Lemma 2.1 as follows:

F1(u, v) +
1

r
(v − u)(u− x) ≥ 0 ⇐⇒ −11ru2 + ruv + 10rv2 + uv − vx− u2 + ux ≥ 0

⇐⇒ 10rv2 + ruv + uv − vx− 11ru2 − u2 + ux ≥ 0

⇐⇒ 10rv2 + (ru+ u− x)v − (11ru2 + u2 − ux) ≥ 0

Let Q(v) = 10rv2 + (ru+ u− x)v− (11ru2 + u2 − ux). Then Q is a quadratic function of v
with coefficients a = 10r, b = ru+u−x, c = −11ru2−u2+ux. We compute the discriminant
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of Q(v) as follows:

∆ = b2 − 4ac = (ru+ u− x)(ru+ u− x)− 4(10r)(−11ru2 − u2 + ux)

= r2u2 + ru2 − rux+ ru2 + u2 − ux− rux− ux

+ x2 + 440r2u2 + 40ru2 − 40rux

= 441r2u2 + 42ru2 − 42rux− 2ux+ u2 + x2

= x2 − 42rux− 2ux+ 441r2u2 + 42ru2 + u2

= x2 − 2((21r + 1)u)x+ u2 + 441r2u2 + 42ru2

= x2 − 2((21r + 1)u)x+ ((21r + 1)u)2

= (x− (21r + 1)u)2 ≥ 0.

Thus, ∆ ≥ 0 ∀ y ∈ R and it has at most one solution in R, then ∆ ≤ 0, TF1
rn (x) = x

21rn+1 .

Let F2(u, v) = −15u2 + uv + 14v2, Ax = x and A∗x = x. Following the same process used
in deriving TF1

r , we have TF2
rn (x) = x

29rn+1 .

Furthermore, define Ti : R → K(R) (i = 1, 2, 3, · · · ) by:

Tix =

{
[0, x

2i ] x ∈ [0,∞),

[ x2i , 0] x ∈ (−∞, 0],

where K(R) is the family of nonempty, closed and bounded subsets of R. Clearly, Ti for
each i is a multivalued quasi-nonexpansive mapping. Let f : R → R be given as; f(x) = 1

8x,

then µ = 1
6 is a contraction constant for f . Take D(x) = 2x with constant τ = 1. On the

other hand, we take τ = 2 which satisfies 0 < τ < τ
µ .

Furthermore, we take γn = n+1
8n , rn = n

n+1 , λ0 = 1
2 , λi = 1

2i+1 , z
i
n ∈ Tiun and let the step

size ξn be chosen in such a way that for some ε > 0, ξn ∈
(
ε,

||(TF2
rn

−I)Axn||2

||A∗(T
F2
rn −I)Axn||2

− ε

)
for all

TF2
rn Axn ̸= Axn and ξn be any positive real number otherwise, in iterative scheme (3.1) we

obtain 
un = (1−ξn)xn

21rn+1 + ξnxn

(21rn+1)(29rn+1) ,

yn = 1
2un +

∑∞
i=1

1
2i+1 z

i
n,

xn+1 = (n+1
8n )(xn

4 ) + (1− (n+1)
4n )yn.

Case 1: x0 = 1 and ξn ∈
(
ε,

||(TF2
rn

−I)Axn||2

||A∗(T
F2
rn −I)Axn||2

− ε

)
for all TF2

rn Axn ̸= Axn and ξn = 0.0003

otherwise.

Case 2: x0 = 2 and ξn ∈
(
ε,

||(TF2
rn

−I)Axn||2

||A∗(T
F2
rn −I)Axn||2

−ε

)
for all TF2

rn Axn ̸= Axn and ξn = 0.0000021

otherwise.
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