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OPTIMAL CONTROL ON A MATHEMATICAL MODEL OF 

MALARIA 

Adesoye Idowu ABIOYE1, Mohammed Olanrewaju IBRAHIM2, Olumuyiwa 

James PETER3, Hammed Abiodun OGUNSEYE4  

In this paper, a malaria mathematical model is formulated by incorporating 

four control strategies: insecticide-treated bednets control, infected humans 

treatment control, sterile mosquitoes technique control and use of control on 

pregnant women and newborn births. It also explains the various stages of the 

disease jointly in humans and mosquitoes as well as the treatment of both 

asymptomatic and infectious humans. Preventive measures are developed to control 

the spread of disease. Forward-backward fourth-order Runge-Kutta method (Sweep 

method) is used to see the spread of disease and how to eradicate the disease. This 

is based on the fact that these measures are deployed adequately using control tools 

and without control tools respectively. On the other hand, their achievement 

depends on the appropriate and planned organization and dissemination. 

Keywords: Transmission; Sterile Mosquitoes; Insecticides; Asymptomatic; 

Preventive Measures; Sweep Method. 

1. Introduction 

Malaria is an ancient disease and according to the record, malaria 

occurred from sixth century BC in Hindu. From 1570 BC in Egyptian 

Papyri, slabs of clay from 2000 BC in Mesopotamia and from about 2700 

BC in a Chinese document [1]. Malaria can be seen largely in hot and sultry 

(tropical) regions such as the Pacific Islands, Indian subcontinent, South 

America, Central America, Sub-Saharan African and Southeast Asia [2]. 

Malaria continues to be a public health problem and a life-threatening 

disease transmitted by female anopheles mosquitoes, according to the World 

Health Organization report [3]. Globally, 212 million new cases and 429000 

deaths were recorded. In Africa, millions of people still lack access to 
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preventive tools such as insecticides, insecticide-treated bednets, proper 

treatment using effective drugs and others. The very essential result of the 

transmission dynamics of the Malaria model and optimal control have come 

out in the last decades. For instance; Khamis et al. [4]; Olaniyi et al. [5]; 

Bakare and Abolarin [6]; Joshi et al. [7]; Munzir et al. [8]; Otieno et al. [9]; 

Panja and Mondal [10]; Romero-Leiton et al. [11].  

All of the above studies reveal an important result for malaria model dynamics by 

considering the different situations. But we have identified that till now no study 

has been done on malaria model which include nonlinear forces of infections with 

the application of optimal control which are; insecticide-treated bednets control, 

infected human’s treatment control, sterile mosquitoes technique control and use 

of control on pregnant women and newborn births as control strategies. Because 

of the above, we developed a deterministic mathematical model of malaria by 

extending the model developed by Osman et al. [12] incorporating the above 

controls. We also include nonlinear forces of infection, the disease-induced death 

rate on the exposed compartment for the human population and relapse.  

2. Materials and Methods 

The model under consideration comprises of four stages for the human 

(host) population and three stages for the mosquito (vector) population. These are 

Susceptible humans ( ), Exposed humans ( ), Infectious humans ( ), Recovered 

humans ( ) and Susceptible mosquitoes ( ), Exposed mosquitoes ( ), 

Infectious mosquitoes ( ) respectively. This shows the movement of human and 

mosquito from one stage to another at different rates. 
h hN   is the rate at which 

humans enters into the susceptible population (recruitment rate), h   is the force 

of infection in humans,   is the developing rate of exposed humans (the rate at 

which humans move from exposed to infectious class),   is the  recovery rate of 

human from the disease, 2  is the relapse rate of humans that is, the rate at which 

humans with low immunity return from recovered class back to infectious class, 

  is the rate of newborn birth with infection of humans,   is the natural death 

rate of humans, h  is the disease-induced death rate of humans, 1  is the rate of 

loss of immunity in humans, 
m mN   is the recruitment rate of mosquitoes, m   is 

the force of infection in mosquitoes,   is the developing rate of exposed 

mosquitoes that is, the rate at which mosquitoes move from exposed class to 

infectious class,   is the natural death rate of mosquitoes, m  is the disease-

induced death rate of mosquitoes, m  is the interaction rate between human and 

mosquitoes  and h  is the interaction rate between human and mosquitoes. The 
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total population of human is one (1) that is, 1h h h h hN S E I R= + + + =  and the total 

population of mosquitoes is also one (1) that is, 1m m m m mN S E I R= + + + = . 

The reduction in the reproduction rate of a mosquito through insecticide-treated 

bednets and reduction rate in fecundity due to mating with released sterile male’s 

mosquito population are by factors ( )11 u−  and ( )31 u−  respectively. There is an 

increase in the death rate of a mosquito population at a proportional rate 
1u  

and
2u . Also, the reduction of the mortality rate of pregnant women and newborn 

births is by a factor of ( )41 u− , a  is the constant rate due to treatment and b  is the 

constant rate due to the use of insecticide-treated bednets. The description of the 

parameters and values are given in table 1 below. 

Table 1 

Parameters and values of the model 
Parameter Value Source Parameter Value Source 

h  1.2 Osman et al. [12] 
m  0.7 Osman et al. [12] 

  0.05 Osman et al. [12]   0.00083 Assumed 

  0.0035 Osman et al. [12]   0.083 Osman et al. [12] 

1  0.00017 Osman et al. [12]   0.12 Olaniyi and Obabiyi 

[13] 

2  0.04 Mwamtobe et al. 

[18] 
h  0.1 Olaniyi and Obabiyi 

[13] 
  0.01146 Osman et al. [12] 

m  0.09 Olaniyi and Obabiyi 

[13] 

h  0.068 Osman et al. [12]   0.003 Osman et al. [12] 

m  0.001 Assumed 
h  1.0 Assumed 

   
m  1.0 Assumed 

2.1. Differential Equations of the Model 

The following normalized differential equations govern the model. 

( )
( ) ( )

( ) ( )

( )
( ) ( )1 4 11 1

1

h h m h

h h h

h m

dS t I t S t
u u S t R t

dt I t


 


=  − − + − − +   +

  

( )
( ) ( )

( ) ( )

( )
( ) ( )1 41 1

1

h h m h

h h

h m

dE t I t S t
u u E t

dt I t


  


= − + − − + +   +

   

( )
( ) ( ) ( ) ( ) ( )2 2

h

h h h h h

dI t
E t au I t I t R t

dt
     = − + + + + +  

( )
( ) ( ) ( ) ( )2 1 2

h

h h

dR t
au I t R t

dt
   = + − + +            (1) 

( )
( ) ( )

( ) ( )

( )
( ) ( )1 3 11 1

1

m m h m

m m

m h

dS t I t S t
u u bu S t

dt I t





=  − − + − − +   +
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( )
( ) ( )

( ) ( )

( )
( ) ( )1 3 11 1

1

m m h m

m

m h

dE t I t S t
u u bu E t

dt I t


 


= − + − − + +   +

   

( )
( ) ( ) ( )1

m

m m m

dI t
E t bu I t

dt
  = − + +   

 

Where {u1, u2, u3, u4} ∈ [0, 1] that is, when 1 2 3 4 0u u u u= = = = , it means none of 

the controls are effective but when 1 2 3 4 1u u u u= = = = , it means all the controls 

are effective. 

2.2. Autonomous Equations of the Model 

In the absence of the four-time dependent control functions from the non-

autonomous model (1) and by setting the control variables to zero that 

is, ( ) ( )1 2u t u t= =  ( ) ( )3 4 0u t u t= = . Then, model (1) is given as 
 

( ) ( ) ( )
( ) ( )1

1

h h m h

h h h

h m

dS t I t S t
S t R t

dt I


 


=  − − +

+

  

( ) ( ) ( )
( ) ( )

1

h h m h

h h

h m

dE t I t S t
E t

dt I


  


= − + +

+

   

( )
( ) ( ) ( ) ( ) ( )2

h

h h h h h

dI t
E t I t I t R t

dt
     = − + + + +  

( )
( ) ( ) ( )1 2

h

h h

dR t
I t R t

dt
   = − + +                (2) 

( ) ( ) ( )
( )

1

m m h m

m m

m h

dS t I t S t
S t

dt I





=  − −

+
   

( ) ( ) ( )
( ) ( )

1

m m h m

m

m h

dE t I t S t
E t

dt I


 


= − +

+
   

( )
( ) ( ) ( )m

m m m

dI t
E t I t

dt
  = − +   

3. Optimal Control 

Optimal control is one of the tools used in mathematical biology to 

eradicate, reduce or minimize the infected and death rates of humans in the 

population. In formulating an optimal control problem on malaria, we propose a 

model to minimize the number of exposed humans to malaria, the number of 

infected humans and the total population of mosquitoes. As a way of eradicating 

or controlling malaria in our society, control measures have to be introduced such 

as, treated insecticide bednets (ITNs), insecticide spray against mosquitoes 

(ISAM), sterile insect technique (SIT) e.g. male mosquitoes and awareness 

approach (AA) e.g. Social media network, television broadcast, house-to-house 

awareness, e.t.c. 
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To find the solution to model (1), we considered the following steps: To 

(i)  describe the optimal control. 

(ii)  show the existence of optimal control. 

(iii) show the uniqueness of optimal control. 

(iv)  solve the optimal control numerically. 

(v)  show the graphical solution with the effects of control variables on the 

model. 

3.1. Description of the Optimal Control 

The objective function of the system (1) is used to minimize the total 

number of exposed humans, infected humans and mosquitoes using the control 

variables ( ) ( ) ( )1 2 3, ,u t u t u t  and ( )4u t . It is very important to show that all the 

control variables are non-negative. The objective function is defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 2

1 2 3 1 1 2 2 3 3 4 4

0

1

2

ft

h h mJ B E t B I t B N t Pu t P u t Pu t P u t dt
 

= + + + + + + 
 


   

(3) 

Subject to the system (1), where 1 2 3 1 2 3, , , , ,B B B P P P  and 4P are positive weight 

constants. The quadratic costs ( ) ( ) ( )2 2 2

1 1 2 2 3 3, ,Pu t Pu t Pu t  and ( )2

4 4P u t   are the cost 

associated with the use of insecticide-treated bednets, treatment of infectious 

human, use of sterile mosquito and treatment to protect pregnant women and 

newborn births respectively. This quadratic cost and objective function are chosen 

in line with the literature on epidemic controls by Lashari et al.  [14], Sharomi and 

Malik [15] and Momoh and Fügenschuh [16]. We intend to find an optimal 

control ( ) ( ) ( )* * *

1 2 3, ,u t u t u t  and ( )*

4u t  such that 

  ( ) ( ) * * * *

1 2 3 4 1 2 3 4 1 2 3 4, , , min , , , : , , ,J u u u u u u u u u u u u=       (4) 

Where Ω =  ( ): 0 1,i iu u t   Lebesgue measurable 0, ft t =    for 1,2,3,4i =  is 

the control set. 

3.2. Existence of the Optimal Control 

To show the existence of the optimal control with the initial conditions t = 0, we 

state and prove theorems 1 and 2 below. This will also help us to analyze the 

properties of the system (1) with positive initial conditions ∀ t > 0 since the model 

describes human and mosquito populations. Using the optimal control in the 

system (1) to see the existence of optimal control with the necessary conditions 

satisfying the Pontryagin’s Maximum Principle. Pontryagin et al. [17]. We 

applied Pontryagin’s Maximum Principle to convert equations (1), (3) and (4) into 

a problem of minimizing point-wise Lagrange, L, with respect to 1 2 3, ,u u u , 4u  and 

to find the minimal value of the Lagrangian. This could be achieved according to 

Mwantobe et al. [18] by considering Hamiltonian, H. 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 2

1 2 3 1 1 2 2 3 3 4 4

1

2
h h mH B E t B I t B N t Pu t P u t Pu t P u t= + + + + + +  

            
( ) ( )

( ) ( )

( )
( ) ( )1 1 4 11 1

1

h m h

h h h

h m

I t S t
u u S t R t

I t


  



  
+  − − + − − +    +  

 

( ) ( )
( ) ( )

( )
( ) ( )2 1 41 1

1

h m h

h h

h m

I t S t
u u E t

I t


   



  
+ − + − − + +    +  

 

( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) 

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( ) ( ) 

3 2 2

4 2 1 2

5 1 3 1

6 1 3 1

7 1

1 1
1

1 1
1

h h h h h

h h

m h m

m m

m h

m h m

m

m h

m m m

E t au I t I t R t

au I t R t

I t S t
u u bu S t

I t

I t S t
u u bu E t

I t

E t bu I t

      

    


 




  



   

+ − + + + + +

+ + − + +

  
+  − − + − − +    +  

  
+ − + − − + +    +  

+ − + +

        (5) 

The existence of optimal control of the system (1) will be considered by applying 

the following theorems in Lashari et al. [14], Lashari et al. [19], Lenhart and 

Workman [21] 
 

Theorem 1: There exists an optimal control *

iu   for 1,2,3,4i =  such that   

 ( ) ( ) * * * *

1 2 3 4 1 2 3 4 1 2 3 4, , , min , , , : , , ,J u u u u u u u u u u u u=  , subject to the 

control system (1) with initial conditions at t = 0.         
 

Proof: The state and control variables of the system (1) are positive values and the 

control set Ω is closed and convex. Therefore the integrand of the objective 

function J  in which it was expressed in the system (1) is a convex function of 

( )1 2 3 4, , ,u u u u  on the control set Ω. Since the state solutions are bounded, then 

Lipschitz property of the state system with respect to the state variables is 

satisfied. It can also be seen that ∃ positive numbers 1, 2  and a constant 

1   such that, ( ) ( )
22 2 2 2

1 2 3 4 1 1 2 3 4 2, , , , , ,J u u u u u u u u


  −   (6) 

Therefore, the state variables are bounded and the existence of optimal control of 

the system (1) is concluded. 

3.3. The uniqueness of Optimal Control 

Pontryagin’s Maximum Principle is used to reveal the necessary 

conditions for this optimal control. This is as a result of the fact that minimizing 

the cost-functional in equation (3) subject to the system (1) is the existence of 
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optimal control. According to Lashari et al. [14], If ( ),x u  is an optimal solution 

of an optimal control problem then ∃ a non-trivial vector function λ = (λ1, λ2, λ3, 

λ4,.., λn) that satisfies the following equations 

 
( ) ( ) ( ), , , , , , , , ,

;0 ;
H t x u H t x u H t x udx

dt u x

  




  
= = =

  
  (7) 

Therefore, we can now apply necessary conditions to the Hamiltonian, H, in 

equation (5). Olaniyi et al [5] and Lashari et al. [19] 

Theorem 2: Let * * * * * *, , , , ,h h h h m mS E I R S E and *

mI  be optimal state solutions with 

associated optimal control variables ( )* * * *

1 2 3 4, , ,u u u u  for the optimal control 

problem in (1) and (3). Then there exist the co-states i  which verify (8) with 

the transversality conditions ( ) 0i ft =  in (9) for 1,2,3, ,7i =  and in (11) the 

control variables ( )* * * *

1 2 3 4, , ,u u u u .          

Proof: Consider the system of differential equations in (8) governing the adjoint 

variables λ1, λ2, λ3, λ4, λ5, λ6, λ7. This is obtained by differentiating the  

Hamiltonian H in equation (5) with respect to Sh, Eh, Ih, Rh, Sm, Im and Im. 

According to Fleming and Rishel [20], these are the state variables, by 

applying the first and third equations in equation (7) into equation (5) 

( ) ( ) ( )1
1 4 1 2 11 1

1

h m

h h m

Id H
u u

dt S I


  




= − = − + − − +   +

 

( ) ( )2
2 3 2 1h

h

d H
B

dt E


     


= − = − + + −


 

( )( ) ( ) ( ) ( )
( )

3
2 3 4 1 3 5 6 2

1 1
1

m m

h m h

d SH
au u u

dt I I

 
    




= − = + − + − + − −   +

 

      ( ) 3 2h B   + + − −     

( ) ( )4
4 1 1 4 2 3 4

h

d H

dt R


      


= − = − − − −


           (8) 

( ) ( ) ( ) ( )5
1 3 5 6 1 5 31 1

1

m h

m m h

d IH
u u bu B

dt S I

 
   




= − = − + − − + + −   +

( ) ( )

( ) ( )( )( )
( )

( )

6
6 7 1 6 3

7
1 4 1 2 1 7 32

1 1
1

m

h h
m

m h m

d H
bu B

dt E

d SH
u u bu B

dt I I


    

 
    




= − = − + + −




= − = − + − − + + + −

 +

 

With the transversality conditions  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6 7 0f f f f f f ft t t t t t t      = = = = = = =    (9) 

To evaluate the optimal control of the control variable set, where ( )0,1iu = . Let 

*,h hS S= *,h hE E=
* * * *, , ,h h h h m m m mI I R R S S E E= = = =  and *

m mI I= , and applying the 
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second equation in equation (7), and differentiating the Hamiltonian, H, in 

equation (5) with respect to the control variables 1 2 3, ,u u u  and 4u  

 ( ) ( ) ( )
* * * *

*

1 1 2 1 6 5 5 6 7* *

1

0
1 1

h m h m h m

h m m h

I S I SH
Pu b

u I I

 
      

 


= − − − − − + + =

 + +
 

 ( )*

2 2 3 4

2

0
H

P u a
u

 


= − − =


 

 ( )
* *

*

3 3 6 5*

3

0
1

m h m

m h

I SH
Pu

u I


 




= − − =

 +
          (10) 

 ( )
* *

*

4 4 2 1*

4 1

h m h

h m

I SH
P u

u I


 




= − −

 +
 

By applying the optimal control to the control variable set, ( )* 0,1
i

u =  for 

1,2,3,4i = into equation (10)  

( ) ( ) ( )* * * * * * *

2 1 6 5 5 6 7*

1

1

max 0,min 1,
h h m m m m mS S b S E I

u
P

          − − − + + + 
 =  
      

( ) *

3 4*

2

2

max 0,min 1,
ha I

u
P

   − 
=   

   

 

( )* *

6 5*

3

3

max 0,min 1,
m mS

u
P

    − 
=   

   

          (11) 

( )* *

2 1*

4

4

max 0,min 1,
h hS

u
P

    − 
=   

   

 

where 
*

*

*1

h m
h

h m

I

I





=

+
 and 

*
*

*1

m h
m

m h

I

I





=

+
. This shows that the uniqueness of the 

optimal control of the model has been achieved for small tf based on prior 

boundedness of the state variables as well as adjoint variables. This is made 

possible through the use of Lipschitz property of the ordinary differential 

equations.  

3.4. Numerical Simulation of the Optimal Control 

The optimality system consists of state system in system (1), optimal control set in 

equation (11), adjoint system in equation (8), boundary conditions in equation (9) 

and initial conditions ( ) ( ) ( ) ( )0 100, 0 25, 0 15, 0 5,h h h hS E I R= = = = ( )0mS =  

( )1000, 0 20mE =  and ( )0 30mI =  according to Olaniyi et al. [5]. Using this 

optimality system, the state variables and optimal control can be calculated. It 

shows that the second equation in system (7) applied on Hamiltonian equation (5) 

is positive which means that the optimal problem is minimal at controls * * *

1 2 3, ,u u u  

and *

4u . We carried out the numerical simulation with Maple 18 by using the 
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forward-backward fourth-order Runge-Kutta method and the result is shown in 

the graphs below. 
 

3.5. Graphical Solution of the Optimal Control 

 
(a): Optimal Control graph of Exposed Human 

against Time 

 
(b): Optimal Control graph of Infectious 

Human against Time 

 
(c): Optimal Control graph of Exposed 

Mosquito against Time 

 
(d): Optimal Control graph of Infectious 

Mosquito against Time 

 
(e): Control Profiles graph of u1 and u2 

Fig. 1: Simulation of the model showing the effects of insecticide-treated bednets ( )1u and infected 

human treatment ( )2u on malaria transmission 
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(a): Optimal Control graph of Exposed Human 

against Time 

 
(b): Optimal Control graph of Infectious 

Human against Time 

 
(c): Optimal Control graph of Exposed 

Mosquito against Time 

 
(d): Optimal Control graph of Infectious 

Mosquito against Time 

 

(e): Control Profiles graph of 1 2,u u  and 4u  

Fig. 2: Simulation of the model showing the effects of insecticide-treated bednets ( )1u , infected 

humans treatment ( )2u and pregnant women & newborn births ( )4u  
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(a): Optimal Control graph of Exposed Human 

against Time 

 
(b): Optimal Control graph of Infectious 

Human against Time 

 
(c): Optimal Control graph of Exposed 

Mosquito against Time 

 
(d): Optimal Control graph of Infectious 

Mosquito against Time 

 

(e): Control Profiles graph of  1 2,u u  and 3u  

Fig. 3: Simulation of the model showing the effects of insecticide-treated bednets ( )1u , infected 

humans treatment ( )2u  and sterile mosquitoes technique ( )3u  
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Fig. 4: Control Profiles graph of of  1 2 3, ,u u u  and 4u  

4. Results and Discussion 

 The results from the numerical simulation can be classified in the 

following categories: 

4.1. Category A: Insecticide Treated Bednets and Infected Humans 

Treatment 

In this category, figure 1 illustrates the impact of the insecticide-treated 

bednets control ( )1u  and infected humans treatment control ( )2u  in eradicating 

malaria in the population. It is verified that by applying the controls, the exposed 

and infectious humans, as well as exposed and infectious mosquitoes, decrease 

more rapidly to extinction compared to when there is no control. The control 

profile in figure 1(e) shows that 1u  and 2u  are at their upper bound until time t = 

20 days and time t = 141 days respectively before decreasing to the lower bound. 

4.2. Category B: Insecticide Treated Bednets, Infected Humans 

Treatment and Pregnant women & newborn births 

In this category, figure 2 shows the collective impact of Insecticide-treated 

bednets control ( )1u , infected humans treatment control ( )2u  and pregnant 

women & newborn births control ( )4u  on malaria spread for both human and 

mosquito populations. It is verified that by applying the control, the exposed and 

infectious humans, as well as exposed and infectious mosquitoes, diminish more 

rapidly compared to when control. The control profile in figure 2(e) shows that 

1 2,u u  and 4u  are at their upper bound until time t = 20 days, t =141 days and t 

=196 days respectively before decreasing to the lower bound. 
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4.3. Category C: Insecticide Treated Bednets, Infected Humans 

Treatment and Sterile mosquitoes technique 

In this category, figure 3 shows the collective impact of Insecticide-treated 

bednets control ( )1u , infected humans treatment control ( )2u  and Sterile 

mosquitoes technique control ( )3u  on malaria transmission for both human and 

mosquito populations. It is verified that by applying the control, exposed and 

infectious humans, as well as exposed and infectious mosquitoes decrease more 

rapidly to extinction compared to without control. The control profile in figure 

3(e) illustrates that 1 2,u u  and 3u  are at their upper bound until time t = 20 days, t 

=141 days and t =200 days respectively before decreasing to the lower bound. 
 

The control profile in figure 4 illustrates that the Insecticide mosquitoes bednets 

( )1u , infected humans treatment control ( )2u , Sterile mosquitoes technique 

control ( )3u  and Pregnant women & newborn births ( )4u  are at their upper bound 

until time t = 20 days, t = 141 days, t = 200 days and t = 196 days respectively 

before decreasing to the lower bound. 

5. Conclusion 

In this paper, we derived and analyzed a deterministic mathematical model 

on malaria with seven compartments, the optimal control analysis is achieved 

from the formulated model in line with the arrangement of the four control 

measures and the analysis gave credence to Pontryagin’s Maximum Principle 

(PMP) together with numerical simulations. We conclude that if the controls are 

well managed and implemented, then it would curb or limit the transmission of 

malaria between vector-host related populations. 

R E F E R E N C E S 

[1]  F.E.G. Cox, History of the Discovery of the Malaria Parasites and their Vectors. Parasites & 

Vectors, 3 (2010), No. 5, doi:10.1186/1756-3305-3-5. 

[2] World Health Organization: International Travel and Health, Disease Information, 

https://www.who.int/ith/diseases/malaria/en/ 

[3] World Health Organization. World malaria report, 2016. 

http://www.who.int/malaria/media/world-malaria-report-2016/en/. Date accessed: 20th 

February, 2019. 

[4] D. Khamis, C. El Mouden, K. Kura, M.B. Bonsall, Optimal Control of Malaria: Combining 

Vector Interventions and Drug Therapies. Malar J, 17 (2018), No. 174, 1-18. 

doi:10.1186/s12936-018-2321-6. 

[5] S. Olaniyi, K.O. Okosun, S.O. Adesanya, E.A. Areo, Global Stability and Optimal Control 

Analysis of Malaria Dynamics in the Presence of Human Travelers. The Open Infectious 

Diseases Journal, 10 (2018), 166-186. doi:10.2174/1874279301810010166. 



190                                Abioye A.I, Ibrahim M.O, Peter O.J, Ogunseye A.H. 

[6] E.A. Bakare, O.E. Abolarin, Optimal Control of Malaria Transmission Dynamics with 

Seasonality in Rainfall. International Journal of Pure and Applied Mathematics 119 (2018), 

No. 3, 519-539. 

[7] H.R. Joshi, S. Lenhart, S. Hota, F. Agusto, Optimal Control of an SIR Model with Changing 

Behavior Through an Education Campaign. Electronic Journal of Differential Equations, 

2015, 50 (2015), 1-14. 

[8] S. Munzir, M. Nasir, M. Ramli, Optimal Control for Malaria Disease Through Vaccination. 

IOP Conf. Series: Materials Science and Engineering, 2018, 300(2018), 1-5. 

doi:10.1088/1757-899X/300/1/012045. 

[9] G. Otieno, J.K. Kokse, J.M. Mutiso, Cost Effectiveness of Optimal Malaria Control 

Strategies in Kenya. Mathematics, 4 (2016), No. 14. doi:10.3390/math4010014. 

[10] P. Panja, S.K. Mondal, J. Chattopadhyay, Stability, Bifurcation and Optimal Control 

Analysis of a Malaria Model in a Periodic Environment. DE GRUYTER, 2018, 1-16. 

doi.org/10.1515/ijnsns-2017-0221. 

[11] J.P. Romero-Leiton, J.M. Montoya-Aguilar, E. Ibargüen-Mondragón, An Optimal Control 

Problem Applied to Malaria Disease in Colombia. Applied Mathematical Sciences, 12 

(2018), No. 6, 279-292, doi:10.12988/ams.2018.819. 

[12] E.A.M. Osman, K.K. Adu, C. Yang, A Simple SEIR Mathematical Model of Malaria 

Transmission.Asian Research Journal of Mathematics, 7 (2017), No. 3, 1-22. 

[13] S. Olaniyi, O.S. Obabiyi, Mathematical Model for Malaria Transmission Dynamics in 

Human and Mosquito Populations with Nonlinear Forces of Infection. Int. J. Pure Appl. 

Math., 88 (2013), No. 1, 125-156, doi: http://dx.doi.org/10.12732/ijpam.v88i1.10. 

[14] A.A. Lashari, K. Hattaf, G. Zaman, X.Z. Li, Backward bifurcation and optimal control of a 

vector-borne disease. Appl Math Inf Sci., 7 (2013), No. 1, 301-309, 

doi.org/10.12785/amis/070138. 

[15] O. Sharomi, T. Malik, Optimal Control in Epidemiology. Ann Oper Res., 227 (2015), 1-17, 

doi.org/10.1007/s10479-015-1834-4. 

[16] A.A. Momoh, A. Fügenschuh, Optimal Control of Intervention Strategies and Cost 

Effectiveness Analysis for a Zika Virus Model. Operations Research for Health Care, 18 

(2018), 99–111. doi:10.1016/j.orhc.2017.08.004. 

[17] L. Pontryagin, V.G. Boltyanskii, E. Mishchenko, The Mathematical Theory of Optimal 

Processes. Wiley, New York, USA, (1962). 

[18] P. M. Mwamtobe, S. Abelman, J.M. Tchuenche, A. Kasambara, Optimal (Control of) 

Intervention Strategies for Malaria Epidemic in Karonga District, Malawi. Hindawi 

Publishing Corporation Abstract and Applied Analysis, 2014 (2014), Article ID 594256, 20 

pages, doi:10.1155/2014/594256. 

[19] A.A. Lashari, G. Zaman, Optimal control of a vector borne disease with horizontal 

transmission. Nonlinear Analysis: Real World Applications, 13(2012), 203–212. 

[20] W.H. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control. Springer Verlag: 

New York, NY, USA, (1975). 

[21] S. Lenhart, J.T. Workman, Optimal control applied to biological models. London: Chapman 

& Hall, (2007). 

http://dx.doi.org/10.12732/ijpam.v88i1.10

