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In this work we are interested to prove a general fixed point theorem for

a pair of multi-valued mappings satisfying a new type of implicit relation in b−metric
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[23] and to obtain other particular results.
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1. Introduction and Preliminary

The study of fixed point theory in metric spaces has several applications in mathe-
matics, especially in solving differential equations. In [4] Bakhtin introduced a new class
of generalized metric space called b-metric space which has been studied by many authors.
For example, see [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 21]. This new notion of spaces has
been used to obtain several results in fixed point theory. For example : in [18] the authors
have generalized Banach fixed point theorem in b-metric space, see Theorem 1.3 and in [19],
[20], [22], [23]. The authors have used an other form of contraction to obtain the fixed point
theorem of uni-valued mappings in b-metric spaces.

In our work, using the Hausdorff-Pompeiu metric, we are dealing with the common
fixed point of two multi-valued mappings verifying a certain relation in b-metric space. As
a consequence of our work we obtain some results known in the case of uni-valued mappings
that we will point out in the following paragraph.

Definition 1.1 ([9]). Let Xbe a nonempty set and s ≥ 1 be a given real number. A function
d : X ×X −→ IR+ is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X.
Note that every metric space is a b−metric space with s = 1. But the converse need

not be true as is shown in the following example.

Example 1.1 ([22]). Let X = {−1, 0, 1}. Define d : X ×X −→ IR+ by : d(x, y) = d(y, x)
for all x, y ∈ X, d(x, x) = 0, d(−1, 0) = 3 and d(−1, 1) = d(0, 1) = 1.
Then (X, d) is a b−metric space with s = 3

2 but it is not a metric space since the triangle
inequality is not satisfied. Indeed, we have

d(−1, 1) + d(1, 0) = 1 + 1 = 2 < 3 = d(−1, 0).
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Definition 1.2 ([7]). Let (X, d) be a b−metric space, x ∈ X and (xn) be a sequence in X.
Then

(i) (xn) converges to x if and only if lim
n→∞

d(x, xn) = 0. We denote this by xn →
x (n→∞) or lim

n→∞
xn = x.

(ii) (xn) is Cauchy if and only if lim
n,m→∞

d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.
(iv) A subset A ⊂ X is said to be closed if for every sequence xn ∈ A such that

xn −→ x we have x ∈ A.
(v) A subset A ⊂ X is said to be bounded is sup

x,y∈A
d(x, y) < +∞.

(vi) A subset A ⊂ X is said to be compact if every sequence xn ∈ A has a convergent
subsequence.

Let (X, d) be a b−metric space, we denote CB(X) the set of nonempty closed bounded
subsets of X provided with the Hausdorff-Pompeiu metric H defined by

H(A,B) = max

(
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

)
,

where A,B ∈ CB(X) and d(x,A) = inf
y∈A

d(x, y). We define also δ(A,B) by

δ(A,B) = sup{d(a, b), a ∈ A b ∈ B},
it follows immediately from the definition of δ that

δ(A,B) = 0 ⇐⇒ A = B = {.} and δ({.}, B) = H({.}, B) and

d(a, b) ≤ δ(A,B) ∀a ∈ A ∀b ∈ B.
In the following, C(X) means the set of nonempty compact subsets of X.

We begin by quoting the theorems which we generalize in this work.

Theorem 1.1 (see theorem 4 in [22]). Let (X, d) be a complete b−metric space with constant
s ≥ 1 and let T : X −→ X be such that

d(T (x), T (y)) ≤ αd(x, y) + βd(x, T (x)) + γd(y, T (y))

for every x, y ∈ X, where α, β, γ ≥ 0 with α + β + γ < 1
s . Then T has a unique fixed point

in X.

Theorem 1.2 (see theorem 3.2 in [20]). Let (X, d) be a complete b−metric space with
constant s ≥ 1 and let T : X −→ X be such that

d(T (x), T (y)) ≤ ad(x, T (x)) + bd(y, T (y)) + cd(x, y)

for every x, y ∈ X, where a, b, c ≥ 0 with a+ s(b+ c) < 1. Then T has a unique fixed point
in X.

Theorem 1.3 (see theorem 1 in [18]). Let (X, d) be a complete b−metric space with constant
s ≥ 1 and let T : X −→ X be such that

d(T (x), T (y)) ≤ kd(x, y)

for every x, y ∈ X, where ks < 1. Then T has a unique fixed point in X.

Theorem 1.4 (see theorem 3.1.2 in [19]). Let (X, d) be a complete b−metric space with
constant s ≥ 1 and let T : X −→ X be such that

d(T (x), T (y)) ≤ αd(x, y) + βd(x, T (x)) + γd(y, T (y)) + µ[d(x, T (y)) + d(y, T (x))]

for every x, y ∈ X, where α, β, γ, µ ≥ 0, with s(α + β) + γ + (s2 + s)µ ≤ 1. Then T has a
unique fixed point in X.
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Theorem 1.5 (see theorem 3.1.8 in [19]). Let (X, d) be a complete b−metric space with
constant s ≥ 1 and let T : X −→ X be such that

d(T (x), T (y)) ≤ kmax

{
d(x, y), d(x, T (x)), d(y, T (y)),

d(x, T (y)) + d(y, T (x))

2s

}
for every x, y ∈ X, where 0 ≤ ks < 1. Then T has a unique fixed point in X.

Corollary 1.1 ( see corollary 2.3 in [23]). Let (X, d) be a complete b−metric space with
constant s ≥ 1 and let T, S : X −→ X be two mappings. Suppose that there exist a > 0 such
that

d(Tx, Sy) ≤ 1

s+ a
max

{
d(x, y), d(x, Tx), d(y, Sy),

1

2s
(d(x, Sy) + d(Tx, y))

}
∀x, y ∈ X. Then T and S have a unique common fixed point in X.

Corollary 1.2 ( see corollary 2.4 in [23]). Let (X, d) be a complete b−metric space with
constant s ≥ 1 and let T, S : X −→ X be two mappings. Suppose the following inequality

d(Tx, Sy) ≤ 1

s2
max

{
d(x, y), d(x, Tx), d(y, Sy),

1

2s
(d(x, Sy) + d(Tx, y))

}
∀x, y ∈ X. Then T and S have a unique common fixed point in X.

2. Main results

Definition 2.1. Let s ≥ 1, and Fs be the set of all continuous functions
φ(t1, t2, t3, t4, t5, t6) : IR6

+ −→ IR such that:
(φ1) : φ is nondecreasing in variable t1 and non increasing in variables t2, t3, t4, t5, t6.
(φ2) : ∃r ∈

[
0, 1s
[
, such that ∀u, v ≥ 0 :

φ(u, v, v, u, s(u+ v), 0) ≤ 0 or φ(u, v, u, v, 0, s(u+ v)) ≤ 0 or φ(u, 0, 0, v, sv, 0) ≤ 0 or
φ(u, 0, v, 0, 0, sv) ≤ 0 =⇒ u ≤ rv.
Moreover, if ∀u ≥ 0 such that φ(u, u, 0, 0, u, u) ≤ 0 ⇒ u = 0, we say that φ check (φ3).

Example 2.1. φ(t1, t2, t3, t4, t5, t6) = t1− (αt2 +βt3 +γt4). with α, β, γ ≥ 0; α+β+γ < 1
s .

Example 2.2. φ(t1, t2, t3, t4, t5, t6) = t1 − (αt2 + βt3 + γt4). with β + s(α+ γ) < 1.

Example 2.3. φ (t1, t2, t3, t4, t5, t6) = t1 − rt2 with rs < 1.

Example 2.4.

φ (t1, t2, t3, t4, t5, t6) = t1 − (αt2 + βt3 + γt4 + µ[t5 + t6])

with α, β, γ, µ ≥ 0 and s (α+ β) + γ +
(
s2 + s

)
µ ≤ 1.

Example 2.5.

φ (t1, t2, t3, t4, t5, t6) = t1 − rmax

{
t2, t3, t4,

t5 + t6
2s

}
where 0 ≤ r < 1, with rs < 1.

Example 2.6.

φ (t1, t2, t3, t4, t5, t6) = t1 −
1

s+ a
max

{
t2, t3, t4,

t5 + t6
2s

}
with a > 0.

Example 2.7.

φ (t1, t2, t3, t4, t5, t6) = t1 −
1

s2
max

{
t2, t3, t4,

t5 + t6
2s

}
.
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Theorem 2.1. Let (X, d) be a complete b−metric space with constant s. We suppose that
d is continuous with respect to one of its variables, F,G : X −→ C(X) and φ ∈ Fs such that

φ (H(Fx,Gy), d(x, y), d(x, Fx), d(y,Gy), d(x,Gy), d(y, Fx)) ≤ 0 (1).

Then F and G have a common fixed point x ∈ X.
Moreover, if x is absolutely fixed for F or G ( which means that F (x) = {x} or G(x) = {x}
) and φ check (φ3), then the fixed point is unique.

For the proof of this theorem we need two lemmas.

Lemma 2.1. In a b-metric space (X, d), if the function d is continuous with respect to one
of its variable, then it is continuous with respect to the other.

Proof. Suppose that d is continuous with respect to the first variable, and let (yn) be a
sequence of elements of X such that (yn) is b-convergent to y ∈ X. Then since d is symmetric
we have for all x ∈ X :

lim
n→∞

d(x, yn) = lim
n→∞

d(yn, x) = d(y, x) = d(x, y).

�

Lemma 2.2. Let (X, d) be a b-metric space and let A ⊂ C(X), if d is continuous with
respect to one of its variables, then for all x ∈ X, there exists y0 ∈ A such that

d(x,A) = inf
y∈A

d(x, y) = d(x, y0).

Proof. We have d(x,A) = inf
y∈A

d(x, y), so for every n ∈ IN∗ there exists xn ∈ A such that

d(x,A)− 1

n
< d(x,A) ≤ d(x, xn) < d(x,A) +

1

n
.

Since A is compact, (xn) has a subsequence, also noted (xn), which is b-convergent to x0 ∈ A.
So :

|d(x, xn)− d(x,A)| < 1

n
−→ 0 when n −→∞.

from where lim
n→∞

d(x, xn) = d(x,A), so since d is continuous we deduce that

lim
n→∞

d(x, xn) = d(x, x0),

hence from the uniqueness of the limit in a b-metric space, we have d(x, x0) = d(x,A). �

Proof. of the main result.

Existence.
Let x0 ∈ X and x1 ∈ Fx0, let’s show that there exists x2 ∈ Gx1 such that

d(x1, x2) ≤ H(Fx0, Gx1).

Since x1 ∈ Fx0, we have :

d(x1, Gx1) ≤ e(Fx0, Gx1) ≤ H(Fx0, Gx1).

And we have Gx1 is compact and d is continuous with respect to one of its variables, so
according to lemma 2.2 there exists x2 ∈ Gx1 such that :

d(x1, x2) ≤ H(Fx0, Gx1).

In the same, since

d(x2, Fx2) ≤ e(Gx1, Fx2)

≤ H(Gx1, Fx2)
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and Fx2 is compact, there exist x3 ∈ Fx2 such that

d(x3, x2) ≤ H(Fx2, Gx1).

In the same there exist x4 ∈ Gx3 such that

d(x3, x4) ≤ H(Gx3, Fx2).

By recurrence, we construct a sequence (xn) such that x2n+1 ∈ Fx2n, and x2n+2 ∈ Gx2n+1

which satisfies :

d(x2n+1, x2n) ≤ H(Fx2n, Gx2n−1) and d(x2n+2, x2n+1) ≤ H(Fx2n, Gx2n+1).

According to (1) we have :

φ(H(Fx2n, Gx2n−1), d(x2n, x2n−1), d(x2n, Fx2n), d(x2n−1, Gx2n−1), d(x2n, Gx2n−1), d(x2n−1, Fx2n)) ≤ 0.

Now using (φ1), we deduce that

φ(H(Fx2n, Gx2n−1), d(x2n, x2n−1), H(Fx2n, Gx2n−1), d(x2n−1, x2n), 0, s[d(x2n−1, x2n)+H(Fx2n, Gx2n−1)]) ≤ 0.

So according to (φ2), we have

H(Fx2n, Gx2n−1) ≤ rd(x2n, x2n−1)

hence

d(x2n+1, x2n) ≤ rd(x2n, x2n−1) (∗).

In the same way, we have

φ(H(Fx2n, Gx2n+1), d(x2n, x2n+1), d(x2n, Fx2n), d(x2n+1, Gx2n+1), d(x2n, Gx2n+1), d(x2n+1, Fx2n)) ≤ 0.

Now using (φ1), we deduce that

φ(H(Fx2n, Gx2n+1), d(x2n, x2n+1), d(x2n, x2n+1), H(Fx2n, Gx2n+1), s[d(x2n, x2n+1)+H(Fx2n, Gx2n+1)], 0) ≤ 0.

So according to (φ2), we have

H(Fx2n, Gx2n+1) ≤ rd(x2n, x2n+1)

hence

d(x2n+2, x2n+1) ≤ rd(x2n, x2n+1) (∗∗).

So for everything n ∈ IN∗ d(xn, xn+1) ≤ rd(xn−1, xn), and consequently

d(xn, xn+1) ≤ rd(xn−1, xn)

≤ r2d(xn−2, xn−1)

≤ r3d(xn−3, xn−2)

≤ ...

≤ rnd(x0, x1).

Now we have to show that (xn) is a Cauchy sequence. Let m,n ∈ IN, such that n < m,
then

d(xn, xm) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3) +

...+ sm−n−1d(xm−2, xm−1) + sm−n−1d(xm−1, xm)
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On the other hand we have :

d(xn, xm) ≤ srnd(x0, x1) + s2rn+1d(x0, x1) + s3rn+2d(x0, x1) +

...+ sm−n−1rm−2d(x0, x1) + sm−n−1rm−1d(x0, x1)

≤ srn(1 + (sr) + (sr)2 + ...+ (sr)m−n−2 + sm−n−2rm−n−1)d(x0, x1)

= srn
(

1− (sr)m−n−1

1− sr
+ sm−n−2rm−n−1

)
d(x0, x1)

≤ rn
(

s

1− sr
+ (sr)m−n−1

)
d(x0, x1).

from where lim
n,m→∞

d(xn, xm) = 0. Then (xn) is a Cauchy sequence. As the b−metric space

(X, d) is complete, there exists x ∈ X such that lim
n→∞

d(xn, x) = 0. Next we show that

x ∈ Fx and x ∈ Gx, indeed, by (1) we have

φ (H(Fx2n, Gx), d(x2n, x), d(x2n, Fx2n), d(x,G(x)), d(x2n, Gx), d(x, Fx2n)) ≤ 0

⇒ φ (H(Fx2n, Gx), d(x2n, x), d(x2n, x2n+1), d(x,Gx), d(x2n, Gx), d(x, x2n+1)) ≤ 0

⇒ φ (H(Fx2n, Gx), d(x2n, x), d(x2n, x2n+1), d(x,Gx), s[d(x2n, x) + d(x,Gx)], d(x, x2n+1)) ≤ 0.

letting n→∞ we obtain

φ
(

lim inf
n→∞

H(Fx2n, Gx), 0, 0, d(x,Gx), sd(x,Gx), 0)
)
≤ 0.

Now using the fact that H(Fx2n, Gx2n+1) ≤ rd(x2n, x2n+1), x2n+2 ∈ Gx2n+1 and

H(Fx2n, Gx) ≤ sH(Fx2n, {x2n+2}) + sH({x2n+2}, Gx)

≤ sH(Fx2n, Gx2n+1) + s2H({x2n+2}, {x}) + s2H({x}, Gx)

≤ srd(x2n, x2n+1) + s2d(x2n+2, x) + s2H({x}, Gx),

we deduce that the sequence (H(Fx2n, Gx))n is bounded. Then by (φ2), we have

lim inf
n→∞

H(Fx2n, Gx) ≤ rd(x,Gx). (2)

On the other hand we show that d(x,Gx) = 0. Suppose that d(x,Gx) > 0, then

d(x,Gx) ≤ s[d(x, x2n+1) + d(x2n+1, Gx)] ≤ s[d(x, x2n+1) +H(Fx2n, Gx)],

by (2) we have

d(x,Gx) ≤ lim inf
n→∞

s[d(x, x2n+1) +H(Fx2n, Gx)]

= srd(x,Gx)

< d(x,Gx)

which is a contradiction. Hence d(x,Gx) = 0 and consequently x ∈ Gx, also we have x ∈ Fx.
Indeed. by (1) we have

φ (H(Fx,Gx2n−1), d(x, x2n−1), d(x, Fx), d(x2n−1, Gx2n−1), d(x,Gx2n−1), d(x2n−1, Fx)) ≤ 0

⇒ φ (H(Fx,Gx2n−1), d(x, x2n−1), d(x, Fx), d(x2n−1, x2n), d(x, x2n), d(x2n−1, Fx)) ≤ 0

⇒ φ (H(Fx,Gx2n−1), d(x, x2n−1), d(x, Fx), d(x2n−1, x2n), d(x, x2n), s[d(x2n−1, x) + d(x, Fx)]) ≤ 0.

letting n→∞ we obtain

φ
(

lim inf
n→∞

H(F (x), G(x2n−1)), 0, d(x, F (x)), 0, 0, sd(x, F (x))
)
≤ 0.

Then by (φ2), we have

lim inf
n→∞

H(Fx,Gx2n−1) ≤ rd(x, Fx). (3)
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On the other hand we have

d(x, Fx) ≤ s[d(x, x2n) + d(x2n, Fx)]

≤ s[d(x, x2n) +H(Fx,Gx2n−1)],

by (3) we have

d(x, Fx) ≤ lim inf
n→∞

s[d(x, x2n) +H(Fx,Gx2n−1)]

= srd(x, Fx)

< d(x, Fx).

which is a contradiction if d(x, Fx) > 0. Hence d(x, F (x)) = 0 and consequently x ∈ F (x).

Unicity. Suppose that F (x) = {x} and φ check the (φ3) and y ∈ X is an other
common fixed point of F and G, then by (1) we have

φ (H(Fx,Gy), d(x, y), d(x, Fx), d(y,Gy), d(x,Gy), d(y, Fx)) ≤ 0,

consequently

φ (H(x,Gy), d(x, y), d(x, x), d(y,Gy), d(x,Gy), d(y, x)) ≤ 0,

so

φ (d(x, y), d(x, y), 0, 0, d(x, y), d(y, x)) ≤ 0.

By (φ3) we have d(x, y) = 0, then x = y. So x is the unique common fixed point of
F and G. �

As a consequence of theorem 2.1, if F = G = T , then we obtain the following corollary

Corollary 2.1. Let (X, d) be a complete b−metric space with constant s. We suppose that
d is continuous with respect to noe of its variables, T : X −→ C(X) and φ ∈ Fs such that

φ (H(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0.

Then T has a fixed point x ∈ X. Moreover, if x is absolutely fixed and φ check (φ3), then
the fixed point is unique.

Example 2.8. Let (X = [0,+∞[, d) be a complete b−metric space with constant s = 2,
d(x, y) = (x− y)2. We define T : X −→ C(X), by

T (x) =

{
0 if x < 2[
0, x

1+x

]
otherwise

we prove that T check H(Tx, Ty) ≤ 1
3 max

{
d(x, y), d(x, Tx), d(y, Ty),

[
d(x,Ty)+d(y,Tx)

2s

]}
.

Indeed, we have the following situations:
1) If x, y ∈ [0, 2[, then

H(Tx, Ty) = 0 ≤ 1

3
max

{
d(x, y), d(x, Tx), d(y, Ty),

[
d(x, Ty) + d(y, Tx)

2s

]}
.
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2) If x ∈ [0,+∞[, y ∈ [2,+∞[, then

H(Tx, Ty) =

(
y

y + 1

)2

≤ 4

3

(
y

y + 1

)2

≤ 1

3

(
y2

y + 1

)2

=
1

3
d(y, Ty)

H(Tx, Ty) ≤ 1

3
max

{
d(x, y), d(x, Tx), d(y, Ty),

[
d(x, Ty) + d(y, Tx)

2s

]}
.

All the conditions of theorem 2.1 are satisfied with φ as in example 2.5, then 0 is the
unique absolutely fixed point of T .

Now if we replace H(., .) by δ(., .), then we obtain the following result :

Theorem 2.2. Let (X, d) be a complete b−metric space with constant s,
F,G : X −→ CB(X) and φ ∈ Fs such that

φ (δ(Fx,Gy), d(x, y), d(x, Fx), d(y,Gy), d(x,Gy), d(y, Fx)) ≤ 0. (4)

Then F and G have a common fixed point. Moreover if φ check (φ3), then the fixed point is
unique.

Proof. Existence.
Let xn ∈ X such that x2n+1 ∈ Fx2n and x2n ∈ Gx2n−1, then by (4), we have :

φ(δ(Fx2n, Gx2n−1), d(x2n, x2n−1), d(x2n, Fx2n), d(x2n−1, Gx2n−1), d(x2n, Gx2n−1), d(x2n−1, Fx2n)) ≤ 0.

and

φ(δ(Fx2n, Gx2n+1), d(x2n, x2n+1), d(x2n, Fx2n), d(x2n+1, Gx2n+1), d(x2n, Gx2n+1), d(x2n+1, Fx2n)) ≤ 0.

So using the same argument as in theorem 2.1, we deduce that xn is a Cauchy sequence
and converges to the common fixed point of F and G.

Unicity. Suppose that φ check (φ3). Let y ∈ X be an other common fixed point of
F and G, then by (4) we have

φ (δ(Fx,Gy), d(x, y), d(x, Fx), d(y,Gy), d(x,Gy), d(y, Fx)) ≤ 0,

so
φ (δ(Fx,Gy), δ(Fx,Gy), 0, 0, δ(Fx,Gy), δ(Fx,Gy)) ≤ 0,

hence By (φ3) we have δ(Fx,Gy) = 0, so Fx = Gy = {x} = {y} and x is the unique
common absolutely fixed point of F and G. �

-If F = f and G = g are single valued mappings, then by theorem 2.2 we obtain the
following corollary

Corollary 2.2. Let (X, d) be a complete b−metric space with constant s,
f, g : X −→ X and φ ∈ Fs such that

φ (d(f(x), g(y)), d(x, y), d(x, f(x)), d(y, g(y)), d(x, g(y)), d(y, f(x))) ≤ 0,

then f and g have a common fixed point. Moreover if φ check (φ3), then the fixed point is
unique.

If f = g = T in corollary 2.2, then we obtain the following corollary
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Corollary 2.3. Let (X, d) be a complete b−metric space with constant s,
T : X −→ X and φ ∈ Fs such that

φ (d(T (x), T (y)), d(x, y), d(x, T (x)), d(y, T (y)), d(x, T (y)), d(y, T (x))) ≤ 0,

then T has a fixed point x ∈ X. Moreover, if φ check (φ3), then the fixed point is unique.

3. Consequences of the main result

From corollary 2.3 and example 2.1 we obtain theorem 1.1
From corollary 2.3 and example 2.2 we obtain theorem 1.2
From corollary 2.3 and example 2.3 we obtain theorem 1.3
From corollary 2.3 and example 2.4 we obtain theorem 1.4
From corollary 2.3 and example 2.5 we obtain theorem 1.5
From corollary 2.2 and example 2.6 we obtain corollary 1.1
From corollary 2.2 and example 2.7 we obtain corollary 1.2
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