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AUGMENTED REALITY FOR KNOWLEDGE
DISCOVERY THROUGH FEATURE DETECTION
AND SEMANTIC SIMILARITY

Igor KLEIMAN !*, Marian GHEORGHE?, Eduard Laurentiu NITU?

The need for real-time, context-aware knowledge discovery in AR
environments led to a new approach that combines feature-based object recognition
and semantic similarity search—an innovation beyond current systems. This method
uses feature extraction to construct feature graphs, which are matched to knowledge
products within knowledge bases. Based on object recognition and contextual cues,
relevant knowledge products are retrieved and overlaid on physical objects via
Augmented Reality Markup Language. This integration empowers users to access
context-specific knowledge in real-time, enhancing decision-making and efficiency.
In the context of industrial robotics, it shows substantial improvements in knowledge
retrieval and task performance.
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1. Introduction

Augmented Reality-enabled implicit knowledge discovery delivers real-
time contextual information through visual recognition of objects, enhancing
interaction by automatically overlaying relevant knowledge without explicit
searches. Using Scale-Invariant Feature Transform (SIFT) for feature extraction;
the system detects key points in objects and matches them to stored knowledge
products. This integration of AR, SIFT, and ARML allows users to access 3D
models, instructions, or data directly on objects, improving task efficiency and
decision-making.
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Scale-Invariant Feature Transform (SIFT) [1] [2] is a widely used feature
extraction method in computer vision, known for its robustness in object
recognition tasks due to its invariance to scale, rotation, and lighting. These
properties make it ideal for real-world applications where environmental changes
can impact recognition accuracy. However, SIFT has limitations in AR. Its
computational complexity can hinder real-time performance, especially in large-
scale environments. While effective in static object recognition, SIFT struggles
with moving objects or interactive scenarios, areas where AR requires real-time
responsiveness. This highlights the need for faster or more efficient methods in
feature extraction for AR applications.

In addition to SIFT, other feature extraction techniques have emerged to
address specific challenges [3] [4]: Speeded-Up Robust Features (SURF), a faster
alternative to SIFT, reduces computation time but may sacrifice some accuracy;
Oriented FAST and Rotated BRIEF (ORB), optimized for speed, is popular in
mobile AR applications, though less robust in terms of scale invariance; Deep
Learning Methods/ Convolutional Neural Networks (CNNs) have increasingly
replaced traditional methods, providing higher accuracy in object detection but
requiring significant computational resources [4]. While alternatives like SURF and
ORB address speed issues, the integration of semantic knowledge retrieval in AR
systems remains an open challenge in feature-based recognition.

Implicit Knowledge Discovery in AR-Enabled Systems [5] [6] [7] aims to
retrieve knowledge automatically, based on contextual cues, without explicit user
input. This approach can enhance AR systems by providing users with relevant
information in real time, based on their environment or interaction. Despite its
potential, implicit knowledge discovery remains underexplored in AR research.
Current systems focus primarily on explicit knowledge retrieval, where users
manually search for information. While some AR applications utilize contextual
cues, there is a significant gap in integrating semantic similarity search with feature
recognition.

The adoption of complex system modeling methodologies has become
essential in developing innovative solutions that bridge the gap between digital and
physical interactions. Building on the Relational Modeling Framework for
Complex Systems [8], which emphasizes the integration of diverse modeling
formalisms to handle heterogeneous data and interactions, this research explores an
augmented reality (AR) approach to enable real-time, context-aware knowledge
discovery.

The concept of the Intelligent Digital Mesh (IDM) [9] [10] has emerged as
a key trend in fields like smart manufacturing (SM). IDM represents a digital,
interconnected system that links various platforms and devices to create an
integrated operational environment. Despite the promise of IDM, its development
faces challenges, particularly in data sharing and system integration.
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Digitization trends and intense competition in the industry require
universities to innovate in production methods and techniques while providing
graduates with the specific skills needed for their application. The emergence of
Learning Factories and Industry 4.0 has fostered the development of techniques
tailored to industrial processes and systems [11] [12]. These techniques include
virtual, augmented, and mixed reality, as well as digital assistance, project-based
learning, problem-based learning, and intuitive learning.

Augmented reality blends the real and virtual worlds through real-time
interactions, precise registration of actual and virtual 3D objects, and their
superimposition in the real environment.

This paper is introducing a system that merges SIFT-based feature
recognition, semantic similarity search, and ARML, enabling real-time, context-
aware knowledge discovery in AR environments. It propagates a novel solution that
leverages AR Markup Language (ARML) and implicit knowledge discovery to
create a context-aware knowledge retrieval system for Intelligent Digital Mesh
(IDM) environments, particularly addressing gaps in smart manufacturing. The core
innovation integrates Scale-Invariant Feature Transform (SIFT) for feature
extraction, semantic similarity search to match feature graphs with knowledge
products, and ARML to overlay those products in real-time onto physical objects.

2. Modelling on feature graphs

The Scale-Invariant Feature Transform (SIFT) detects key points through a
multi-step process that begins with constructing a scale-space representation, where
the image is progressively blurred at different scales to identify stable features.
Using the Difference of Gaussian (DoG) technique, local extrema are detected as
potential key points across scales. Each key point is then refined to ensure contrast
and localization accuracy. Finally, SIFT assigns orientations to each key point
based on local gradients, generating descriptors that capture the local gradient
distribution around each key point. These descriptors are invariant to scale and
rotation, making them effective for consistent recognition across varied conditions.

To generate the Keypoint Descriptor (Feature Vector) in SIFT, we focus on
creating a representation that captures the local gradient information around each
detected keypoint, as follows.

1. Define the Keypoint Region: around each keypoint, a square region (typically
16x16 pixels) is selected for analysis; this region provides the context for the
keypoint and is subdivided into a 4x4 grid of smaller cells (each cell being 4x4
pixels).

2. Compute Gradient Orientations and Magnitudes: for each pixel in the 16x16
region, gradients are calculated by examining the changes in intensity along the
x and y directions; this gives both a magnitude (the strength of the gradient) and
an orientation (the direction of the gradient) at each pixel.
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Orientation Histogram for Each Cell: for each of the 4x4 cells within the
keypoint region, an 8-bin orientation histogram is created; each bin represents
a 45-degree range (covering a total of 360 degrees); pixels within each cell
contribute to the histogram based on their orientation, with the gradient
magnitude used as the weight for the histogram bins.
Normalize and Concatenate Histograms: the histograms from each of the 16
cells (4x4 grid) are concatenated to form a 128-dimensional feature vector (4x4
cells x 8 bins), as shown in Fig. 1; this vector is then normalized to reduce the
effects of lighting and contrast variations, ensuring the descriptor’s robustness.
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Fig. 1. Normalized Orientation Histograms for SIFT Keypoint Descriptor
(4x4 cells, 8 bins each)

While SIFT provides robust key point detection and descriptive features,
this article builds on its foundation by introducing an innovative approach: the
feature graph. Rather than using key points solely for direct matching, the feature
graph leverages SIFT-extracted key points and organizes them into a structured
graph format. In this framework, each key point serves as a node, while edges
represent spatial and orientation relationships between these nodes, creating a
structural "fingerprint" of the object.
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After key points are extracted from the image, the system organizes them
into a feature graph, where the key points are treated as nodes and the relationships
between them (such as their spatial arrangement) are represented as edges.

This graph encapsulates the structural representation of the object. The
feature graph serves as a unique fingerprint of the object, making it possible to
match it with pre-existing graphs stored in a knowledge base.

A feature graph is:

G=(V,E) (1)

where: V is the set of nodes (key points) and E - the set of edges, which describe
relationships between nodes (key points).
A node, v;, is defined by the followings:

v; €V, v; = (x,y1, 05, 55,d;) (2)

where: x; and y; are the coordinates of the key point, 8; — dominant orientation of
the local image gradient information around the key point, s; — scale at which the
key point was detected, d; - the 128 - dimensional SIFT descriptor vector.

An edge e;; between nodes v; and v; is defined by the followings:

ei; € E, (v; e v)), ey = (dyj, A6;;) 3)
2 2
dij = \/(xi -x)" + (- ¥) (4)

were: d;; represents Euclidean distance between the key points of coordinates
(x;,yi)and (x;,y;); AB;; - the difference between orientations 6; and 6; of the local
image gradient information around each detected key point pair (x;, y; Jand (x;, y; ).

3. Case Study

In our R&D project, we utilized the Google Cloud Platform Architecture for
an AR and Feature Graph-Enabled Knowledge Mesh.

The sequence diagram illustrates the collaborative interaction between
system components in facilitating real-time, context-aware knowledge retrieval
through AR, as shown in Fig. 2.

Beginning with the SIFT-based component identification, the AR device
captures key points and sends the generated feature graph to the Neo4j; Knowledge
Base.
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Fig. 2. Sequence Diagram: Feature Graph - Enabled Knowledge Retrieval Workflow

Through sub-graph matching, Neo4j utilizes Cypher queries to locate
relevant knowledge products, even allowing partial matches to improve retrieval
accuracy. Once identified, these knowledge products are presented through the AR
interface, with the VR interface assisting in ambiguity handling if multiple
documents match. Finally, the selected knowledge product is delivered as an
overlay on the AR device, enabling seamless collaboration between AR, feature
detection, and database components to support efficient knowledge discovery.

The system employs SIFT for object recognition, automatically identifying
machine components by extracting their feature graphs. This information is used as
a composite identifier to search a knowledge base (stored in a graph database like
Neo4j), where relevant engineering documentation (e.g., configuration guides,
calibration protocols) is stored and indexed by feature graphs, as follows.

(1) Component Identification with SIFT
e The engineer uses an AR headset or AR-enabled tablet to scan the machine
component.
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e The system runs SIFT (Scale-Invariant Feature Transform) to detect key
points on the component, creating a feature graph representing the
component's unique structure. The feature graph is embedded into ARML
as presented in Fig. 3.

KnowledgeProductContract:
knowledgeProductId: "KP12345"
name: "Machine Maintenance Guide"
version: "1.0"

ARML :
Location:
Latitude: 37.7749
Longitude: -122.4194

3DModel:
ModelURL: "http://example.com/models/machine123.glb"
Placement:
Orientation: "90,0,0"
Scale: 1.0
Metadata:

KnowledgeProduct: "MaintenanceGuide"
Trigger: "Proximity"
SIFTFeatureGraph:
KeyPoints:
- {x: 123.4, y: 567.8, scale: 1.6, orientation: 0.1, descriptor: "0.13,0.45,0.32,..."}
- {x: 223.5, y: 667.9, scale: 1.2, orientation: 0.15, descriptor: "0.21,0.34,0.31,..."}
- {x: 323.6, y: 767.0, scale: 1.0, orientation: 0.2, descriptor: "0.22,0.47,0.35,..."}
Relationships:
- {sourceKeyPoint: 123.4, targetKeyPoint: 223.5, distance: 142.07}
- {sourceKeyPoint: 223.5, targetKeyPoint: 323.6, distance: 120.34}
Detection:
- FeatureDetected: "SIFT-based detection of component”
- ProductId: "Productl123" # Dynamically identified product from feature graph matching
- ActionOnDetection:
SPARQLQuery:
query: |
SELECT ?maintenanceGuide
WHERE {
?product rdf:type ex:Product .
?product ex:hasInstruction ?maintenanceGuide .
FILTER (?product = <http://example.com/ontology#{{ProductId}}>)
}
parameters:
- ProductId: "{{FeatureGraphMatchedProductId}}"
Visualization:
Description: "When the SIFT feature graph detects the component, this dynamically triggers

L. mmanAr . . R e v e

Fig. 3. SIFT feature graph embedded into ARML

(2) Feature Graph Search in the Knowledge Base

e The extracted feature graph is used to perform a sub-graph matching search
in the Neo4j knowledge base. The knowledge base contains a library of
knowledge products, each associated with a stored feature graph, as shown
in Fig. 4.

e Sub-graph matching ensures efficient retrieval of relevant knowledge
products, even when the match is not exact. This improves performance by
allowing partial matches to retrieve the closest results. Fig. 5 illustrates the
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Cypher query identifies and retrieves a Knowledge Product in a Neo4j graph
database based on key point relationships, using similarity measures
between descriptors.

CREATE (kpl:KeyPoint {x:100, y:150, orientation:45, scale:1.5,
descriptor:"0.22,0.45,..."})

CREATE (kp2:KeyPoint {x:200, y:250, orientation:90, scale:1.8,
descriptor:"0.13,0.55,..."})

CREATE (kpl)-[:RELATED {distance:142.07, angle_difference:45}]->(kp2)

CREATE (kp2)-[:IDENTIFIES]->(knowledgeProduct:KnowledgeProduct {id:"KP123",
name: "Maintenance Guide"})

Fig. 4. Index the Feature Graph as an Identifier for the Knowledge Product

MATCH (newKP1:KeyPoint {descriptor:"0.22,0.45,..."})-[:RELATED
{distance:142.07}]->(newKP2:KeyPoint {descriptor:"0.13,0.55,..."})

MATCH (newKP1)-[:IDENTIFIES]->(knowledgeProduct:KnowledgeProduct)

RETURN knowledgeProduct

Fig. 5. Neo4j Cypher query for knowledge retreaval based on similarity
measures between feature graphs

(3) Knowledge Product Retrieval and Ambiguity Handling

e Ifa clear match is found, the system retrieves the corresponding knowledge
product—such as a maintenance guide, operational history, or real-time
sensor data.

e If the match is ambiguous (multiple potential documents are returned), the
engineer is presented with multiple AR overlays, each corresponding to a
different document. Using the Virtual Reality (VR) interface, the engineer
can interact with the AR representations of the knowledge products, preview
them, and select the correct one for the task at hand.

(4) AR Overlay for Context-Aware Knowledge Delivery

Once the correct knowledge product is selected, the system overlays the
relevant information directly onto the machine component. This may include:
e configuration guidelines with step-by-step instructions;
e calibration data and real-time metrics such as pressure, alignment, or
torque values;

e operational parameters and safety thresholds required for the component.
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A demonstration of AR-enabled Knowledge Mesh solution in a live setting
showcasing real-time interaction with a model of an industrial pump unit using
augmented reality is as presented in Fig. 6.

Fig. 6. Live Demonstration of AR-Enabled Knowledge Mesh Solution
for Real-Time industrial device interaction

4. Conclusions

The presented system demonstrates the potential for AR-enabled implicit
knowledge discovery by seamlessly integrating feature-based recognition with
semantic similarity search. This approach facilitates real-time access to
contextually relevant knowledge, essential in complex industrial settings. By
leveraging SIFT-based feature graphs and AR Markup Language (ARML), the
solution enables a unique identification process for knowledge products that boosts
operational efficiency and decision-making.

The application of feature graphs as unique identifiers within the
Knowledge Mesh framework proves versatile, with scalable potential across
diverse fields such as robotics, engineering, and quality assurance. By enabling
AR-based visualization, this approach supports engineers in accessing critical
information directly in the physical environment, bridging the gap between data and
its real-world application. While effective, the system’s reliance on SIFT presents
challenges, particularly in real-time performance due to SIFT’s computational
intensity. The need for optimized feature matching methods, like sub-graph
matching algorithms and hardware acceleration, becomes apparent to harness
AR-driven knowledge discovery in dynamic environments.
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Future research should explore deep learning-based feature extraction and
enhanced matching techniques to improve efficiency in larger, complex
environments, expanding multi-object recognition and collaborative AR
capabilities to push the boundaries of AR-enabled knowledge management.

REFERENCES

[11 R. Doerner, W. Broll, P. Grimm, B. Jung, Virtual and augmented reality (VR/AR):
Foundations and methods of extended realities (XR), Cham, Switzerland, Springer,
2022, p. 429.

[2] G. Lowe, SIFT - The Scale Invariant Feature Transform., International Journal, Nr. 2, 2004.

[3] X Yang, Y. C. Lu, A. Murtiyoso, M. Koehl, P. Grussenmeyer, HBIM modeling from the
surface mesh and its extended capability of knowledge representation, ISPRS International
Journal of Geo-Information, Bd. 8, Nr. 8(7), 2019.

[4] L. V. Lozano-Vazquez, J. Miura, A.J. Rosales-Silva, A. Luviano-Judrez, D. Mujica-Vargas,
Analysis of Different Image Enhancement and Feature Extraction Methods, Mathematics,
Bd. 10, Nr. 14, 2022.

[5]  G. Dragoi, A. Draghici, S. M. Rosu, A. Radovici, C. E. Cotet, Knowledge base development
in virtual enterprise network as support for workplace risk assessment, International
Journal of Human Capital and Information Technology Professionals, Bd. 2, Nr. 3, 2011.

[6] K. Iskandar, H. Prabowo, R. Kosala, A. Trisetyarso, A framework for knowledge management
system with mapreduce approach to overcome information overload, ICIC Express
Letters, Bd. 13, Nr. 10, 2019.

[7]1 T. Bai, L. Gong, C.A. Kulikowski, L. Huang, Implicit knowledge discovery in biomedical
ontologies: Computing interesting relatednesses, in IEEE International Conference on
Bioinformatics and Biomedicine, BIBM, 2015.

[8] D.C. Popescu, I. Dumitrache, Relational modeling framework for complex systems, U.P.B.
Sci. Bull., Series C, V. 83, Nr. 1, 2021.

[9]1 M.P. Uysal, A.E. Mergen, Smart manufacturing in intelligent digital mesh: Integration of
enterprise architecture and software product line engineering, Journal of Industrial
Information Integration, Bd. 22, 2021.

[10] B. Nedi¢, Gartner's top strategic technology trends, Proceedings on Engineering Sciences, Bd.
1, Nr. 2, 2019.

[11] E.L. Nitu, A.C. Gavriluta, Lean Learning Factory at the University of Pitesti. In Modern
Technologies in Industrial Engineering VII, IOP Publishing: Bristol, UK, V. 591, Nr. 1,
2019.

[12] G.C. Neacsu, E.L. Nitu, A.C. Gavriluta, G.G. Vlad, E.M. Dobre, M. Gheorghe, M.M. Stan,

Process Analysis and Modelling of Operator Performance in Classical and Digitalized
Assembly Workstations, Processes 2024, 12, 533.



	Implicit Knowledge Discovery in AR-Enabled Systems [5] [6] [7] aims to retrieve knowledge automatically, based on contextual cues, without explicit user input. This approach can enhance AR systems by providing users with relevant information in real t...
	The adoption of complex system modeling methodologies has become essential in developing innovative solutions that bridge the gap between digital and physical interactions. Building on the Relational Modeling Framework for Complex Systems [8], which e...
	The concept of the Intelligent Digital Mesh (IDM) [9] [10] has emerged as a key trend in fields like smart manufacturing (SM). IDM represents a digital, interconnected system that links various platforms and devices to create an integrated operational...
	R e f e r e n c e s

