
U.P.B. Sci. Bull., Series A, Vol. 87, Iss. 4, 2025 ISSN 1223-7027

ON CO-r-SUBMODULES AND CO-r-NOETHERIAN MODULES

by Ünsal Tekir1, Suat Koç2, Seçil Çeken3 and Violeta Leoreanu-Fotea4

In this paper, we investigate some properties and characterizations of co-

r-submodules which is the dual notion of r-submodules. We prove that every nonzero
submodule of a finitely generated module is a co-r-submodule. We investigate when a

submodule N of an R-module M contains a co-r-submodule. Also, we study the further

properties of co-r-Noetherian modules as a generalization of Noetherian modules.
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1. Introduction

Throughout this paper, we focus only on commutative rings with nonzero identity
and nonzero unital modules. Let R always denote such a ring and M denote such an R-
module. In recent years, some new classes of ideals and submodules have been defined and
investigated by various authors (see [1], [9], [13], [19]).

The set of zero-divisors of an R-module M is defined as the set

Z(M) := {a ∈ R : am = 0 for some 0 ̸= m ∈ M} [8].

For every submodule N of M , the annihilator of N is denoted by annR(N) := {r ∈ R :
rN = 0} [8].

Koç and Tekir [15] introduced the following concept: a proper submodule N of M is
said to be an r-submodule if Z(M/N) ⊆ Z(M) [15]. Also, they proved various properties of r-
submodules, which are similar to those of prime submodules and gave a new characterization
of torsion free modules in terms of r-submodules.

In recent years, there have been various studies about r-submodules. For instance,
Anebri et al. investigated ascending and descending chain conditions on r-submodules in
[3] and [4].

Recall that an R-moduleM is said to satisfy Property (A) if for each finitely generated
ideal I of R contained in Z(M) there exists 0 ̸= m ∈ M such that Im = 0 [17]. Mahdou et
al. gave a characterization of modules satisfying Property (A) in terms of r-submodules in
[17].

The dual notion of prime submodules was firstly introduced and studied by S. Yassemi
in [21].
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Recall from [21] that a nonzero submodule N of an R-module M is said to be a second
submodule if, for all r ∈ R, rN = 0 or rN = N . If N is a second submodule of M , then
p = annR(N) is a prime ideal of R and N is called a p-second submodule of M [21].

In recent years, second submodules have been studied by various authors in a number
of papers (see for example [6], [7], [10], [11]).

In 2023, F. Farshadifar introduced the dual notion of r-submodules, which is called
co-r-submodule, and studied ascending chain condition on co-r-submodules.

Recall from [20] that the dual notion of zero-divisors of a submodule N of M is
defined as the set W (N) := {r ∈ R : rN ̸= N}. A nonzero submodule N of M is said to be
a co-r-submodule if W (N) ⊆ W (M) [13].

Also M is said to be a co-r-Noetherian module if it satisfies the ascending chain
condition on co-r-submodules [13].

Our aim in this paper is to study further properties of co-r-submodules and co-r-
Noetherian modules. Among the other results in this paper, we prove that every nonzero
submodule of a finitely generated module is an co-r-submodule (see Proposition 2.9). We
investigate when a submodule N of an R-moduleM contains a co-r-submodule (see Theorem
2.18).

We give a characterization of reduced co-r-Noetherian modules via localization (see
Theorem 2.21). We also investigate co-r-Noetherian property for multiplication and comul-
tiplication modules (see Proposition 2.25 and Theorem 2.27).

2. Main Results

Definition 2.1 [13] We say that a non-zero submodule N of an R-module M is a co-r-
submodule of M if for a ∈ R and a submodule K of M , whenever aN ⊆ K and aM = M ,
then N ⊆ K.

Remark 2.2. [13, Remark 2.3] Let M be an R-module and N be a non-zero submodule of
M . It is easily seen that N is a co-r-submodule of M if and only if W (N) ⊆ W (M).

Remark 2.3.
(1) It is clear from the definition that every non-zero R-module M is a co-r-submodule of

itself.
(2) If R is an integral domain and N is a non-zero divisible submodule of an R-module M ,

then N is a co-r-submodule of M .
(3) Let M be a semisimple R-module. Then every non-zero submodule of M is a co-r-

submodule of M .

Definition 2.4. [18] A proper submodule N of an R-module M is called a pure submodule
of M if rN = rM ∩N for every r ∈ R.

Remark 2.5. It is clear that if N is a non-zero pure submodule of M , then N is a co-r-
submodule of M .

Definition 2.6. [12] An R-moduleM is said to be amultiplication module if each submodule
N of M has the form N = IM for some ideal I of R .

Remark 2.7. It is well-known that M is a multiplication module if and only if N = (N :
M)M for every submodule N of M (see [12]).

Proposition 2.8. [13, Theorem 2.4] Every non-zero submodule of a multiplication module
is a co-r-submodule.

Proposition 2.9. Every nonzero submodule N of a finitely generated R-module M is a
co-r-submodule.
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Proof. LetM be a finitely generated R-module andN be a nonzero submodule ofM. Assume
that there exists a ∈ W (N)\W (M). Then it is clear that aM = M. Since M is finitely
generated, by [8, Corollary 2.5], there exists x ∈ R such that (1 + xa)M = 0 and so
(1 + xa)N = 0.

This implies that N = xaN ⊆ aN and so N = aN , a contradiction. Hence, we have
W (N) ⊆ W (M). □

Proposition 2.10. Let M be an R-module. Then the following hold.
(1) [13, Remark 2.3] If N is a co-r-submodule of M , then annR(N) ⊆ W (M).
(2) [13, Proposition 2.6] The sum of an arbitrary non-empty set of co-r-submodules of an

R-module M is a co-r-submodule.

Proposition 2.11. [13, Proposition 2.11] Let N be a non-zero submodule of an R-module
M . Then the following are equivalent.
(1) N is a co-r-submodule.
(2) (0 :M a) +N = (N :M a) for every a ∈ R\W (M).
(3) aN = N for every a ∈ R\W (M).

Recall from [16], an R-module M is said to be an α-reduced module where α is an
endomorphism of R with α(1) = 1, if for any a ∈ R and m ∈ M ,
(1) a2m = 0 implies Rm ∩ aM = 0.
(2) am = 0 if and only if α(a)m = 0.
If α is the identity map on R, then M is called a reduced module [16]. By [16, Lemma 1.2],
M is a reduced module if and only if for any a ∈ R and m ∈ M, a2m = 0 implies that
am = 0.

Proposition 2.12. Let M be a reduced module and N be a nonzero submodule of M. If N
is a co-r-submodule, then N = (N :M a) for each a ∈ R\W (M).

Proof. Assume that M is a reduced module and N is a co-r-submodule of M. Then, by
Proposition 2.12, we have (0 :M a) + N = (N :M a) for each a ∈ R\W (M). In order to
complete the proof, it is enough to show that (0 :M a) = 0 for each a ∈ R\W (M). Let
m∗ ∈ (0 :M a). Then we have am∗ = 0. Since a /∈ W (M), aM = M and so m∗ = am′ for
some m′ ∈ M . This implies that am∗ = a2m′ = 0. As M is reduced, we conclude that
m∗ = am′ = 0 and thus (0 :M a) = 0. Therefore, N = (N :M a), as required. □

Recall that a proper submodule N of M is said to be a prime submodule if am ∈ N ,
where a ∈ R and m ∈ M , then either a ∈ (N : M) or m ∈ N. Note that a submodule
N of M is a prime submodule if and only if N = (N :M a) for each a ∈ R\(N : M). As an
immediate consequence of Proposition 2.12 we give the following explicit result.

Corollary 2.13. Assume that M is a reduced module and N is a nonzero submodule of
M with W (M) ⊆ (N : M). If N is a co-r-submodule, then N is prime.

Definition 2.14. Let S be a non-empty subset of R. We say that S is a co-r-multiplicatively
closed subset of R if R\W (M) ⊆ S and ab ∈ S for every a ∈ R\W (M) and b ∈ S.

Proposition 2.15. If N is a co-r-submodule of M , then R\annR(N) is a co-r-multiplicatively
closed subset of R.

Proof. Since N is a co-r-submodule of M , by Proposition 2.10 (1), we have R\W (M) ⊆
R\annR(N). Let a ∈ R\W (M) and b ∈ R\annR(N). a ∈ R\W (M) and W (N) ⊆ W (M)
(since N is a co-r-submodule of M) implies aN = N . Assume that ab ∈ annR(N). Then
abN = 0 and aN = N .

It follows that abN = bN = 0 and so b ∈ annR(N), a contradiction. Hence, ab ∈
R\annR(N), as required. □
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Proposition 2.16. Suppose that N is a nonzero submodule of M . Then N is a co-r-
submodule if and only if R\W (N) is a co-r-multiplicatively closed subset of R.

Proof. Assume that R\W (N) is a co-r-multiplicatively closed subset of R. Then R\W (M) ⊆
R\W (N) and so W (N) ⊆ W (M).

Conversely, assume that N is a co-r-submodule of M. Then W (N) ⊆ W (M) and
so R\W (M) ⊆ R\W (N). Let a ∈ R\W (M) and b ∈ R\W (N). Now, we will show that
ab ∈ R\W (N).

If ab ∈ W (N), then abN ̸= N. Since b ∈ R\W (N), we have bN = N and thus
abN = aN ̸= N and this yields that a ∈ W (N). As N is a co-r-submodule, W (N) ⊆ W (M)
and so a ∈ W (M), a contradiction.

Hence ab ∈ R\W (N), that is, R\W (N) is a co-r-multiplicatively closed subset of
R. □

Definition 2.17. Let T be a co-r-multiplicatively closed subset of R and T ∗ be a non-
empty subset of M . We say that T ∗ is a T -closed subset of M if ax ∈ T ∗ for each a ∈ T
and x ∈ T ∗.

The following theorem is the dual result of [15, Theorem 4].

Theorem 2.18. Let T be a co-r-multiplicatively closed subset of R and T ∗ be a T -closed
subset of M . Suppose that N is a submodule of M with N ∪ T ∗ = M . Then there exists a
co-r-submodule L of M such that L ⊆ N and L ∪ T ∗ = M .

Proof. Let Ψ := {L′ : L′ is a submodule of M with L′ ⊆ N and L′ ∪T ∗ = M}. Then Ψ ̸= ∅
as N ∈ Ψ. By Zorn’s Lemma, Ψ has a minimal element, say L. Suppose that L is not a
co-r-submodule of M . Then there exists an a ∈ R such that aL ̸= L and aM = M . By the
minimality of L, we have aL ∪ T ∗ ̸= M . Therefore, there exists m ∈ M such that m ̸∈ aL
and m ̸∈ T ∗.

Since aM = M , we have m = ax for some x ∈ M . m ̸∈ aL implies x ̸∈ L. It follows
that x ∈ T ∗. Since T ∗ is a T -closed subset of M , we have m = ax ∈ T ∗, a contradiction.
Therefore, L is a co-r-submodule of M . □

Definition 2.19. Let M be an R-module. If M satisfies ascending chain condition on
co-r-submodules, then M is called co-r-Noetherian module.

Let M be an R-module and S a multiplicatively closed subset of R. Then S−1M
denotes the quotient module of M . Note that S−1M is both an R-module and S−1R-
module. 0S−1M denotes the zero element of S−1M .

The natural R-homomorphism π : M → S−1M is defined as π(m) = m
1 for each

m ∈ M . We use the notation Kc to denote π−1(K) for a submodule K of S−1M and Ne to
denote the submodule generated by π(N). It is well-known that Kce = K for a submodule
K of S−1M [8].

Lemma 2.20. Let M be an R-module and S = R\W (M). If L is a non-zero submodule of
S−1M , then π−1(L) is a co-r-submodule of M .

Proof. We have π−1(L) = Lc ̸= 0 because if Lc = 0, then we would have Lce = L = (0S−1M ),
a contradiction. Put π−1(L) := N . Let a ∈ R\W (M). We will show that aN = N . Let
x ∈ N . Then x = ay for some y ∈ M . We have π(x) = x

1 ∈ L. Then y
1 = 1

a
ay
1 ∈ L.

This shows that y ∈ π−1(L) = N . Thus x = ay ∈ aN and so aN = N . Therefore, N
is a co-r-submodule of M . □

Theorem 2.21. Let M be an R-module. Let us consider the following two assertions.
(1) M is a co-r-Noetherian R-module.
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(2) S−1M is a Noetherian S−1R-module, where S = R\W (M).
Then (1) implies (2). If M is a reduced R-module, then (2) implies (1).

Proof. (1) ⇒ (2) Suppose that M is a co-r-Noetherian module and let

L1 ⊆ L2 ⊆ · · · ⊆ Ln ⊆ · · ·
be an ascending chain of S−1R-submodules of S−1M . Consider the naturalR-homomorphism
π previously defined. By Lemma 2.20 we have the following ascending chain of co-r-
submodules of M :

π−1(L1) ⊆ π−1(L2) ⊆ · · · ⊆ π−1(Ln) ⊆ · · ·
As M is a co-r-Noetherian module, then there exists k ∈ Z+ such that π−1(Lk) =

π−1(Ln) for all n ≥ k. We fix an integer n ≥ k and we show that Ln = Lk. By the above
chain, we have Lk ⊆ Ln.

For the converse, take m
s ∈ Ln, where m ∈ M , s ∈ R\W (M). Since sM = M ,

m = sm′ for some m′ ∈ M . It follows that m
s = sm′

s = m′

1 = π(m′) ∈ Ln and so

m′ ∈ π−1(Ln) = π−1(Lk). Thus m′

1 = m
s ∈ Lk. Hence, Ln = Lk. Thus S−1M is a

Noetherian S−1R-module.
(2) ⇒ (1) Suppose that S−1M is a Noetherian S−1R-module. Take any ascending

chain of co-r-submodules N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · · of M . Then, by hypothesis, there is a
k ∈ Z+ such that S−1Nk = S−1Nn for all n ≥ k.

We fix an integer n ≥ k. Note that Nk ⊆ Nn. Let m ∈ Nn. Then there exists an
element s ∈ R\W (M) such that m ∈ (Nk :M s). Since M is reduced, by Proposition 2.12,
we have Nk = (Nk :M s). Hence m ∈ Nk and, thus Nn = Nk. This shows that M is a
co-r-Noetherian module. □

In the previous theorem, if we remove the condition ”M is a reduced module”, then
(2) ⇒ (1) may be wrong. See the following example derived from [13, Example 3.7].

Example 2.22. Let p be a prime number and consider Z-module
M = Z(p∞) × Q, where Z(p∞) = {x ∈ Q/Z : x = (r/pt) + Z for some r ∈ Z and

t ∈ N ∪ {0}} is the Prüfer group.
Then note that M is a divisible Z-module, so by Example 2.28, every nonzero sub-

module of M is a co-r-submodule of M. Also note that〈
1

p
+ Z

〉
×Q ⊊

〈
1

p2
+ Z

〉
×Q ⊊ · · · ⊊

〈
1

pn
+ Z

〉
×Q ⊊ · · ·

is a strictly ascending chain of co-r-submodules of M .
Thus, M is not a co-r-Noetherian R-module.
On the other hand, note that Z\W (M) = Z\{0} and S−1Z-module S−1M is isomor-

phic to Q-module Q.
Thus, S−1Z-module S−1M is a Noetherian module.

Let S be a multiplicatively closed subset of R and M be an R-module. An increasing
sequence (Nn)n∈Z+ of submodules ofM is called S-stationary if there exists a positive integer
k and s ∈ S such that for each n ≥ k, sNn ⊆ Nk [14].

Proposition 2.23. Let M be an R-module and S be a multiplicatively closed subset of R
such that S∩W (M) = ∅. If every ascending chain of co-r-submodules of M is S-stationary,
then M is a co-r-Noetherian module.

Proof. Let N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · · be an ascending chain of co-r-submodules of M .
Then, by hypothesis, there exists an s ∈ S and k ∈ Z+ such that sNn ⊆ Nk for all n ≥ k.
Since S ⊆ R\W (M), sNn = Nn by Proposition 2.11. Thus Nn = Nk for all n ≥ k and this
shows that M is a co-r-Noetherian module. □
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Recall from [2] that a multiplicatively closed subset S of R is said to satisfy the
maximal multiple condition if there exists an s ∈ S such that t|s for all t ∈ S.

Note that every finite multiplicatively closed set S of R and the set of all units in R
are examples of multiplicatively closed sets satisfying the maximal multiple condition.

Theorem 2.24. Let M be an R-module such that S = R\W (M) satisfies the maximal
multiple condition. Then the following are equivalent:
(1) M is a co-r-Noetherian R-module.
(2) S−1M is a Noetherian S−1R-module.

Proof. (1) ⇒ (2) It follows from Theorem 2.21.
(2) ⇒ (1) Suppose that N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · · is an ascending chain of co-r-

submodules of M. Then by assumption, there exists k ∈ Z+ such that S−1Nk = S−1Nn for
all n ≥ k. Let m ∈ Nn. Then we have m

1 ∈ S−1Nn = S−1Nk and this yields tm ∈ Nk for
some t ∈ R\W (M).

Since R\W (M) satisfies maximal multiple condition, there exists s ∈ S such that t|s
for each t ∈ S. Then we have sm ∈ Nk and so sNn ⊆ Nk. Thus every ascending chain of
co-r-submodules of M is S-staionary. Then by Proposition 2.23, M is a co-r-Noetherian
module. □

Note that in Example 2.22, S = R\W (M) = Z\{0} does not satisfy the maximal
multiple condition. In Example 2.22, although S−1Z-module S−1M is a Noetherian module,
M is not a co-r-Noetherian Z-module. This shows that the condition ”S = R\W (M) satisfies
the maximal multiple condition” in the previous theorem is necessary.

Recall from [15] that a proper ideal I of R is called an r-ideal if ab ∈ I and annR(a) =
0, then b ∈ I for all a, b ∈ R. Recall from [3] that a ring R is said to be r-Artinian if it
satisfies descending chain condition on r-ideals.

An R-module M is said to be a comultiplication module if each submodule N of M
has the form N = (0 :M I) for some ideal I of R.

According to [5, Lemma 3.7], an R-module M is a comultiplication module if and
only if for each submodule N of M , N = (0 :M annR(N)).

Proposition 2.25. Let R be an r-Artinian ring and M be a comultiplication R-module
such that W (M) ⊆ Z(R). Then M is a co-r-Noetherian module.

Proof. Let N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · · be an ascending chain of co-r-submodules of M .
Since W (M) ⊆ Z(R), one can see that annR(Ni) is an r-ideal of R for each i.

Since R is an r-Artinian ring, there exists k ∈ Z+ such that annR(Nn) = annR(Nk)
for all n ≥ k. As M is a comultiplication module, this implies that Nn = Nk for all n ≥ k.
Thus M is a co-r-Noetherian module. □

Proposition 2.26. Let M be a co-r-Noetherian module. Then, for every co-r-submodule
N of M and every family of co-r-submodules {Ki}i∈Λ of N ,

∑
i∈Λ Ki = N implies that∑

i∈Λ′ Ki = N for some finite subset Λ′ of Λ.

Proof. Let N be a co-r-submodule of M and {Ki}i∈Λ be a family of co-r-submodules of N
such that

∑
i∈Λ Ki = N . The fact that N is a co-r-submodule of M implies that Ki is a

co-r-submodule of M for all i ∈ Λ. Now, set
F = {

∑
i∈Λ′ Ki : Λ

′ is a finite subset of Λ}.
By Proposition 2.10-(2) and the hypothesis, F has a maximal element N ′ =

∑
i∈Λ′ Ki.

Let j ∈ Λ\Λ′. Then N ′ ⊆ N ′ +Kj . The maximality of N ′ implies that N ′ +Kj = N ′ and
so Kj ⊆ N ′. Thus N ⊆ N ′ which implies that N ′ =

∑
i∈Λ′ Ki = N . □

The following result can be found in [13, Theorem 3.9]. However, we shall give it with
a different proof.
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Theorem 2.27. Let R be a ring satisfying ascending chain condition on r-ideals and M be
a multiplication R-module with W (M) ⊆ Z(R). Then M is a Noetherian R-module.

Proof. Let N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · · be an ascending chain of co-r-submodules of M .
Since M is multiplication module, we can write Ni = (Ni :R M)M for each i. Now, we will
show that (Ni :R M) is an r-ideal of R. Let ab ∈ (Ni :R M) with a ∈ R\Z(R).

Then, by assumption, aM = M . It follows that abM = bM ⊆ Ni and so b ∈ (Ni :R
M). Thus (N1 :R M) ⊆ (N2 :R M) ⊆ · · · ⊆ (Nn :R M) ⊆ · · · is an ascending chain of
r-ideals of R. By the hypothesis, there exists m ∈ Z+ such that (Ni :R M) = (Nm :R M)
for each i ≥ m.

Since M is a multiplication module, this gives that Ni = Nm for each i ≥ m. Thus
M is a co-r-Noetherian module. By Proposition 2.8, M is a Noetherian R-module. □

The condition ”M is a multiplication module” can not be removed from Theorem
2.27. See the following example.

Example 2.28. Consider the Z-module Z(p∞) where p is a prime number and Z(p∞) is
the Prüfer group. Then clearly Z(p∞) is not a multiplication Z-module and W (Z(p∞)) =
0 = Z(Z).

Also note that Z satisfies ascending chain condition on r-ideals since it is a domain.
However, Z(p∞) is not a Noetherian Z-module.

3. Conclusions

In this paper, we give some new properties and characterizations of co-r-submodules
and co-r-Noetherian modules. We prove that every nonzero submodule of a finitely gener-
ated module is an co-r-submodule. We investigate when a submodule N of an R-module
M contains a co-r-submodule. We give a characterization of reduced co-r-Noetherian mod-
ules via localization. We also investigate co-r-Noetherian property for multiplication and
comultiplication modules.
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