
U.P.B. Sci. Bull., Series A, Vol. 86, Iss. 1, 2024 ISSN 1223-7027

S-ACTS WITH FINITE LENGTH ON CONGRUENCES

by Davood Gholipour1, Hasan Barzegar2, Hamid Rasouli3 and Abolfazl Tehranian4

An S-act A over a semigroup S is called strongly noetherian if it satisfies

the ascending chain condition on its congruences. This is equivalent to being finitely

generated of each congruence on A. We provide some fundamental facts about strongly

noetherian acts. Another notion concerning chain conditions studied here is the property

of being A of finite length on congruences. It is proved that every strongly noetherian

as well as strongly artinian S-acts has finite length.

Keywords: S-act, strongly noetherian, strongly artinian, saturated chain, length.

MSC2020: 20M30, 20M50

1. Introduction and preliminaries

A finiteness condition for a class of algebraic systems is any property possessed by all

finite members of that class. Such conditions are in fact a classical approach in the study of

algebraic systems of different types and often formulated in terms of some notions concerning

ordered sets, most importantly the maximal and the minimal conditions which are equivalent

to the ascending and the descending chain conditions, respectively. A noetherian (artinian)

algebraic system is the one which satisfies the ascending (descending) chain condition on its

“substructures”. Noetherian and artinian rings and modules have been widely studied in

the literature. Unlike to the case of rings and modules, there are two different approaches

for chain conditions on S-acts over a semigroup S: one is via their subacts, and the other via

their congruences, and the notions of noetherian (artinian) and strongly noetherian (strongly

artinian) are used for S-acts with ascending (descending) chain conditions on their subacts

and congruences, respectively. The study of right noetherian semigroups and noetherian

S-acts were initiated by Hotzel [5] and Normak [14], respectively. Further studies on these

notions or their connections with other algebraic properties can be found in a number of

papers, for example, see [3, 4, 6, 8, 9, 11, 12, 15, 16, 17]. It is well-known that a module M

has finite length if and only if it is both noetherian and artinian, where the length of M is

defined to be the length of the longest chain of submodules of M . Here we aim to introduce

and study the length of acts over semigroups and those ones with finite lengths. Using the

notion of a saturated chain of congruences of S-acts, we define the length of an S-act as the

shortest length of its saturated chains. It is shown that, in contrast to the case of modules,

two saturated chains of congruences for an S-act A do not generally have the same length

and also being A of finite length is not necessarily equivalent to being it strongly noetherian
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as well as strongly artinian. Let us first recall some definitions and ingredients concerning

S-acts needed in the sequel. For more information and the notions not mentioned here, see

[7, 9].

Throughout the paper S stands for a semigroup with or without identity unless oth-

erwise stated. Also, we set S1 = S ∪̇ {1} where 1 is an identity adjoined to S provided

that S has no identity element, and otherwise, S1 = S. A non-empty set A is said to be a

(right) S-act if there is a, so called, action µ : A× S → A such that, denoting µ(a, s) := as,

a(st) = (as)t and if S is a monoid with 1, a1 = a, for all a ∈ A and s, t ∈ S. Each semi-

group S can be considered as an S-act with the action given by its operation. An element

θ ∈ A is said to be a fixed (zero) element if θs = θ for all s ∈ S. The S-act A ∪ {θ} with

a fixed element θ adjoined to A is denoted by Aθ. A non-empty subset B of A is called

a subact of A if bs ∈ B, for every s ∈ S and b ∈ B. A non-empty subset X of A is a

generating set for A if A = XS, where XS = {xs | x ∈ X, s ∈ S} for the case where

S is a monoid, and if S is not a monoid, A = XS ∪ {x}. By a cyclic act we mean an

S-act with a singleton generating set. Any non-empty set A can be made into an S-act

by setting as = a for all a ∈ A, s ∈ S, namely trivial action. A simple S-act is an S-act

with no proper subacts. Let A and B be two S-acts. A mapping f : A → B is called a

homomorphism if f(as) = f(a)s for all a ∈ A, s ∈ S. The product of a non-empty family

{Ai | i ∈ I} of S-acts is their Cartesian product
∏

i∈I Ai with the componentwise action, and

the coproduct
∐

i∈I Ai of this family is their disjoint union with the action (a, i)s = (as, i)

for every s ∈ S and a ∈ Ai, i ∈ I. An (act) congruence on an S-act A is an equivalence

relation ρ on A for which aρa′ implies that (as)ρ(a′s) for any a, a′ ∈ A and s ∈ S. For

H ⊆ A×A, the congruence generated by H, that is, the smallest congruence on A contain-

ing H, is denoted by ρ(H). For a, b ∈ A, one has aρ(H)b if and only if either a = b or

there exist p1, p2, . . . , pn, q1, q2, . . . , qn ∈ A, s1, s2, . . . , sn ∈ S1 where (pi, qi) ∈ H ∪ H−1

for i = 1, . . . , n, such that a = p1s1, q1s1 = p2s2, q2s2 = p3s3, . . . , qnsn = b, where

H−1 = {(y, x) | (x, y) ∈ H}. The above sequence is called an H-sequence of length n.

We also denote the set of all congruences on A by Con(A). For a subact B of an s-act A,

the Rees congruence ρB is defined as follow, aρBb if and only if a = b or {a, b} ⊆ B. The

factor act A/ρB may be denoted by A/B.

2. Strongly noetherian S-act

In this section we provide some fundamental facts about strongly noetherian S-acts.

We investigate the behaviour of the property of being strongly noetherian under some act-

theoretic constructions.

For an S-act A, the congruences ∆A = {(a, a) | a ∈ A} and ∇A = A × A are called

diagonal congruence and universal congruence, respectively. We say that a congruence is

trivial if it is diagonal or universal. Otherwise, it is called non-trivial. By a non-diagonal

(non-universal) congruence, we mean a congruence θ on A which θ ̸= ∆A (θ ̸= ∇A).

Definition 2.1. A congruence ρ2 on an S-act A is called a cover of a congruence ρ1 and

denoted by ρ1 ⊏ ρ2 if ρ1 ⊂ ρ2 and there is no congruence strictly between ρ1 and ρ2. Also

ρ2 is called a principal extension of ρ1 provided that there exists (a, b) ∈ A × A such that

ρ2 = ρ(ρ1 ∪ {(a, b)}).

Note. It is clear that each cover is a principal extension, but the converse is not

generally true. For instance, consider a semilattice S = (L,∧) as an act over itself with top

and bottom elements ⊤ and ⊥, respectively. Then ∇S is a principal extension of ∆S of the

form ∇S = ρ(∆S ∪ {(⊥,⊤)}) whereas S may have non-trivial congruences.
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Recall that an S-act A is said to be noetherian (artinian) if every ascending (descend-

ing) chain of subacts of A is eventually stationary. Considering chain of congruences instead

of chain of subacts in these definitions, we have the following:

Definition 2.2 ([15]). An S-act A is said to be strongly noetherian (strongly artinian) if

every ascending (descending) chain of congruences of A is eventually stationary.

Remark 2.1. (i) If A is a strongly noetherian (strongly artinian) S-act, then it is noether-

ian (artinian). These follow from the fact that for any subacts Ai, Aj of A, if Ai ⊂ Aj, then

ρ
Ai

⊂ ρ
Aj
. But the converse is not valid in general. For this, consider a group S as an

S-act not finitely generated as a group. Clearly, S is simple (i.e. it has no proper nontrivial

normal subgroups) and so noetherian and artinian. Since S is not finitely generated, it is

not strongly noetherian (see Lemma 3.3). In Example 2.1(i), we present an S-act that is

artinian but not strongly artinian.

(ii) Each subact of a strongly noetherian A is finitely generated. In particular, A is

finitely generated. But finitely generated acts are not necessarily strongly noetherian (see

Example 2.1(ii)).

Lemma 2.1. Let A be an S-act. The following are equivalent:

(i) A is strongly noetherian.

(ii) Every θ ∈ Con(A) is finitely generated.

(iii) For each non-diagonal θ ∈ Con(A), there is a finite chain ∆A = θ0 ⊂ θ1 ⊂ · · · ⊂
θn = θ of congruences on A in which θi is a principal extension of θi−1, for each 1 ≤ i ≤ n.

(iv) Every set of congruences on A has a maximal element.

Proof. The equivalences (i) ⇔ (ii) and (i) ⇔ (iv) are clear.

(ii) ⇒ (iii) Let θ ∈ Con(A). Using (ii), θ = ρ({(a1, b1), . . . , (an, bn)}) for some ai, bi ∈
A, i = 1, . . . , n. Taking θ0 = ∆ and θi = ρ({(a1, b1), . . . , (ai, bi)}) for every 1 ≤ i ≤ n, each

θi is a principal extension of θi−1.

(iii) ⇒ (ii) Let θ ∈ Con(A). It follows from the assumption that there is a finite

chain ∆ = θ0 ⊂ θ1 ⊂ · · · ⊂ θn = θ of congruences on A in which θi is a principal extension

of θi−1, for each 1 ≤ i ≤ n. Then for each 1 ≤ i ≤ n, θi = ρ(θi−1 ∪ {(ai, bi)}), for some

ai, bi ∈ A. This clearly gives that θ = ρ({(a1, b1), . . . , (an, bn)}), which means that θ is

finitely generated. □

Using Rees congruences on A, it is not difficult to check that if every θ ∈ Con(A) is

finitely generated, then every subact of A is finitely generated. So we have the following:

Corollary 2.1. If A is a strongly noetherian S-act, then every subact of A is finitely gen-

erated.

Corollary 2.2. If A is a strongly noetherian S-act with zero, then there exists a finite set

T ⊆ A×A of the form {0} ×X such that for any a, b ∈ A, there is a T -sequence from a to

b of length at most 2.

Proof. By Remark 2.1(ii), A is generated by a finite set X. Consider T = {0} ×X. So for

any a, b ∈ A there exist x1, x2 ∈ X and s, t ∈ S such that a = x1s and b = x2t. Now we

have the T -sequence a = x1s, 0s = 0t, x2t = b from a to b of length at most 2. □

Here we give some examples used in the sequel.

Example 2.1. (i) Consider the semigroup S = (N,min). The following strict chain shows

that S is not a strongly noetherian S-act:

∆S ⊂ ρ{1,2} ⊂ ρ{1,2,3} ⊂ ρ{1,2,3,4} ⊂ · · ·
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Also it is clear that for each n ∈ N, θn = ∆S ∪ {(a, b) | a, b ≥ n + 1} is a congruence in

which ∇S ⊃ θ1 ⊃ θ2 ⊃ · · · is a strict chain. So S is not strongly artinian as an S-act. Note

that this is an example of an artinian S-act which is not strongly artinian.

(ii) Similarly to (i), the semigroup S = (N,max) is not strongly noetherian nor

strongly artinian as an S-act.

(iii) Let S = (N,+). The strict chain

∇S ⊃ ρ{2,3,...} ⊃ ρ{3,4,...} ⊃ ρ{4,5,...} ⊃ · · ·

shows that S is not strongly artinian as an S-act. But S is a strongly noetherian S-act.

For this, take a congruence ρ on S. Using Lemma 2.1, it must be shown that ρ is finitely

generated. Let n0 be the smallest natural number for which there exists m ∈ N with n0 < m

and n0ρm. Assume also that m0 is the smallest natural number such that n0 < m0 and

n0ρm0. Then m0 = n0 + t0 for some t0 ∈ N. Since (n0 + t)ρ(m0 + t) = (n0 + t) + t0 for

each t ∈ N, nρ(n + t0) for each n ≥ n0 so that nρ(n + kt0) for all k ∈ N. Let x, y ≥ n0
and x ≡ y (mod t0). So y − x = k0t0 and hence xρy. Now suppose that x, y ≥ n0
and x ̸≡ y (mod t0). Then there exist r1, r2 ∈ N such that xρ(n0 + r1) and yρ(n0 + r2).

Without loss of generality, assume that 0 ≤ r1 < r2 ≤ t0. If (n0 + r1)ρ(n0 + r2), then

(n0 + r1 + t0 − r2)ρ(n0 + r2 + t0 − r2) and hence (n0 + r1 + t0 − r2)ρm0ρn0 in which

r1+ t0− r2 < t0 which is impossible. Thus (x, y) /∈ ρ which gives that all equivalence classes

of ρ are [n0]ρ, [n0 +1]ρ, [n0 +2]ρ, . . . , [n0 + (t0 − 1)]ρ. Hence, ρ is generated by the finite set

{(n0,m0), (n0 + 1,m0 + 1), . . . , (n0 + t0 − 1,m0 + t0 − 1)}, as required.

As usual, a non-universal (non-diagonal) congruence θ on an S-act A is said to be

maximal (minimal), if there is no congruence ρ on A lying strictly between θ and ∇S (∆S).

We say that an S-act A satisfies the maximal (minimal) condition for congruences if each

non-universal (non-diagonal) congruence is contained into (contains) a maximal (a minimal)

congruence.

Remark 2.2. Every strongly noetherian (strongly artinian) S-act satisfies the maximal

(minimal) condition for congruences. The converses of these facts are not generally true.

For this, take any infinite set A = {ai}∞i=1 with trivial action of a monoid S on A. Note that

in this case every equivalence relation is a congruence. Clearly, each equivalence relation

with two equivalence classes is a maximal congruence and each Rees relation ρ{ai,aj}
is a

minimal congruence on A. It is easily seen that any non-universal congruence ρ on A is

contained into an equivalence relation θ with two equivalence classes which is maximal. Now

let ρ be a non-diagonal congruence and (ai, aj) ∈ ρ. Then ρ contains ρ{ai,aj}
which is

minimal. However, A is neither strongly noetherian nor strongly artinian. Indeed, there are

the following infinite strict chains of congruences:

∆ ⊂ ρ{a1,a2} ⊂ ρ{a1,a2,a3} ⊂ · · · and ∇ ⊃ ρ
A\{a1} ⊃ ρ

A\{a1,a2} ⊃ · · ·

Lemma 2.2. If A is a strongly noetherian S-act, then every subact and every homomorphic

image of A are also strongly noetherian.

Proof. Consider a subact B of A and θ ∈ Con(B). Using [9, Theorem 2.1(i)], θ̄ = θ ∪∆A

is a congruence on A which is finitely generated by Lemma 2.1. So θ is finitely generated

and hence B is strongly noetherian. Let ρ ∈ Con(A). Since there is a lattice isomorphism

between the interval [ρ,∇A] = {θ ∈ Con(A) | ρ ⊆ θ} of the lattice Con(A) and Con(A/ρ) (see

[9, Theorem 2.1(ii)] and [2, Theorem II.6.20]), every ascending chain of congruences of the S-

act A/ρ has a correspondence ascending chain of congruences in the interval [ρ,∇A], which is

eventually stationary. More precisely, here the lattice isomorphism α : [ρ,∇A] → Con(A/ρ)
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is given by α(θ) = θ/ρ for any θ ∈ [ρ,∇A], where θ/ρ = {([a]ρ, [b]ρ) ∈ (A/ρ)2 | (a, b) ∈ θ}.
Thus, using the fact that each lattice isomorphism is also an order-embedding, i.e. α(θi) ⊆
α(θi+1) implies θi ⊆ θi+1, the second assertion also holds. □

Corollary 2.3. Let {Ai | i ∈ I} be a non-empty family of S-acts. If
∏

i∈I Ai is strongly

noetherian, then so is each Ai.

We need the following theorem in the sequel proved in [8, Lemma 4.1].

Theorem 2.1. Let A be a subact of an S-act B. Then A and B/A are strongly noetherian

if and only if B is strongly noetherian.

Now we are going to study the behaviour of being strongly noetherian with respect

to coproducts.

Proposition 2.1. Let B be a subact of an S-act A for which A \B is a finite set. Then A

is strongly noetherian if and only if so is B.

Proof. This follows immediately from Theorem 2.1, since A/B is finite and hence obviously

strongly noetherian. □

Corollary 2.4. An S-act A is strongly noetherian if and only if so is Aθ.

Using Theorem 2.1, Corollary 2.4 and the fact that
A ⊔B
A

≃ Bθ for any S-acts A

and B, we have the following:

Corollary 2.5. (i) Let A and B be two S-acts. Then A ⊔ B is strongly noetherian if and

only if A and B are strongly noetherian.

(ii) Let {Ai | i ∈ I} be a non-empty family of S-acts. If
∐

i∈I Ai is strongly noetherian,

then so is each Ai, i ∈ I.

Let A be a T -act and α : S → T be a semigroup epimorphism. Then A can be made

into an S-act by setting as = aα(s) for each a ∈ A and s ∈ S. Also, if θ ∈ Con(AT ), then

θ ∈ Con(AS) so that if A is strongly noetherian as the S-act, then it is strongly noetherian

as the T -act.

Proposition 2.2. Let S be strongly noetherian as an act over itself. Then an S-act A is

strongly noetherian if and only if it is finitely generated.

Proof. If A is strongly noetherian, then it is finitely generated by Corollary 2.1. For the

converse, let A be generated by {x1, x2, . . . , xn}. So A is a homomorphic image of
∐n

i=1 S.

Using Corollary 2.5 and Theorem 2.1, the result follows. □

Remark 2.3. It is easily seen that each congruence on an S-act A is a subact of the S-act

A × A. So if A × A is noetherian, then A is strongly noetherian. But the converse is not

generally true. Indeed, the semigroup S = (N,+) explained in Example 2.1(iii) is a strongly

noetherian S-act. Clearly, (a, b)S = {(a+ k, b+ k) | k ∈ N}. Thus

(1, 1)S ⊂ (1, 1)S ∪ (2, 1)S ⊂ (1, 1)S ∪ (2, 1)S ∪ (3, 1)S ⊂ · · ·

is a strict ascending chain of subacts of S×S, which means that S×S is not noetherian and

hence not a strongly noetherian S-act.

Proposition 2.3. Let A be an S-act. If A × A is a noetherian S-act, then A has finitely

many minimal congruences.
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Proof. Assume that Γ = {θi}i∈I
is a set of distinct minimal congruences of A where I is

infinite. Let Γ1 ⊂ Γ2 ⊂ Γ3 ⊂ · · · be a strict chain in P(Γ), where P(Γ) denotes the power set

of Γ. Consider the chain
⋃

i∈Γ1
θi ⊂

⋃
i∈Γ2

θi ⊂ · · · . Since each
⋃

i∈Γj
θi is a subact of A×A

and A×A is noetherian, the chain is eventually stationary. So there is N ∈ N such that for

every j ≥ N ,
⋃

i∈Γj
θi =

⋃
i∈ΓN

θi. Thus for each i ∈ Γj , θi ⊆
⋃

i∈ΓN
θi. Since θi is minimal,

it is monogenic as θi = ρ(a, b), a, b ∈ A. Then there is θk ∈ ΓN such that (a, b) ∈ θk and

hence θi = θk, by minimality of θk, which is a contradiction. □

Similarly to the proof of Proposition 2.3, one can show that a noetherian S-act for

which every congruence is a Rees congruence has finitely many minimal congruences.

Remark 2.4. Let A be a strongly artinian or a strongly noetherian S-act. Then it has only

finitely many congruences Σ = {θ1, θ2, . . . , θm} satisfying θj ⊆ ρ(
⋃m

j ̸=i=1 θi) for each θj ∈ Σ.

To this end, let {θi | i ∈ N} be an infinite set of congruences of A. For the case where A

is strongly artinian, consider the chain ρ(
⋃∞

i=1 θi) ⊇ ρ(
⋃∞

i=2 θi) ⊇ · · · of congruences of A.

So there exists N ∈ N such that ρ(
⋃∞

i=N θi) = ρ(
⋃∞

i=N+1 θi). Thus θN ⊆ ρ(
⋃∞

i=N+1 θi).

If A is strongly noetherian, then the chain θ1 ⊆ ρ(θ1 ∪ θ2) ⊆ ρ(θ1 ∪ θ2 ∪ θ3) ⊆ · · · of

congruences of A gives that there exists N ∈ N such that ρ(
⋃N

i=1 θi) = ρ(
⋃N+1

i=1 θi) and hence

θN+1 ⊆ ρ(
⋃N

i=1 θi).

3. S-Acts with finite length

This section is devoted to introduce the notion of length of an S-act by means of

finiteness conditions on its congruences. We investigate whether the property of being of

finite length is inherited by being strongly noetherian and strongly artinian and vice versa.

In the case that S has finite length as an S-act, it is shown that each S-act has finite length

if and only if it is finitely generated. Some results are also obtained when S is a group.

Let A be an S-act and ρ, θ ∈ Con(A). If ρ ⊂ θ and no congruence of A lies strictly

between ρ and θ, we say that θ is a cover for ρ and use the notation ρ ⊏ θ in which “⊏”

denotes the cover relation on Con(A). Likewise, the cover relation on the set of subacts of

an S-act can also be defined.

Definition 3.1. Let A be an S-act. Any chain of the form

∆A ⊏ ρ1 ⊏ ρ2 ⊏ · · · ⊏ ρn = ∇A, n ∈ N,

of congruences of A is called a saturated chain (of congruences of length n) for A. The

length of A, represented as lc(A), is the shortest length of saturated chains of congruences of

A. If A has no saturated chain, then we define lc(A) = ∞. More generally, let θ ∈ Con(A).

Every chain of the form

∆A ⊏ ρ1 ⊏ ρ2 ⊏ · · · ⊏ ρn = θ, n ∈ N,

of congruences of A is called a saturated chain of (congruences of length n) for θ. The length

of θ, represented as l(θ), is the shortest length of saturated chains of θ. If θ has no saturated

chain, then we define l(θ) = ∞. So l(∇A) = lc(A). Moreover, any saturated chain of the

form

θ ⊏ θ1 ⊏ θ2 ⊏ · · · ⊏ θn = ∇A

is said to be a saturated chain containing θ.

Proposition 3.1. For an S-act A, we have the following assertions:
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(i) If A is strongly artinian, then each non-universal congruence of A has a cover. In

particular, A has a minimal congruence. Also every set of congruences of A has a minimal

element.

(ii) If A is strongly noetherian, then each non-diagonal congruence of A is a cover of a

congruence of A. In particular, A has a maximal congruence. Also every set of congruences

of A has a maximal element.

Proof. (i) Let ρ be a non-universal congruence of A. If ρ ⊏ ∇, then we are done. Otherwise,

there is a chain ρ ⊂ θ1 ⊂ ∇. If ρ ⊏ θ1, there is nothing to prove. Otherwise, there is a chain

ρ ⊂ θ2 ⊂ θ1 ⊂ ∇. Continuing the similar argument, if each congruence θi is not a cover of

ρ, then we have an infinite strict chain of congruences, which is a contradiction.

(ii) The proof is similar to (i). □

Lemma 3.1. If A is strongly noetherian as well as strongly artinian, then for all congruences

ρ ⊂ θ there is a saturated chain of congruences ρ ⊏ ρ1 ⊏ ρ2 ⊏ · · · ⊏ ρn = θ.

Proof. If ρ ⊏ θ, then we are done. Otherwise, since A is strongly artinian, by Proposition

3.1, the set {τ ∈ Con(A) | ρ ⊂ τ ⊆ θ} has a minimal element, say ρ1. So ρ ⊏ ρ1 ⊂ θ.

If ρ1 ⊏ θ, then there is nothing to prove. Otherwise, there exists ρ2 ∈ Con(A) such that

ρ1 ⊏ ρ2 ⊂ θ. Continuing the similar process, if each ρi is a proper subset of θ, then we get

the strict infinite chain of congruences which contradicts being strongly noetherian of A.

Therefore, ρn = θ for some n ∈ N. Hence, ρ ⊏ ρ1 ⊏ ρ2 ⊏ · · · ⊏ ρn = θ is a saturated chain

of congruences. □

Remark 3.1. As a corollary of Lemma 3.1, it is concluded that if A is both strongly noe-

therian and strongly artinian, then A has finite length. But the following example shows that

the converse of this fact is not generally true. Let S = Z2 = {1, x}, and A = {ai, bi | i ∈ N}
be the S-act with action given by aix = bi and bix = ai. Consider B0 = ∅ and for each i ∈ N,
Bi = Bi−1 ∪ {ai, bi}. So the saturated chain of Rees congruences ∆A ⊏ ρB1

⊏ ρB2
⊏ · · · ,

shows that A is not necessary strongly noetherian. But A has finite lenght, for, let θ be an

equivalence relation on A induced by the classes {ai | i ∈ N} and {bi | i ∈ N}. Clearly, θ is

a congruence on A and the saturated chain ∆A ⊏ θ ⊏ ∇A, shows that A has finite lenght.

In contrast to the case of modules that two saturated chains of submodules over a

ring have the same lengths and if N is a submodule of M , then l(N) ≤ l(M), the following

example shows that two saturated chains of congruences for an S-act A with finite length

do not have necessarily the same lengths and also there exists a congruences σ and θ on A

for which σ ⊂ θ but l(θ) < l(σ).

Example 3.1. Let S = Z2 = {1, x}, and let A = {a, b, c, d, e} be the S-act with action given

as follows:

ax = b, bx = a, cx = d, dx = c, ex = e.

Let B1 = {a, b}, B2 = {c, d}, C = {a, b, e}. Clearly, A is the disjoint union of its subacts C

and A\C. Let σ be the congruence with classes C and A\C. Then we have a saturated chain

of congruences ∆A ⊏ ρ
B
⊏ ρ

C
⊏ σ ⊏ ∇A of length 4. Now let τ be the congruence on A with

classes {a, c, e}, {b, d, f}. Clearly, there is no congruence θ on A such that ∆A ⊂ θ ⊂ τ .

Thus ∆A ⊂ τ ⊂ ∇A is a saturated chain of congruences of length 2. So there are two

saturated chains on congruences of A with different lengths. Also σ has a saturated chain

as ∆A ⊏ ρ
B
⊏ ρ

C
⊏ σ, but it has no saturated chain of length 2. So l(σ) = 3 > 2 = l(∇).

A finite S-act is clearly strongly noetherian as well as strongly artinian (and so has

finite length). But the converse does not hold in general (see [10]). In continue up to
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Proposition 3.2, we discuss about the converse of this fact in the case being S a group.

First, consider the following example.

Example 3.2. Let A be an S-act with trivial action. Then we have the saturated chain of

Rees congruences ∆A ⊏ ρ{a1} ⊏ ρ{a1,a2} ⊏ · · · ⊏ ∇A, where ai ∈ A. Hence, A is finite if

and only if lc(A) is finite.

Clearly, for a semigroup S, act congruences on the S-act S are precisely the right

congruences on S. For a group S, note the following:

Lemma 3.2. Let S be a group.

(i) There exists a lattice isomorphism between act congruences on S and subgroups of

S.

(ii) There exists a lattice isomorphism between group congruences on S and normal

subgroups of S.

Proof. (i) Let T be a subgroup of S. We construct an act congruence on S as follows: xρ
T
y

if and only if xy−1 ∈ T (and hence T = [1]ρ
T
). Conversely, consider an act congruence ρ on

S. Then T = [1]ρ is clearly a subgroup of S. It is also easily seen that this correspondence

is one to one.

(ii) The proof is similar to that of part (i). □

Corollary 3.1. Let a group S have finite length as an S-act. Then S has a finite length on

its group congruences.

Using Lemma 3.2(i), we have

Corollary 3.2. Let S be a group. Then the following are equivalent:

(i) lc(S) = n.

(ii) There is a saturated chain {1} ⊏ S1 ⊏ S2 ⊏ · · · ⊏ Sn = S of length n of subgroups

of S.

Lemma 3.3. Let S be a group. Then

(i) If S is a cyclic group which is strongly artinian as an S-act, then it is finite.

(ii) If S is strongly noetherian as an S-act, then every subgroup of S is a finitely

generated group.

Proof. (i) Let S = ⟨s⟩. Then S = ⟨s⟩ ⊇ ⟨s2⟩ ⊇ ⟨s3⟩ ⊇ · · · is a descending chain of subgroups.

Using Lemma 3.2, there exists n ∈ N such that ⟨sn⟩ = ⟨sn+1⟩. Then sn = sk(n+1), for some

k ∈ N and hence sk(n+1)−n = 1, which implies that S is finite.

(ii) Let T be a non-finitely generated subgroup of S generating by an infinite set X.

Let {si}∞i=1 ⊆ X. Consider the subgroups T1 = ⟨s1⟩, T2 = ⟨s1, s2⟩, . . . of S and the S-act

congruences ρi on S constructed as follow: xρiy if and only if xy−1 ∈ Ti (and so Ti = [1]ρi).

So the infinite strict chain ρ1 ⊂ ρ2 ⊂ ρ3 ⊂ · · · contradicts the hypothesis. □

Proposition 3.2. Let an abelian group S have finite length as an S-act. Then the following

assertions hold:

(i) S is finite.

(ii) Each finitely generated S-act is finite.

Proof. (i) First we prove the assertion for an abelian group S with finite length as an S-act.

By Remark 3.1 and Lemma 3.3(ii), S is a finitely generated group. Let S be generated by

the set X = {x1, x2, . . . , xk}. Take any xi ∈ X. We claim that the subgroup Ti = ⟨xi⟩ has
finite length as a Ti-act. Otherwise, Ti is not a strongly noetherian S-act or not a strongly
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artinian Ti-act. Thus Ti has an ascending or descending strict infinite chain of congruences.

By Lemma 3.2, Ti has an ascending or descending strict infinite chain of subgroups, which

is in fact an ascending or descending strict infinite chain of subgroups of S. Using Lemma

3.2, S has infinite length, which is a contradiction. Now Remark 3.1 and Lemma 3.3(i) give

that xi has finite order and hence S is finite.

(ii) Follows from (i). □

A congruence θ on an S-act A is said to be prime if ρ1 ∩ ρ2 ⊆ θ implies ρ1 ⊆ θ or

ρ2 ⊆ θ, for ρ1, ρ2 ∈ Con(A).

Theorem 3.1. If A has finite length and every maximal congruence of A is prime, then the

number of maximal congruences of A is finite.

Proof. Let Σ = {
⋂n

i=1 ρi | n ∈ N, ρ1, . . . , ρn are maximal congruences of A}. Using Propo-

sition 3.1 and Remark 3.1, Σ is non-empty and has a minimal element
⋂t

i=1 ρi, say. Now

let ρ be a maximal congruence of A. So ρ1 ∩ · · · ∩ ρt ∩ ρ ∈ Σ which implies ρ1 ∩ · · · ∩ ρt ⊆ ρ.

Since ρ is prime by the assumption, ρi ⊆ ρ for some 1 ≤ i ≤ t. So ρi = ρ by maximality of

ρi. Hence, A has a finitely many maximal congruences. □

Remark 3.2. (i) It is clear that any S-act A is simple if and only if lc(A) = 1.

(ii) If S-acts A and B are isomorphic, then lc(A) = lc(B). But the converse fails

in general. For this, take the monoid S = {1, s} where s2 = 1. Consider two S-acts

A = {a, b, c} with trivial action and B = {a, b, c, d} with a and b are fixed elements and

c1 = ds = c and d1 = cs = d. The non-trivial congruences of A are Rees congruences

ρ{a,b}, ρ{a,c} and ρ{b,c}, and that of B are Rees congruences ρ{a,b}, ρ{a,c,d}, ρ{c,d} and ρ{b,c,d}.

So lc(A) = lc(B) = 2 whereas A and B are non-isomorphic.

(iii) For each S-act A, lc(A) ≤ |A|. Indeed, if A is infinite, then we are done. Let

|A| = n. Then A has finite length as lc(A) = m. Let ρ0 = ∆A ⊏ ρ1 ⊏ ρ2 ⊏ · · · ⊏ ρm = ∇A

be a saturated chain for A. We know each ρi is a principal extension of ρi−1. So for all 1 ≤
i ≤ m there are distinct elements (ai, bi) ∈ ρi \ ρi−1. Consider L = {(a1, b1), . . . , (am, bm) |
(ai, bi) ∈ ρi \ ρi−1, i = 1, 2, . . . ,m} and Li = {a1, . . . , ai, b1, . . . , bi | (aj , bj) ∈ L, 1 ≤ j ≤ i}
for 1 ≤ i ≤ m. By induction on 1 ≤ k ≤ m, we show that k ≤ |Lk|. For k = 1 we are

done. Let k − 1 ≤ |Lk−1|. Let (ak, bk) ∈ L and then (ak, bk) ∈ ρk \ ρk−1. If ak, bk ∈ Lk−1,

then ρk = ρk−1, which is a contradiction. So one of ak or bk does not belong to Lk−1. Then

|Lk| ≥ |Lk−1|+ 1 ≥ (k − 1) + 1 = k. Therefore, m ≤ |Lm| ≤ |A|.

Lemma 3.4. Let A and B be S-acts and ρ1, ρ2 ∈ Con(A) and θ ∈ Con(B).

(i) If ρ1 ⊏ ρ2, then ρ1 ⊔ θ ⊏ ρ2 ⊔ θ in Con(A ⊔B).

(ii) max{lc(A), lc(B)} ≤ lc(A ⊔B) ≤ lc(A) + lc(B) + 1.

Proof. (i) Clearly, ρi⊔θ ∈ Con(A⊔B), i = 1, 2. Let ρ1∪θ ⊂ ψ ⊂ ρ2∪θ for ψ ∈ Con(A⊔B).

Then ρ1 ⊂ ψ|
A

⊂ ρ2 and ψ|
B

= θ. So ψ|
A

= ρ1 or ψ|
A

= ρ2 and hence ψ = ρ1 ∪ θ or

ψ = ρ2 ∪ θ.
(ii) The first inequality follows from the fact that the restriction of any congruence of

A ⊔ B to A (or B) is the congruence of A (or B). For the second inequality, if lc(A) = ∞
or lc(B) = ∞, then there is nothing to prove. Let lc(A) = n and lc(B) = m. Then there

are saturated chains ∆A ⊏ ρ1 ⊏ ρ2 ⊏ · · · ⊏ ρn = ∇A and ∆B ⊏ θ1 ⊏ θ2 ⊏ · · · ⊏ θm = ∇B

of congruences for A and B, respectively. Then, using (i), ∆
A⊔B

= ∆
A
⊔∆B ⊏ ρ1 ⊔∆B ⊏

ρ1⊔θ1 ⊏ ρ2⊔θ1 ⊏ · · · ⊏ ρn⊔θ1 = ∇A⊔θ1 ⊏ ∇A⊔θ2 ⊏ · · · ⊏ ∇A⊔θm = ∇A⊔∇B ⊏ ∇
A⊔B

.

Hence, lc(A ⊔B) ≤ n+m+ 1 = lc(A) + lc(B) + 1. □

The following example shows that the above inequality can be proper or sharp.
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Example 3.3. (i) Let A = {a, b} and B = {c} be S-acts with trivial actions. Then ∆A ⊏
∇A, ∆B = ∇B and ∆A⊔B ⊏ ∆A⊔B ∪ {(a, b), (b, a)} ⊏ ∇A⊔B. So lc(A) = 1, lc(B) = 0 and

lc(A ⊔B) = 2.

(ii) Consider the S-act given in Example 3.1. Then A = B1⊔B2 in which B1 = {a, b}
and B2 = {c, d}. Clearly, lc(B1) = lc(B2) = 1 and hence lc(A) = 2 < lc(B1) + lc(B2) + 1.

Corollary 3.3. (i) Any S-acts A and B are of finite lengths if and only if so is A ⊔B.

(ii) An S-act A has finite length if and only if the length of Aθ is finite.

Proof. (i) We get the result by appling Lemma 3.4(ii).

(ii) This is a direct consequence of part (i). □

Corollary 3.4. Let B be a subact of an S-act A. Then A has finite length if and only if B

and A/B have also finite length.

Proof. Follows from Corollary 3.3 and the fact that B ⊔ (A/B) ∼= Aθ. □

Proposition 3.3. Let S have finite length as an S-act. Then an S-act A is finitely generated

if and only if it has finite length.

Proof. Let A be generated by {x1, x2, . . . , xn}. Thus A is a homomorphic image of
∐n

i=1 S.

Using the assumption and Corollary 3.3,
∐n

i=1 S has finite length so that A has also finite

length. For the converse, let ∆A ⊏ ρ1 ⊏ ρ2 ⊏ · · · ⊏ ρn = ∇A be a saturated chain of congru-

ences of A. By Note after Definition 2.1, each cover is a principal extension. So there is a set

H = {(a1, b1), (a2, b2), . . . , (an, bn)} ⊆ ∇A which ∇A = ρ(H). Now for each a ∈ A, choose

an element a ̸= ba ∈ A. Since (a, ba) ∈ ∇A, there is a p ∈ {a1, a2, . . . , an, b1, b2, . . . , bn}
and s ∈ S1 such that a = ps. Hence, {a1, a2, . . . , an, b1, b2, . . . , bn} is a generating subset of

A. □

Let B be a subact of A. Every ρ ∈ Con(B) can be extended to a congruence ρ =

ρ ∪ ∆
A\B ∈ Con(A). Thus there is a one to one correspondence between the sets Con(B)

and {θ ∈ Con(A) | θ ⊆ ρ
B
}.

Theorem 3.2. Let ρ ∈ Con(A) and B be a subact of A. Then the following assertions hold:

(i) lc(A) ≤ l(ρ) + lc(A/ρ).

(ii) lc(A) ≤ lc(B) + lc(A/B).

Proof. If lc(A/ρ) = ∞ or lc(A) = ∞, so we are done. Let l(ρ) = n and lc(A/ρ) = m. Then

there are saturated chains ∆A ⊏ ρ1 ⊏ ρ2 ⊏ · · · ⊏ ρn = ρ and ∆A/ρ ⊏ θ1/ρ ⊏ θ2/ρ ⊏
· · · ⊏ θm/ρ = ∇A/ρ of congruences for ρ and A/ρ, respectively. So A has the saturated

chain ∆A ⊏ ρ1 ⊏ ρ2 ⊏ · · · ⊏ ρn = ρ ⊏ θ1 ⊏ θ2 ⊏ · · · ⊏ θm = ∇A of congruences. Thus

lc(A) ≤ n+m = l(ρ) + lc(A/ρ).

(ii) It is not difficult to check that lc(B) = l(ρ
B
) by using the fact that there is a

one to one correspondence between the sets Con(B) and {θ ∈ Con(A) | θ ⊆ ρ
B
}. So the

assertion follows from (i). □

The following example shows that the inequality in the previous theorem can be sharp

or proper.

Example 3.4. (i) Let S be an arbitrary semigroup. Consider the S-act A = {a0, a1, a2, a3}
with trivial action and the subact B = {a0, a1} of A. It is not difficult to check that lc(A) = 3,

lc(B) = 1 and lc(A/B) = 2.

(ii) In Example 3.1, it has been shown that lc(A) = 2 and lc(B) = 1. Also, clearly the

S-act A/B is isomorphic to the S-act D = {a0, c, d} in which a0 is a fixed element, cx = d

and dx = c and ∆D ⊂ ρ{c,d} ⊂ ∇D. Thus lc(D) = 2.
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Proposition 3.4. Let A be an S-act and ∆A ⊏ ρ1 ⊏ ρ2 ⊏ · · · ⊏ ρn = ∇A be a saturated

chain of congruences of length n ≥ 1 for A. Then the following assertions hold:

(i) Each ρm, 1 ≤ m ≤ n, is finitely generated by m elements.

(ii) If lc(ρ) = k where ρ ∈ Con(A), then ρ is generated by k elements.

(iii) A is finitely generated with 2n generators.

Proof. (i) For each 1 ≤ i ≤ m, choose and fix (ai, bi) ∈ ρi \ ρi−1. So ρi = ⟨ρi−1 ∪ (ai, bi)⟩.
Consider H = {(ai, bi) | 1 ≤ i ≤ m}. Then H ⊆ ρm and hence ρ(H) ⊆ ρm. On the other

hand, ρ1 ⊆ ρ(H), ρ2 = ⟨ρ1 ∪ {(a2, b2)}⟩ ⊆ ρ(H), ρ3 = ⟨ρ2 ∪ {(a3, b3)}⟩ ⊆ ρ(H), . . . , ρm =

⟨ρm−1∪{(am, bm)}⟩ ⊆ ρ(H). So ρm ⊆ ρ(H), which means that ρm is finitely generated with

m generators.

(ii) We are done by Lemma 3.1 and a similar argument as in part (i).

(iii) By part (i), ∇A is generated by the set H = {(a1, b1), . . . , (an, bn)}. So, for any

two distinct elements x, y ∈ A, we have

x = p1s1, q1s1 = p2s2, . . . , qmsm = y.

Then each x ∈ A is of the form x = ps where p ∈ {a1, a2, . . . , an, b1, b2, . . . , bn}. Thus A is

generated by 2n elements. □

Theorem 3.3. Let A be an S-act. If each subact of A × A is cyclic, then the following

assertions hold:

(i) A is strongly noetherian.

(ii) The lattice Con(A) forms a chain.

Proof. (i) Let θ1 ⊆ θ2 ⊆ · · · be an ascending chain in Con(A). Consider θ =
⋃∞

i=1 θi. Then

there exist a, b ∈ A such that θ = ρ(a, b). So there is N ∈ N such that (a, b) ∈ θN , which

implies θ = θN and hence A is strongly noetherian.

(ii) It follows from the assumption that each congruence on A is monogenic. Let

ρ(a1, b1) and ρ(a2, b2) be two congruences on A. Since ρ(a1, b1) and ρ(a2, b2) are subacts of

A × A, there exists (a, b) ∈ A × A such that ρ(a1, b1) ∪ ρ(a2, b2) = (a, b)S. Thus (a, b) ∈
ρ(a1, b1), say. Then ρ(a2, b2) ⊆ (a, b)S ⊆ ρ(a, b) ⊆ ρ(a1, b1), which means that Con(A) is a

chain. □

The following is a straightforward implication of Theorem 3.3, which gives a condition

for establishing the converse of Remark 3.1.

Corollary 3.5. If each subact of A×A is cyclic, then the following are equivalent:

(i) A has finite length.

(ii) Con(A) is a finite chain.

(iii) A is strongly noetherian as well as strongly artinian.
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