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STANLEY DEPTH OF CERTAIN CLASSES OF SQUARE-FREE

MONOMIAL IDEALS

Mircea Cimpoeaş1

Given two finite sequences of positive integers α and β, we associate a
square-free monomial ideal Iα,β in the ring of polynomials S = K[x1, . . . , xn]. As a
continuation of a previous paper, we study the Stanley depth of Iα,β in particular cases
and also for extensions of the ideal Iα,β .
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Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K. Let M be a
Zn-graded S-module. A Stanley decomposition of M is a direct sum

D :M =
r⊕

i=1

miK[Zi]

of Zn-graded K-vector spaces, where mi ∈ M is homogeneous with respect to Zn-grading,
Zi ⊂ {x1, . . . , xn} such that miK[Zi] = {umi : u ∈ K[Zi]} ⊂M is a free K[Zi]-submodule
of M .

We define sdepth(D) = mini=1,...,r |Zi| and

sdepth(M) = max{sdepth(D)| D is a Stanley decomposition of M}.

The number sdepth(M) is called the Stanley depth of M .
Herzog, Vladoiu and Zheng show in [12] that sdepth(M) can be computed in a finite

number of steps if M = I/J , where J ⊂ I ⊂ S are monomial ideals. In [16], Rinaldo give a
computer implementation for this algorithm, in the computer algebra system CoCoA [8]. In
[2], J. Apel restated a conjecture firstly given by Stanley in [18], namely that

sdepth(M) ≥ depth(M),

for any Zn-graded S-moduleM . This conjecture proves to be false, in general, for M = S/I
and M = J/I, where 0 ̸= I ⊂ J ⊂ S are monomial ideals, see Duval et. al. [9].

Stanley depth is an important combinatorial invariant and deserves a thorough study.
The explicit computation of the Stanley depth is difficult, from an algorithmic point of view.
Also, although the Stanley conjecture was disproved, it is interesting to find large classes of
multigraded modules which satisfy the Stanley inequality, i.e. sdepth(M) ≥ depth(M). For
a friendly introduction in the thematic of Stanley depth, we refer the reader [13].

Given two sequences of positive integers:

α : a1 < a2 < · · · < as, β : b1 < b2 < · · · < bs,
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with ai ≤ bi for all 1 ≤ i ≤ s and bs ≤ n, we consider the square-free monomial ideal

Iα,β = (xa1 · · ·xb1 , . . . , xas · · ·xbs) ⊂ S = K[x1, . . . , xn].

Note that Iα,β is a natural generalization for the path ideal associated to the path graph,
see [6] for further details. In [7] we studied the algebraic and combinatorial invariants of
the ideal Iα,β . As a continuation of our paper, we consider several particular cases and
extensions of Iα,β .

For n ≥ m ≥ 1, the m-path ideal of the path graph of length n is

In,m = (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . , xn−m+1 · · ·xn) ⊂ S.

In [6, Theorem 1.3] we computed sdepth(S/In,m). We study the ideal

In,m,k = (x1x2 · · ·xm, xk+1 · · ·xk+m, . . . , xn−m+1 · · ·xn),
where n ≥ m ≥ 1 and k|n − m, which is a generalization of In,m. See Proposition 2.1,
Proposition 2.2 and Theorem 2.3.

We consider the following extensions of the sequences α and β:

ᾱ : a1 < · · · < as < · · · < as+t, β̄ : b1 < · · · < bs+t,

where b1 + n > bs+i > n for all 1 ≤ i ≤ t and as+t ≤ n. We consider the ideal

Jᾱ,β̄ = Iα,β + (us+1, · · · , us+t),

where us+i = xas+i · · ·xnx1 · · ·xbs+i−n, for all 1 ≤ i ≤ t.
The ideal Jᾱ,β̄ is a natural generalization for the path ideal of a cycle graph, see [5].

In Theorem 2.5, we prove that

depth(S/Jᾱ,β̄), sdepth(S/Jᾱ,β̄) ≤ sdepth(S/Iα,β).

In special cases, we obtain precise formulas or sharp bounds for these invariants, see Propo-
sition 2.7, Proposition 2.8 and Proposition 2.9.

1. Preliminaries

First, we recall the well known Depth Lemma, see [19, Lemma 1.3.9].

Lemma 1.1. (Depth Lemma) If 0 → U → M → N → 0 is a short exact sequence of
modules over a local ring S, or a Noetherian graded ring with S0 local, then: (1) depthM ≥
min{depthN,depthU}.

(2) depthU ≥ min{depthM, depthN + 1}.
(3) depthN ≥ min{depthU − 1, depthM}.

In [15], Asia Rauf proved the analog of Lemma 1.1(1) for sdepth:

Lemma 1.2. Let 0 → U →M → N → 0 be a short exact sequence of Zn-graded S-modules.
Then: sdepth(M) ≥ min{sdepth(U), sdepth(N)}.

We also recall the following well known results. See for instance [15, Corollary 1.3],
[4, Proposition 2.7] and [15, Corollary 3.3].

Lemma 1.3. Let I ⊂ S be a monomial ideal and let u ∈ S a monomial which is not in I.
(1) sdepth(S/(I : u)) ≥ sdepth(S/I), sdepth(I : u) ≥ sdepth(I) and

depth(S/(I : u)) ≥ depth(S/I).
(2) If u is regular on S/I, then sdepth(S/(I, u)) = sdepth(S/I)− 1.

Let 0 ≤ s ≤ n be an integer. We consider two sequences of integers α : a1 < a2 <
· · · < as and β : b1 < b2 < · · · < bs with 1 ≤ a1, bs ≤ n and ai ≤ bi, for all 1 ≤ i ≤ s. If
s = 0, then α and β are the empty set.

For s ≥ 1, let j := j(α, β) := max{i : ai ≤ b1}. We define

α′ : a′1 = aj+1 < a′2 = aj+2 < · · · < a′s−j = as,



Stanley depth of certain classes of square-free monomial ideals 35

β′ : b′1 = bj+1 < b′2 = bj+2 < · · · < b′s−j = bs.

If s = 1 or j = 1, let α′′ = α′ and β′′ = β′. Assume s > 1 and j > 1.
If aj+1 > b1 + 1, we define

α′′ : a′′1 = b1 + 1 < a′′2 = aj+1 < · · · < a′′s−j+1 = as,

β′′ : b′′1 = b2 < b′′2 = bj+1 < · · · < b′′s−j+1 = bs.

If aj+1 = b1 + 1, we define

α′′ : a′′1 = b1 + 1 < a′′2 = aj+2 < · · · < a′′s−j = as,

β′′ : b′′1 = b2 < b′′2 = bj+2 < · · · < b′′s−j = bs.

Using the sequences α′, β′, α′′ and β′′, we define recursively, the following numbers:

φ(α, β) :=

{
n, s = 0

φ(α′′, β′′)− 1, s ≥ 1
, ψ(α, β) :=

{
n, s = 0

ψ(α′, β′)− 1, s ≥ 1
.

We recall several results from [7].

Theorem 1.4. ([7, Theorem 1.6]) For any sequences of positive integers α and β as above:
(1) depth(S/Iα,β) = sdepth(S/Iα,β) = φ(α, β).
(2) dim(S/Iα,β) = ψ(α, β).

Proposition 1.5. ([7, Proposition 1.9]) Let α and β as above. If ak+2 > bk + 1 for all
1 ≤ k ≤ s− 2, then:

(1) sdepth(S/Iα,β) = depth(S/Iα,β) = n− s.
(2) sdepth(Iα,β) = n−

⌊
s
2

⌋
, for all s ≥ 1.

(3) If bi ≥ ai+1, for all 1 ≤ i ≤ s− 1, then dim(S/Iα,β) = n−
⌈
s
2

⌉
.

Theorem 1.6. ([7, Theorem 1.10]) Let α and β as above. If ak+2 > bk + 1 for all 1 ≤ k ≤
s− 2, then sdepth(S/Itα,β) = depth(S/Itα,β) = n− s, for all t ≥ 1.

Proposition 1.7. ([7, Proposition 1.11]) Let α and β as above. If ak+2 = bk + 1 for all
1 ≤ k ≤ s− 2, then sdepth(S/Iα,β) = depth(S/Iα,β) = n− s+

⌊
s
3

⌋
.

Corollary 1.8. ([7, Corollary 1.13]) For any s, t ≥ 1, we have:
(1) n− s+

⌊
s
3

⌋
≥ depth(S/Itα,β) ≥ n− s+max{

⌊
s−t+1

3

⌋
, 0}.

(2) n− s+
⌊
s
3

⌋
≥ sdepth(S/Itα,β) ≥ n− s+max{

⌊
s−t+1

3

⌋
, 0}.

2. Main results

A generalization of the path ideal of the path graph

Let n ≥ m ≥ 2 be two integers. The path graph of length n, denoted by Pn, is a graph
with the vertex set V = [n] = {1, . . . , n} and the edge set E = {{1, 2}, {2, 3}, . . . , {n−1, n}}.
We denote

In,m = (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . , xn−m+1xn−m+2 · · ·xn).
Note that In,m is the m-path ideal of the graph Pn, provided with the direction given by
1 < 2 < . . . < n, see [11] for further details. In [6, Theorem 1.3] we proved that

sdepth(S/In,m) = depth(S/In,m) = n+ 1−
⌊
n+ 1

m+ 1

⌋
−
⌈
n+ 1

m+ 1

⌋
. (1)

Let n ≥ m > k ≥ 1 be three integers such that k|n − m. We consider the ideal
In,m,k = (x1 · · ·xm, xk+1 · · ·xk+m, . . . , xn−m+1 · · ·xn). We denote s = (n−m)/k + 1. Note
that In,m,k = Iα,β , where α : a1 < a2 < · · · < as, β : b1 < b2 < · · · < bS with aj = k(j−1)+1
and bj = k(j − 1) + m, for all 1 ≤ j ≤ s. We denote φ(n,m, k) := φ(α, β). Note that,
In,m,1 = In,m is the m-path ideal of the path graph of length n.
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As a direct consequence of Proposition 1.5 and Theorem 1.6, we obtain the following
result.

Proposition 2.1. If m < 2k, then, the following hold:
(1) sdepth(S/Itn,m,k) = depth(S/Itn,m,k) = n− n−m

k , for all t ≥ 1.

(2) sdepth(In,m,k) = n−
⌊
n−m
2k

⌋
.

(3) dim(S/In,m,k) = n−
⌈
n−m
2k

⌉
.

Note that a similar result to Proposition 2.1(1) was proved in [10, Theorem 1.1(1)].
As a direct consequence of Proposition 1.7 and Corollary 1.8, we get:

Proposition 2.2. (compare with [10, Theorem 1.2(1,2)]) If m = 2k, then, the following
hold:

(1) sdepth(S/In,m,k) = depth(S/In,m,k) = n− s+
⌊
s
3

⌋
.

(2) sdepth(S/Itn,m,k) ≥ n− n−m
k +max{

⌊
n−m+kt+k

3k

⌋
, 0}, for all t ≥ 2.

(3) depth(S/Itn,m,k) ≥ n− n−m
k +max{

⌊
n−m+kt+k

3k

⌋
, 0}, for all t ≥ 2.

We conclude this paragraph with the following result, which generalize formula (1).

Theorem 2.3. Assume m > 2k and let t =
⌊
m−1
k

⌋
+ 1. Then, the following hold:

(1) sdepth(S/In,m,k) = depth(S/In,m,k) = n−
⌈
(n−m)/k+1

t+1

⌉
−
⌈
(n−m)/k

t+1

⌉
.

(2) dim(S/In,m,k) = n−
⌈
(n−m)/k+1

t

⌉
.

Proof. If s ≤ 1, then there is nothing to prove. Assume s ≥ 2. Note that j = j(α, β) =
min{s, t}. If j = s, i.e. s ≤

⌊
m−1
k

⌋
+ 1, then sdepth(S/In,m,k) = depth(S/In,m,k) = n − 2

and dim(S/In,m,k) = n− 1, and thus we’re done. Assume j < s. Since I ′ ∼= In−kj,m,kS, by
induction hypothesis and Theorem 1.4(2), it follows that

dim(S/I) = dim(S/I ′)− 1 = n−
⌈
(n−m− kt)/k + 1

t

⌉
− 1 = n−

⌈
(n−m)/k + 1

t

⌉
.

For any 1 ≤ i ≤ s we denote Ii = (ui, . . . , us), where ui = xai · · ·xbi , for all i.
We also denote Is+1 = 0. Note that Ii ∼= In−k(i−1)S, for all i ≤ s. If k|m, then I ′′ =
(xm+1 · · ·xm+k, Ij+2) and xm+1 · · ·xm+k is regular on S/Ij+2. By induction hypothesis and
Theorem 1.4(1) , it follows

sdepth(S/I) = depth(S/I) = depth(S/I ′′)− 1 = depth(S/Ij+2)− 2 =

= n−
⌈
(n−m− k(t+ 1))/k + 1

t+ 1

⌉
−

⌈
(n−m− k(t+ 1))/k

t+ 1

⌉
− 2 =

= n−
⌈
(n−m)/k + 1

t+ 1

⌉
−

⌈
(n−m)/k

t+ 1

⌉
.

If k - m, then I ′′ = (xm+1 · · ·xm+k, Ij+1). By Theorem 1.4(1), one can easily check that

depth(S/I ′′) = depth(S/(I ′′ : xm+2 · · ·xm+k)) = depth(S/Ij+2)− 1,

and the same for sdepth. As above, we get the required conclusion. �

An extension of the ideals Iα,β

In the following we introduce a new class of ideals. Let s ≥ 2 be an integer. We
consider two integer sequences α : 1 = a1 < a2 < · · · < as and β : 1 < b1 < b2 < · · · < bs,
with ai < bi, for all i and bs ≤ n. We also, consider

ᾱ : a1 < · · · < as < as+1 < · · · < as+t,

β̄ : b1 < · · · < bs < bs+1 < · · · < bs+t,

with bs+1 > n and bs+t < n+ b1.
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Let ui = (xai · · ·xbi) for all 1 ≤ i ≤ s and ui = xai · · ·xnx1 · · ·xbi−n for all s + 1 <
i < s+ t. Note that t < b1. We denote I := Iα,β = (u1, · · · , us). We consider the ideal

J := Jᾱ,β̄ = Iα,β + (us+1, . . . , us+t).

Note that, if there exists some 1 ≤ i ≤ s − 1 such that ai+1 > bi, then, modulo
reordering the variables, J can be seen as an ideal of the type described in the first section.
Therefore, in the following, we will assume that ai+1 ≤ bi for all 1 ≤ i ≤ s. In particular,
j(α, β) > 1.

Our computer experiments [8] yields us to the following conjecture.

Conjecture 2.4. If depth(S/J) = φ(α, β) then sdepth(S/J) = φ(α, β).

Theorem 2.5. With the above notations, we have

φ(α, β) ≥ sdepth(S/J), depth(S/J) ≥
b1
min
i=1

{depth(S/((J : x1+i · · ·xb1), xi))}.

Moreover, Conjecture 2.4 implies sdepth(S/J) ≥ depth(S/J).

Proof. We consider the short exact sequence:

0 −→ S/(J : x2 · · ·xb1) −→ S/J −→ S/(J, x2 · · ·xb1) −→ 0.

Note that (J : x2 · · ·xb1) = (x1, I
′′), where I ′′ = Iα′′,β′′ . By Theorem 1.4(1) and Lemma

1.3(1), it follows that sdepth(S/J) ≤ sdepth(S/(J : x2 · · ·xb1)) = φ(α, β). Similarly, we get
sdepth(S/J) ≤ φ(α, β).

If depth(S/J) = depth(S/(J : x2 · · ·xb1)), then by Lemma 1.1(2),

sdepth(S/J) ≥ min{φ(α, β), sdepth(S/(J, x2 · · ·xb1))}.

If Conjecture 2.4 holds, then sdepth(S/J) = φ(α, β) = depth(S/J).
If depth(S/J) < φ(α, β) = sdepth(S/(J : x2 · · ·xb1)), then, by Lemma 1.1, it follows

that

depth(S/(J, x2 · · ·xb1)) = depth(S/J).

Also, by Lemma 1.1(2), it follows that sdepth(S/J) ≥ depth(S/J). If t = 1 and bs+t = n+1,
then (J, x2 · · ·xb1) is an ideal of the same type as I, and we can compute its depth and
sdepth. Otherwise, (J, x2 · · ·xb1)) is an ideal of the same type as J , and we can apply the
same procedure, i.e. we consider the short exact sequence

0 −→ S/((J : x3 · · ·xb1), x2) −→ S/(J, x2 · · ·xb1) −→ S/(J, x3 · · ·xb1) −→ 0.

Therefore, either

sdepth(S/(J, x2 · · ·xb1)) = depth(S/(J, x2 · · ·xb1)) = depth(S/((J : x3 · · ·xb1), x2)),

either

depth(S/(J, x2 · · ·xb1)) = depth(S/(J, x3 · · ·xb1))
and

sdepth(S/(J, x2 · · ·xb1)) ≥ depth(S/(J, x2 · · ·xb1)).
This procedure eventually stops, and thus we complete the proof. �

Remark 2.6. Note that, if depth(S/J) = φ(α, β), then, from the proof of Theorem 2.5,
it follows that sdepth(S/J) ≥ φ(α, β) − 1. Although the Stanley conjecture was disproved
for quotient rings, it is still open the conjecture that, if I ⊂ S is a monomial ideal, then
sdepth(S/I) ≥ depth(S/I)− 1 and sdepth(I) ≥ depth(I).
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Proposition 2.7. Let ᾱ : a1 < · · · < as < as+1 and β̄ : b1 < · · · < bs < bs+1, as above,
such that bi + 1 < ai+2 for all 1 ≤ i ≤ s − 1, bs < n and bs+1 − n + 1 < a2. Let J = Jᾱ,β̄.
Then:

sdepth(S/J) = depth(S/J) = n− s− 1,

n−
⌊s
2

⌋
≥ sdepth(J) ≥ n−

⌊
s+ 1

2

⌋
.

Proof. Let t = bs+1 − n and v = x1 · · ·xt. We consider the short exact sequence:

0 −→ S/(J : v) −→ S/J −→ S/(J, v) −→ 0.

We have (J : v) = (xt+1 · · ·xb1 , u2, . . . , us+1), where ui = xai · · ·xbi , for all i. Note that
(J : v) satisfies the hypothesis of Proposition 1.5 and therefore

depth(S/(J : v)) = sdepth(S/(J : v)) = n− s− 1.

On the other hand, (J, v) = (v, u2, . . . , us). Therefore, by Proposition 1.5, it follows that

sdepth(S/(J, v)) = depth(S/(J, v)) = n− s.

By Lemma 1.1, Lemma 1.2 and Lemma 1.3(1) it follows that

sdepth(S/J) = depth(S/J) = n− s− 1.

According to [14, Theorem 2.1], we have sdepth(J) ≥ n−
⌊
s+1
2

⌋
. On the other hand,

(J : (xa1 · · ·xbs+1−n)(xa2 · · ·xb1) · · · (xas · · ·xbs)) is a complete intersection monomial ideal,
generated by s monomials. Therefore, by [17, Theorem 2.4] and Lemma 1.3(1), it follows
that sdepth(J) ≤ n−

⌊
s
2

⌋
. �

Proposition 2.8. Let ᾱ : a1 < · · · < as < as+1 and β̄ : b1 < · · · < bs < bs+1, as above,
such that bi + 1 = ai+2 for all 1 ≤ i ≤ s − 1, bs = n and bs+1 − n + 1 = a2. Let J = Jᾱ,β̄.
Then:

n− s+
⌊s
3

⌋
≥ sdepth(S/J) ≥ depth(S/J) = n− s+

⌊
s− 1

3

⌋
,

sdepth(J) ≥ n−
⌊
s+ 1

2

⌋
≥ depth(J).

Proof. If s = 3, then it is easy to see that sdepth(S/J) = depth(S/J) = n − 2. Assume
s ≥ 4. Let t = bs+1 − n and v = x1 · · ·xt. Let ui = xai · · ·xbi for all i ≤ s and us+1 =
xas+1 · · ·xnx1 · · ·xbs+1−n. We consider the short exact sequence:

0 −→ S/(J : v) −→ S/J −→ S/(J, v) −→ 0.

Note that (J : v) = (L, xt+1 · · ·xb1 , xas+1 · · ·xn), where L = (u3, . . . , us−1) and xt+1 · · ·xb1 ,
xas+1 · · ·xn is a regular sequence on S/L. On the other hand, L satisfies the conditions of
Proposition 1.7. Therefore, by Lemma 1.3(2) and Proposition 1.7, it follows that

sdepth(S/(J : v)) = depth(S/(J : v)) = n− (s− 3) +

⌊
s− 3

3

⌋
− 2 = n− s+

⌊s
3

⌋
.

On the other hand, (J, v) = (v, U), where U = (u2, . . . , us). Since v is regular on S/U , it
follows from Lemma 1.3(2) and Proposition 1.7, that

sdepth(S/(J, v)) = depth(S/(J, v)) = n− s+

⌊
s− 1

3

⌋
.

Thus, by Lemma 1.2, we get

depth(S/J) ≥ n− s+

⌊
s− 1

3

⌋
, sdepth(S/J) ≥ n− s+

⌊
s− 1

3

⌋
.
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On the other hand, by Lemma 1.3(1),

sdepth(S/J) ≤ n− s+
⌊s
3

⌋
, depth(S/J) ≤ n− s+

⌊s
3

⌋
.

In order to complete the proof, it is enough to show that

depth(S/J) = n− s+

⌊
s− 1

3

⌋
.

If s ≡ 1(mod 3) or s ≡ 2(mod 3), then there is nothing to prove. Assume 3|s. We use

induction on
∑s+1

i=1 bi − ai. If bi = ai + 1 for all 1 ≤ i ≤ s+ 1, then J is the edge ideal of a
cycle graph. Thus, according to [3, Proposition 5.0.6], it follows that

depth(S/J) = n− s+

⌊
s− 1

3

⌋
.

If J is not the edge ideal of a cycle graph, by reordering the variables, we can assume
that b1 > a1 + 1 and b2 > a2 + 1. Let J ′ = (J : xb1).

Note that J ′ satisfies the hypothesis and therefore, by induction, we get depth(S/J ′) =
n−s+

⌊
s−1
3

⌋
. On the other hand, (J, xb1)

∼= (L, xb1), where L is generated by s−1 generators
and satisfies the hypothesis of Proposition 1.7. Thus, by Lemma 1.3(2), it follows that

depth(S/(J, xb1)) = n− (s− 2)− 1 +

⌊
s− 2

3

⌋
= n− s+

⌊ s
3

⌋
= depth(S/(J : xb1)) + 1.

Thus, by Lemma 1.1,

depth(S/J) = depth(S/(J : xb1)) = n− s+

⌊
s− 1

3

⌋
,

as required. The last assertion is a consequence of [14, Theorem 2.1]. �

A generalization of the path ideal of the cycle graph

Let n > m ≥ 2 be two integers. The cycle graph of lenght n, denoted by Cn, is a
graph with the vertex set V = [n] and the edge set E = {{1, 2}, {2, 3}, . . . , {n−1, n}, {n, 1}}.
We denote

Jn,m = (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . , xn−m+1xn−m+2 · · ·xn, . . . , xnx1 · · ·xm−1),

the m-path ideal of the graph Cn.

Let p =
⌊

n
m+1

⌋
and d = n− (m+ 1)p. According to [1, Corollary 5.5],

pd(S/Jn,m) =

{
2p+ 1, d ̸= 0,

2p, d = 0.

By Auslander-Buchsbaum formula, see [19, Theorem 2.5.13], it follows that

depth(S/Jn,m) = n− pd(S/Jn,m) = n−
⌊

n

m+ 1

⌋
−

⌈
n

m+ 1

⌉
= φ(n− 1,m).

In [5, Theorem 1.4] we proved that

φ(n,m) ≥ sdepth(S/Jn,m) ≥ depth(S/Jn,m) = φ(n− 1,m).

Note that the first inequality follows from Theorem 2.5. Also, if Conjecture 2.4 is true, then,
in particular, sdepth(S/Jn,m) ≥ depth(S/Jn,m).

Let n ≥ m > k ≥ 1 be three integers such that k|n. We consider the ideal

Jn,m,k = (x1 · · ·xm, xk+1 · · ·xk+m, . . . , xn−k+1 · · ·xn−k+m) ⊂ S,

where we denoted, by abuse, xn+i := xi, for 1 ≤ i ≤ m− k.
Note that Jn,m,k = Jᾱ,β̄ , where

ᾱ : 1 < k + 1 < · · · < n− k + 1, β̄ : m < k +m < · · · < n− k +m.
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Also, Jn,m,1 = Jn,m is the m-path ideal of the cycle graph of length n.
As a consequence of Proposition 2.7 and Proposition 2.8, we get the following result,

which is similar to [10, Theorem 1.1(2,3)].

Proposition 2.9. With the above notations, we have:
(1) If 2k < m, then

sdepth(S/Jn,m,k) = depth(S/Jn,m,k) = n− s− 1,

n−
⌊s
2

⌋
≥ sdepth(Jn,m,k) ≥ n−

⌊
s+ 1

2

⌋
.

(2) If 2k = m, then

n− s+
⌊s
3

⌋
≥ sdepth(S/Jn,m,k) ≥ depth(S/Jn,m,k) = n− s+

⌊
s− 1

3

⌋
,

sdepth(Jn,m,k) ≥ n−
⌊
s+ 1

2

⌋
≥ depth(Jn,m,k).
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