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EDGE-WIENER TYPE INVARIANTS OF SPLICES AND 
LINKS OF GRAPHS 

Mahdieh AZARI1, Ali IRANMANESH2* 

In this paper, we present explicit formulae for the first and second edge-
Wiener type invariants of splices and links of graphs. As a consequence, the first and 
second edge-Wiener and edge hyper-Wiener indices of these classes of composite 
graphs will be determined.   
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1. Introduction 

In this paper, we are concerned with connected finite graphs without any 
loops or multiple edges. Let G  be such a graph with the vertex set )(GV  and the 
edge set )(GE . For )(GVu∈  and )(GEe∈ , we denote by )(deg uG , the degree 
of u  in G  and by )(eV , the set of two end vertices of e . A topological index 

)(GTop  of G  is a real number with the property that for every graph H  
isomorphic to G , )()( GTopHTop = . Vertex version of the Wiener index is the 
first reported distance-based topological index which was introduced in 1947 by 
Wiener [1], who used it for modeling the shape of organic molecules and for 
calculating several of their physico-chemical properties. The Wiener index )(GW  
of G  is defined as:
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where ),( Gvud  denotes the distance between the vertices u  and v  of G  which is 
defined as the length of any shortest path in G  connecting u  and v . Details on 
the Wiener index can be found in [2-4]. 

The hyper-Wiener index of acyclic graphs was introduced by Milan 
Randić in 1993. Then Klein et al. generalized Randić’s definition for all 
connected graphs in 1995 [5].  The vertex version of hyper-Wiener index of G  is 
defined as:  
                                                            
1Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, 
P. O. Box: 14115-137, Tehran, Iran, e-mail: mahdie.azari@gmail.com 
2Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, 
P. O. Box: 14115-137, Tehran, Iran, e-mail: iranmanesh@modares.ac.ir 
*Corresponding author 



144                                             Mahdieh Azari, Ali Iranmanesh 

]),()([
2
1)(

)(},{

2∑
⊆

+=
GVvu

GvudGWGWW . 

We encourage the reader to consult [6-7], for the mathematical properties of 
hyper-Wiener index and its applications in chemistry. 

Edge versions of the Wiener index based on distance between all pairs of 
edges in a graph G  were introduced in 2009 [8]. Two possible distances between 
the edges uve =  and ztf =  of the graph G can be considered. The first distance 
is denoted by ),(0 Gfed  and defined as: 
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where )},(),,(),,(),,(min{),(1 GtvdGzvdGtudGzudGfed = . It is easy to see 

that ))(,(),(0 GLfedGfed = , where )(GL  is the line graph of G .  

The second distance is denoted by ),(4 Gfed  and defined as: 
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where )},(),,(),,(),,(max{),(2 GtvdGzvdGtudGzudGfed = .  
Related to the above distances, two edge versions of the Wiener index can be 
defined. The first and second edge-Wiener indices of G  are denoted by )(

0
GWe  

and )(
4

GWe , respectively and defined as [8]:  
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Obviously, ))(()(
0

GLWGWe = . For more information on the edge-Wiener indices 
see [9-14]. 

Edge version of hyper-Wiener index are defined based on the distances 0d  
and 4d , as follows [15]: 
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The definitions of the edge-Wiener and edge hyper-Wiener indices can be 
generalized by the following definition:  
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where λ  is an arbitrary real number. The indices ( ) )(
0

GW λ
e  and ( ) )(

4
GW λ

e  are 
called the first and second edge-Wiener type invariants of G, respectively.   
Obviously for }4,0{∈i , 
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In this paper, we present explicit formulae for the first and second edge-
Wiener type invariants of splices and links of graphs. Then, we apply our results 
to compute the first and second edge-Wiener and edge hyper-Wiener indices of 
these classes of composite graphs. Readers interested in more information on 
computing topological indices of composite graphs can be referred to [4, 9-12, 16-
19].  

2. Discussion and results 

In this section, we compute the first and second edge-Wiener type 
invariants of splices and links of graphs. We start by introducing some useful 
notations. 

Let G  be a simple connected graph. Two possible distances between a 
vertex u and an edge e=ab of the graph G  can be considered [20]. The first 
distance is denoted by ),(1 GeuD  and defined as:  

)},(),,(min{),(1 GbudGaudGeuD = , 

and the second one is denoted by ),(2 GeuD  and defined as: 

       )},(),,(max{),(2 GbudGaudGeuD = . 

Note that, ),(1 GeuD  is a nonnegative integer and 0),(1 =GeuD  if and only if 

)(eVu∈ . Also, ),(2 GeuD  is a positive integer and 1),(2 =GeuD  if and only if 
)(eVu∈  or u, a and b form a triangle in G .  
Let λ  be a real number and let )(GVu∈ . We define:  
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Note that, if λ  is a positive number then λ
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particular for 0=λ , )(deg)()()0(
1 uGEGuD G−= , )()()0(

2 GEGuD = . 
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2.1 Splice 

Let 1G  and 2G  be two simple connected graphs with the vertex sets )( 1GV  
and )( 2GV  and the edge sets )( 1GE  and )( 2GE , respectively. For given vertices 

)( 1GVy∈  and )( 2GVz∈ , a splice of 1G  and 2G  by vertices y  and z  is denoted 
by ),)(.( 21 zyGG  and defined by identifying the vertices

 
y  and z  in the union of 

1G  and 2G  as shown in Fig. 1 [21]. We denote by in  and ie  the order and size of 
the graph iG , respectively. It is easy to see that 1)),)(.(( 2121 −+= nnzyGGV  and 

2121 )),)(.(( eezyGGE += .  

 
          Fig. 1. A splice of 1G  and 2G  by vertices y  and z . 

In the following Lemma, the distance between vertices of ),)(.( 21 zyGG  is 
computed. The proof can be easily obtained from the definition of splice of 
graphs, so is omitted.  
Lemma 2.1 Let )),)(.((, 21 zyGGVvu ∈ . Then 
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Theorem 2.2 Let λ  be a positive integer. The first and second edge-Wiener type 
invariants of ),)(.( 21 zyGGG =  are given by: 
(i)
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Proof. (i) By definition of the first edge-Wiener type invariant, 
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Now, we partition the above sum into three sums as follows: 
The first sum 1S  consists of contributions to ( ) )(

0
GWe

λ  of pairs of edges 

from 1G . For edges )(, 1GEfe ∈ , ),(),( 100 GfedGfed = . So, 
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The second sum 2S  consists of contributions to ( ) )(
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The third sum 3S  is taken over all pairs of edges )(, GEfe ∈  such that 
)( 1GEe∈  and )( 2GEf ∈ . It is easy to see that, 
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In order to compute the sum 3S , we partition it into four sums 31S , 32S , 33S  and 

34S  as follows: 
The sum 31S  is equal to: 
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The sum 32S  is equal to: 
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The sum 33S  is equal to: 
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The sum 34S  is equal to: 
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By adding the quantities 31S , 32S , 33S  and 34S , we obtain:
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The formula of ( ) )(
0

GW λ
e  is obtained by adding the quantities 1S , 2S  and 3S .  

(ii) Using a similar method as in the proof of part (i), we have: 
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This completes the proof.                                                                                        □ 
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Using Theorem 2.2, we can get the formulae for the edge-Wiener and edge 
hyper-Wiener indices of ),)(.( 21 zyGG . 
Corollary 2.3 The first and second edge-Wiener indices of ),)(.( 21 zyGGG =  are 
given by: 
(i)
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Corollary 2.4 The first and second edge hyper-Wiener indices of 
),)(.( 21 zyGGG =  are given by: 
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2.2 Link 

Let 1G  and 2G  be two simple connected graphs with the vertex sets )( 1GV  
and )( 2GV  and the edge sets )( 1GE  and )( 2GE , respectively. For vertices 

)( 1GVy∈  and )( 2GVz∈ , a link of 1G  and 2G  by vertices
 

y  and z  is denoted by 
),)(~( 21 zyGG  and obtained by joining y  and z  by an edge in the union of these 

graph, as shown in Fig. 2 [21].  

 
Fig. 2. A link of 1G  and 2G  by vertices

 
y  and z . 

We denote by in  and ie  the order and size of the graph iG , respectively. It 
is easy to see that 2121 )),)(~(( nnzyGGV +=  and

 
1)),)(~(( 2121 ++= eezyGGE .  

In the following Lemma, the distance between vertices of ),)(~( 21 zyGG  
is computed. The proof is easy, so we omit it.  
Lemma 2.5 Let )),)(~((, 21 zyGGVvu ∈ . Then 
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Theorem 2.6 Let λ  be a positive integer. The first and second edge-Wiener type 
invariants of ),)(~( 21 zyGGG =  are given by: 
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Proof. (i) By definition of the first edge-Wiener type invariant,
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Now, we partition the above sum into fifth sums as follows: 
The first sum 1S  consists of contributions to ( ) )(
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The third sum 3S  is taken over all pairs of edges )(, GEfe ∈  such that 
)( 1GEe∈  and yzf = . It is easy to see that, ),(1),( 110 GeyDGfed += . So, 
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The forth sum 4S  is taken over all pairs of edges )(, GEfe ∈  such that 
)( 2GEe∈  and yzf = . It is easy to see that, ),(1),( 210 GezDGfed += . So by a 

similar argument as used in the computation of 3S , we have: 
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The last sum 5S  is taken over all pairs of edges )(, GEfe ∈  such that 
)( 1GEe∈  and )( 2GEf ∈ . In this case, 
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Now, we partition the sum 5S  into four sums 51S , 52S , 53S  and 54S  as follows: 
The sum 51S  is equal to: 
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The sum 52S  is equal to: 

∑ ∑
∉∈ ∈∈

+=
)();( )();(

1152
1 2

)],(2[
eVyGEe fVzGEf

GeyDS λ  

       
ii

eVyGEe fVzGEf i
GeyD

i
),(2 11

)();( )();( 01 2

−

∉∈ ∈∈ =
∑ ∑ ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= λ

λ λ
      



152                                             Mahdieh Azari, Ali Iranmanesh 

       )(2)(deg 1
)(

1
0

2
GyD

i
z ii

i
G

−

=
∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= λ

λ λ
.
 

The sum 53S  is equal to: 

∑ ∑
∈∈ ∉∈

+=
)();( )();(

2153
1 2

)],(2[
eVyGEe fVzGEf

GfzDS λ

    

       
ii

eVyGEe fVzGEf i
GfzD

i
),(2 21

)();( )();( 01 2

−

∈∈ ∉∈ =
∑ ∑ ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= λ

λ λ

 

       )(2)(deg 2
)(

1
0

1
GzD

i
y ii

i
G

−

=
∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= λ

λ λ
.
 

The sum 54S  is equal to: 

== ∑ ∑
∈∈ ∈∈)();( )();(

54
1 2

2
eVyGEe fVzGEf

S λ )(deg)(deg2
21

zy GG
λ .

 
By adding the quantities 51S , 52S , 53S  and 54S , we obtain: 
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Now, the formula of ( ) )(
0

GWe
λ  is obtained by adding the quantities 1S , 2S , 3S ,  

4S  and 5S . 
(ii) Using a similar method as in the proof of part (i), we have: 
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Using Theorem 2.6, we can get the formulae for the edge-Wiener and edge hyper-
Wiener indices of ),)(~( 21 zyGG . 
Corollary 2.7 The first and second edge-Wiener indices of ),)(~( 21 zyGGG =  are 
given by: 
(i) )()1()()1()()()( 2
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                   2121 eeee +++ .  
Corollary 2.8 The first and second edge hyper-Wiener indices of 

),)(~( 21 zyGGG =  are given by: 
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3. Conclusions 

In this paper, we studied the behavior of the edge-Wiener type invariants 
under the splices and links of graphs. Results were applied to compute the edge- 
Wiener and edge hyper-Wiener indices of these classes of composite graphs. It is 
also interesting to find explicit formulae for the edge-Wiener type invariants of 
other classes of composite graphs such as bridge and chain graphs. In order to 
achieve that goal, further research into mathematical properties of the edge-
Wiener type invariants will be necessary. 
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