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A COMMON FIXED POINT OF MULTI-VALUED MAPS IN B-METRIC
SPACE
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In this work we are interested to prove a general fized point theorem for
a pair of multi-valued mappings satisfying a new type of implicit relation in b—metric
spaces. The results in this paper generalize the results obtained in [18], [19], [20], [22],
[23] and to obtain other particular results.
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1. Introduction and Preliminary

The study of fixed point theory in metric spaces has several applications in mathe-
matics, especially in solving differential equations. In [4] Bakhtin introduced a new class
of generalized metric space called b-metric space which has been studied by many authors.
For example, see [1, 2, 3, 5, 6, 7, 8,9, 10, 11, 12, 13, 21]. This new notion of spaces has
been used to obtain several results in fixed point theory. For example : in [18] the authors
have generalized Banach fixed point theorem in b-metric space, see Theorem 1.3 and in [19],
[20], [22], [23]. The authors have used an other form of contraction to obtain the fixed point
theorem of uni-valued mappings in b-metric spaces.

In our work, using the Hausdorff-Pompeiu metric, we are dealing with the common
fixed point of two multi-valued mappings verifying a certain relation in b-metric space. As
a consequence of our work we obtain some results known in the case of uni-valued mappings
that we will point out in the following paragraph.

Definition 1.1 ([9]). Let X be a nonempty set and s > 1 be a given real number. A function
d: X x X — R" is said to be a b-metric on X if the following conditions hold:

(1) d(z,y) = 0 if and only if x = y;

(i) d(x,y) = d(y, ) for all v,y € X;

(141) d(z,y) < s[d(z, z) + d(z,y)] for all z,y,z € X.

Note that every metric space is a b—metric space with s = 1. But the converse need
not be true as is shown in the following example.

Example 1.1 ([22]). Let X = {~1,0,1}. Defined : X x X — R* by : d(z,y) = d(y, )
forall z,y € X, d(x,z) =0, d(—1,0) =3 and d(—1,1) = d(0,1) = 1.

Then (X, d) is a b—metric space with s = % but it is not a metric space since the triangle
inequality is not satisfied. Indeed, we have

d(~1,1) +d(1,0) =1+ 1 =2 < 3=d(~1,0).
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Definition 1.2 ([7]). Let (X,d) be a b—metric space, x € X and (x,,) be a sequence in X.
Then
(1) () converges to x if and only if le d(xz,z,) = 0. We denote this by x, —
x(n— o0) or lim z, =x.
n—

o
(1) (xn) is Cauchy if and only if lim d(z,,2m) = 0.
n,Mm—00

(7i1) (X, d) is complete if and only if every Cauchy sequence in X is convergent.
(iv) A subset A C X is said to be closed if for every sequence x,, € A such that
T, — T we have T € A.

(v) A subset A C X is said to be bounded is sup d(z,y) < +o0.
T,ycA

(vi) A subset A C X s said to be compact if every sequence x,, € A has a convergent
subsequence.

Let (X, d) be a b—metric space, we denote C'B(X) the set of nonempty closed bounded
subsets of X provided with the Hausdorff-Pompeiu metric H defined by

H(A, B) = max (sup d(x, B), sup d(y, A)) ,
r€A yeB

where A, B € CB(X) and d(z, A) = ing d(x,y). We define also 6(A, B) by
ye
0(A, B) = sup{d(a,b), a€ A be B},

it follows immediately from the definition of § that
0(A,B)=0<«<—= A=B={}and 6({.},B)=H({.},B) and
d(a,b) <0(A,B) Yae A VYbe B.
In the following, C'(X) means the set of nonempty compact subsets of X.

We begin by quoting the theorems which we generalize in this work.

Theorem 1.1 (see theorem 4 in [22]). Let (X, d) be a complete b—metric space with constant
s>1andletT : X — X be such that

d(T(x), T(y)) < ad(z,y) + fd(z,T(z)) +vd(y, T(y))
for every x,y € X, where a,B,v > 0 with a + f+ v < % Then T has a unique fixed point
n X.
Theorem 1.2 (see theorem 3.2 in [20]). Let (X,d) be a complete b—metric space with
constant s > 1 and let T : X — X be such that

d(T(x),T(y)) < ad(x, T(x)) + bd(y, T(y)) + cd(z, y)
for every x,y € X, where a,b,c > 0 with a+ s(b+ ¢) < 1. Then T has a unique fized point
mn X.
Theorem 1.3 (see theorem 1 in [18]). Let (X, d) be a complete b—metric space with constant
s>1andletT : X — X be such that

d(T'(z), T(y)) < kd(z,y)

for every x,y € X, where ks < 1. Then T has a unique fixed point in X.

Theorem 1.4 (see theorem 3.1.2 in [19]). Let (X,d) be a complete b—metric space with
constant s > 1 and let T : X — X be such that

d(T(x),T(y)) < ad(z,y) + Bd(x,T(x)) +vd(y, T(y)) + pld(z, T(y)) + d(y, T (x))]
for every x,y € X, where o, 3,7, > 0, with s(a + B) + v+ (s> +s)u < 1. Then T has a
unique fized point in X.
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Theorem 1.5 (see theorem 3.1.8 in [19]). Let (X,d) be a complete b—metric space with
constant s > 1 and let T : X — X be such that

2s
for every x,y € X, where 0 < ks < 1. Then T has a unique fized point in X.

d(T(2),T(y)) < kmax {du,y),d(x, T(@)), dy, T(y)), 28T + 4y, T@) }

Corollary 1.1 ( see corollary 2.3 in [23]). Let (X,d) be a complete b—metric space with
constant s > 1 and let T, S : X — X be two mappings. Suppose that there exist a > 0 such

that
(2. 59) < —— e {d(o,), (0,72, dl S1), (0o, Su) + (T |

Va,y € X. Then T and S have a unique common fized point in X.

Corollary 1.2 ( see corollary 2.4 in [23]). Let (X,d) be a complete b—metric space with

constant s > 1 and let T, S : X — X be two mappings. Suppose the following inequality

T2,5y) < 3w {d(o, ). e, Ta). dly. $0) 5 (o, 1)+ d(T.) |

Va,y € X. Then T and S have a unique common fized point in X.

2. Main results

Definition 2.1. Let s > 1, and Fs be the set of all continuous functions
d(t1,ta,ts,ta, ts, t6) : RS — IR such that:

(¢1) : ¢ is nondecreasing in variable t1 and non increasing in variables to, t3, t4, ts, ts.
(¢2) = 3r € [0, L], such that Yu,v >0 :

o(u,v,v,u, s(u+v),0) <0 or ¢(u,v,u,v,0,s(u+v)) <0 or ¢(u,0,0,v,sv,0) <0 or
o(u,0,v,0,0,50) <0 = u<ro.

Moreover, if Yu > 0 such that ¢(u,u,0,0,u,u) <0 = u =0, we say that ¢ check (¢p3).

Example 2.1. ¢(t1,to,t3,ta, b5, t6) = t1 — (o + Bty +ta). with o, B,y > 0; a+ B+ < L.
Example 2.2. ¢(t1,ta,t3,ta,t5,t6) = t1 — (ats + Bts + yta). with S+ s(a+7) < 1.
Example 2.3. ¢ (t1,t2,t3,t4,t5,t6) = t1 — rto with rs < 1.
Example 2.4.
¢ (t1,t2,t3,ta, 5, t6) = t1 — (at2 + Btz + yta + plts + )
with o, 8,7, >0 and s (a+ B) + v+ (s> +s) p < 1.
Example 2.5.

t t
¢ (t1,ta, b3, ta, by, b6) = t1 — rmax {tz,ts,u, 5; 6}
S

where 0 < r < 1, with rs < 1.

Example 2.6.

ts + 16

1
t1,%2,t3,%4,5,16) = t1 — —— max\ t9,13,1
¢( 1,02,03,04,105, 6) 1 s+am X{ 2,03, 04, 2

} with a > 0.

Example 2.7.

1 ts +1
¢ (tr,ta, st t5,t6) = 11 — 2 max {tz,ts,m, 525 6 } .
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Theorem 2.1. Let (X,d) be a complete b—metric space with constant s. We suppose that
d is continuous with respect to one of its variables, F,G : X — C(X) and ¢ € F; such that

¢ (H(Fz,Gy),d(z,y),d(z, Fr),d(y, Gy),d(z, Gy),d(y, Fx)) <0 (1).

Then F' and G have a common fixed point x € X.
Moreover, if x is absolutely fized for F' or G ( which means that F(z) = {z} or G(x) = {z}
) and ¢ check (¢3), then the fized point is unique.

For the proof of this theorem we need two lemmas.

Lemma 2.1. In a b-metric space (X, d), if the function d is continuous with respect to one
of its variable, then it is continuous with respect to the other.

Proof. Suppose that d is continuous with respect to the first variable, and let (y,) be a
sequence of elements of X such that (y,,) is b-convergent to y € X. Then since d is symmetric
we have for all z € X :

lim d(z,y,) = lim d(y,,z) = d(y,z) = d(z,y).

n—oo n—oo

O

Lemma 2.2. Let (X,d) be a b-metric space and let A C C(X), if d is continuous with
respect to one of its variables, then for all x € X, there exists yo € A such that

Proof. We have d(z, A) = igg d(z,y), so for every n € IN* there exists x,, € A such that
y

1 1
d(z, A) — —< d(z, A) < d(z,z,) < d(z, A) + -
Since A is compact, (z,,) has a subsequence, also noted (), which is b-convergent to zy € A.
So :
1
|d(x, x,) — d(z, A)| < - 0 when n — cc.

from where lim d(z,x,) = d(z, A), so since d is continuous we deduce that
n—oo

nhﬁngo d(z,z,) = d(z, x0),

hence from the uniqueness of the limit in a b-metric space, we have d(x,xg) = d(z, 4). O

Proof. of the main result.

Existence.
Let o € X and x1 € Fxg, let’s show that there exists zo € Gxy such that

d(l’l,l'g) § H(Fx(),G"Bl).
Since x1 € Fxg, we have :
d(z1,Gxy) < e(Fao,Gry) < H(Fxo,Gxy).

And we have Gz, is compact and d is continuous with respect to one of its variables, so
according to lemma 2.2 there exists xo € Gxy such that :
d(z1,29) < H(Fxo,Gxq).
In the same, since
d(x2, Fxs) e(Gzy, Fxg)
H(Gxy, Fxq)

INIA
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and Fzs is compact, there exist x3 € Fxo such that
d(x3,22) < H(Fxa,Gxy).
In the same there exist x4 € Gx3 such that
d(zz,x4) < H(Gxsz, Fxs).

By recurrence, we construct a sequence (x,,) such that zo, 11 € Fxa,, and xop190 € Grapi1
which satisfies :

d(xont1,Ton) < H(Fxan, Gran—1) and  d(oni2,Tant1) < H(Fxon, GTantq).
According to (1) we have :
O(H(Fxan, Gxan—1),d(Ton, Tan—1), d(T2n, FTon), d(T2n—1, GT2n-1), d(T2n, GTan—_1), d(T2n-1, Fx2,)) < 0.
Now using (¢1), we deduce that
O(H(Fxon, Gron-1),d(Ton, Tan—1), H(Fxon, Gan—1),d(T2n-1,Z2n), 0, s[d(z2n—1, Tan)+H (FZ2n, GTan—1)]) < 0.

So according to (¢2), we have

H(Fzop, Gxron—1) < rd(zan, Tan—1)
hence

d(2nt1, Tan) < 1d(Ton, Ton—1) (*).
In the same way, we have
¢(H (Faon, Grong1), d(@2n, T2nt1), d(@2n, Foon), d(@2nt1, Goont1), d(@2n, GTont1), d(T2nt1, Faon)) < 0.
Now using (¢1), we deduce that
O(H(Fxon, Gront1), d(Ton, Tant1), d(Ton, Tont1), H(Fxon, GTant1), s[d(T2n, Tont1)+H (Fxon, GTant1)],0) < 0.
So according to (¢2), we have

H(Fxon, Grani1) < rd(Ton, Toant1)
hence

d(Ton+2, Tant1) < 1d(Tapn, Topy1)  (xx).

So for everything n € N*  d(xy,,zp41) < rd(zp—1,2n), and consequently

A(Tp, Tpi1) rd(Tn—1,Tn)
T2d(xn—27 xn—l)

ng(mn—iiy xn—Q)

(VAN VAN VAN VAN VAN

rd(zo, 7).

Now we have to show that () is a Cauchy sequence. Let m,n € IN, such that n < m,
then

d(l'ny xm) < Sd(mna mn+1) + 32d(~73n+1a xn+2) + 33d(£n+27 xn+3) +

e ST (B0 T 1) F smfnfld(xm_l, o)
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On the other hand we have :
Az, xm) < sr"d(zo,x1) + 2" d(zo, 21) + 3" T2 d(zg, 1) +
.+ sm_"_lrm_Zd(xo, 1)+ smTnlem =g (g, a)

s (14 (s7) + (s7)% 4 oo+ (s7) 772 f g 2pmmn =Dy ay)

1— m—n—1
= sr® <(ST) + sm"2rm”1) d(xo,x1)
1—sr

IN

s
< (1 — (sr)m_"_1> d(zg, x1).

from where . TITILIEOO d(xy, m) = 0. Then (x,) is a Cauchy sequence. As the b—metric space
(X,d) is om,plete there exists x € X such that nh_}rr;o d(xn,x) = 0. Next we show that
z € Fx and x € Gz, indeed, by (1) we have
¢ (H(Fzxon, Gz), d(xon, x), d(Ton, Fron), d(z, G(x)), d(z2n, Gz),d(x, Fxo,)) <0
= ¢ (H(Fxapn, Gx),d(xon, ), d(xon, Tont1), d(x, Gz), d(xon, Gx), d(z, x2n11)) <0
= ¢ (H(Fxan, Gx),d(Ton, x), d(x2n, Tant1), d(x, Gx), s|d(x2n, x) + d(z, Gz)], d(z, 22n4+1)) < 0.

letting n — oo we obtain
) <lim inf H(Fxgn,Gx),0,0,d(m,Gm),sd(x,Gw),O)) <0.
n—oo

Now using the fact that H(Fxa,, Gront1) < rd(zon, Tont1), Tontz € Grantq and
H(Fxgn,Gx) S SH(F$2n,{$2n+2}) + SH({$2n+2},GI)
< sH(Faan, Grapsr) + s°H ({22042}, {2}) + s*H({z}, Gz)
< srd(2on, Tong1) + $2d(Tony 2, ) + s H ({2}, Gx),
we deduce that the sequence (H(F2an,Gx)), is bounded. Then by (¢2), we have
lim inf H(Fzgy,Gx) <rd(z,Gz). (2)
n—oo
On the other hand we show that d(z, Gx) = 0. Suppose that d(z, Gx) > 0, then
d(z,Gz) < s[d(z, 22nt1) + d(22n41, G2)] < s[d(@, 22n11) + H(Fr2n, Gz)],
by (2) we have
dz,Gz) < lim ii)lf sld(x, xant1) + H(Fzap, Gz))
= srd(z,Gx)
< d(z,Gx)

which is a contradiction. Hence d(z, Gz) = 0 and consequently « € Gz, also we have x € Fz.
Indeed. by (1) we have

¢ (H(FJ?, G.I?Qn_l), d(l‘, l‘2n_1), d(ﬂ?, FJ?), d(l‘gn_l, G$2n_1), d(l‘, G.Z‘Qn_l), d(.’l?gn_l, FJ?)) S 0
= ¢ (H(Fzx,Grap-1),d(x, Ton—1),d(x, Fx),d(Ton—1,T2n), d(x, T2n), d(X2n—1, Fz)) <0
= ¢(H(Fz,Grap—1),d(x,x2n-1),d(z, Fx),d(z2n—1,%2,),d(x, Tap), s[d(x2n-1, ) + d(z, Fx)]) < 0.

letting n — oo we obtain

¢>(nm inf H(F(x),G(xgn_l)),O,d(x,F(x)),0,0,sd(x,F(ax))) <0.

n—oo

Then by (¢2), we have
lim inf H(Fz,Gxop—1) <rd(z,Fz). (3)

n—o0
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On the other hand we have

d(xz, Fx) sld(x, xan) + d(zap, Fx)]

sld(z, zon) + H(Fz, Gxan_1)],

IN A

by (3) we have

d(z,Fz) < lim inf s[d(z,z2,) + H(Fz,Gron_1)]

n—00
= srd(z,Fzx)
< d(z, Fx).

which is a contradiction if d(z, F'z) > 0. Hence d(z, F(z)) = 0 and consequently = € F(x).

Unicity. Suppose that F(z) = {z} and ¢ check the (¢3) and y € X is an other
common fixed point of F' and G, then by (1) we have

¢ (H(Fz,Gy),d(z,y),d(z, Fz),d(y, Gy), d(z,Gy),d(y, Fx)) <0,
consequently
¢ (H(x,Gy), d(z,y), d(z,x),d(y, Gy), d(z,Gy),d(y, z)) <0,
SO

¢ (d(z,y),d(x,y),0,0,d(x,y),d(y,r)) < 0.

By (¢3) we have d(x,y) = 0, then z = y. So « is the unique common fixed point of
F and G. (]

As a consequence of theorem 2.1, if FF = G = T, then we obtain the following corollary

Corollary 2.1. Let (X,d) be a complete b—metric space with constant s. We suppose that
d is continuous with respect to noe of its variables, T : X — C(X) and ¢ € F such that

¢ (H(Tz,Ty),d(z,y),d(x, Tz),d(y, Ty), d(z, Ty), d(y, Tx)) < 0.

Then T has a fixed point x € X. Moreover, if x is absolutely fized and ¢ check (¢p3), then
the fixed point is unique.

Example 2.8. Let (X = [0,+00[,d) be a complete b—metric space with constant s = 2,
d(z,y) = (x — y)2. We define T : X — C(X), by

0ife<?2
T(z) = [0, H_%} otherwise
we prove that T check H(Tz,Ty) < & max {d(x,y),d(z,Tx),d(y,Ty), [%ﬂym] }

Indeed, we have the following situations:

1) If x,y € [0,2], then

H(Tz,Ty)=0< %max {d(x, y),d(z, Tx),d(y, Ty), {d(x,Ty) ;d(y,Tx)] } .
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2) If x € [0, +00[, y € [2, +00], then

2
_ (v
H(Tz,Ty) = (y—|—1>
4 y )
3\y+1
1/ 2\
B 3<y+1)
1
= 3dy,Ty)
H(Tz,Ty) < ;,maX{d(mvy)ad(%Tx),d(y,Ty)’ d(x,Ty);;d(y,Tm)}}.

All the conditions of theorem 2.1 are satisfied with ¢ as in example 2.5, then O is the
unique absolutely fixed point of T.

Now if we replace H(.,.) by d(.,.), then we obtain the following result :

Theorem 2.2. Let (X, d) be a complete b—metric space with constant s,
F,G: X — CB(X) and ¢ € F, such that

¢ (0(Fz,Gy),d(z,y),d(x, Fx),d(y, Gy), d(z, Gy),d(y, Fz)) < 0. (4)

Then F and G have a common fized point. Moreover if ¢ check (¢3), then the fixed point is
unique.

Proof. Existence.
Let x,, € X such that xg,41 € Fxg, and x9, € Gxa,_1, then by (4), we have :

O(0(Fzon, Gran—1),d(T2n, Ton—1), d(x2n, Fron), d(x2n—1, GTan—1), d(x2n, GTon—1), d(x2n—1, Fx2n)) < 0.

and

O(6(Fron, Grany1), d(Ton, Tani1), d(@on, Fron), d(T2nt1, GTant1), d(T2n, GTant1), d(T2nt1, FT2,)) < 0.

So using the same argument as in theorem 2.1, we deduce that z, is a Cauchy sequence
and converges to the common fixed point of F' and G.

Unicity. Suppose that ¢ check (¢3). Let y € X be an other common fixed point of
F and G, then by (4) we have

¢ (6(Fz,Gy), d(z,y),d(z, Fx),d(y, Gy), d(x, Gy), d(y, Fx)) <0,
S0
¢ (6(Fz,Gy),8(Fz,Gy),0,0,5(Fx,Gy),5(Fz,Gy)) <0,
hence By (¢3) we have 6(Fz,Gy) = 0, so Fa = Gy = {«} = {y} and « is the unique
common absolutely fixed point of F' and G. O

-If F = f and G = g are single valued mappings, then by theorem 2.2 we obtain the
following corollary

Corollary 2.2. Let (X,d) be a complete b—metric space with constant s,
f,9: X — X and ¢ € F, such that

¢ (d(f(2),9(y)),d(z,y), d(z, f(x)),d(y, 9(y)),d(z, g(y)),d(y, f(x))) <0,

then f and g have a common fized point. Moreover if ¢ check (¢3), then the fixed point is
unique.

If f =g =T in corollary 2.2, then we obtain the following corollary
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Corollary 2.3. Let (X,d) be a complete b—metric space with constant s,
T:X — X and ¢ € Fy such that

¢ (d(T(x), T(y)), d(z,y),d(z,T(x)),d(y, T(y)), d(z, T(y)),d(y, T (x))) <0,

then T has a fized point © € X. Moreover, if ¢ check (¢3), then the fized point is unique.

3. Consequences of the main result

From corollary 2.3 and example 2.1 we obtain theorem 1.1
From corollary 2.3 and example 2.2 we obtain theorem 1.2
From corollary 2.3 and example 2.3 we obtain theorem 1.3
From corollary 2.3 and example 2.4 we obtain theorem 1.4
From corollary 2.3 and example 2.5 we obtain theorem 1.5
From corollary 2.2 and example 2.6 we obtain corollary 1.1
From corollary 2.2 and example 2.7 we obtain corollary 1.2
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