

ON CO- r -SUBMODULES AND CO- r -NOETHERIAN MODULESby Ünsal Tekir¹, Suat Koç², Seçil Çeken³ and Violeta Leoreanu-Fotea⁴

In this paper, we investigate some properties and characterizations of co- r -submodules which is the dual notion of r -submodules. We prove that every nonzero submodule of a finitely generated module is a co- r -submodule. We investigate when a submodule N of an R -module M contains a co- r -submodule. Also, we study the further properties of co- r -Noetherian modules as a generalization of Noetherian modules.

Keywords: co- r -submodule, co- r -Noetherian module, r -submodule, r -Noetherian module.

2020 Mathematics Subject Classification: 13C13, 13C99.

1. Introduction

Throughout this paper, we focus only on commutative rings with nonzero identity and nonzero unital modules. Let R always denote such a ring and M denote such an R -module. In recent years, some new classes of ideals and submodules have been defined and investigated by various authors (see [1], [9], [13], [19]).

The set of zero-divisors of an R -module M is defined as the set

$$Z(M) := \{a \in R : am = 0 \text{ for some } 0 \neq m \in M\} \text{ [8].}$$

For every submodule N of M , the annihilator of N is denoted by $\text{ann}_R(N) := \{r \in R : rN = 0\}$ [8].

Koç and Tekir [15] introduced the following concept: a proper submodule N of M is said to be an r -submodule if $Z(M/N) \subseteq Z(M)$ [15]. Also, they proved various properties of r -submodules, which are similar to those of prime submodules and gave a new characterization of torsion free modules in terms of r -submodules.

In recent years, there have been various studies about r -submodules. For instance, Anebri et al. investigated ascending and descending chain conditions on r -submodules in [3] and [4].

Recall that an R -module M is said to satisfy Property (A) if for each finitely generated ideal I of R contained in $Z(M)$ there exists $0 \neq m \in M$ such that $Im = 0$ [17]. Mahdou et al. gave a characterization of modules satisfying Property (A) in terms of r -submodules in [17].

The dual notion of prime submodules was firstly introduced and studied by S. Yassemi in [21].

¹Professor, Department of Mathematics, Marmara University, Istanbul, Turkey, e-mail: utekir@marmara.edu.tr

²Associate Professor, Department of Mathematics, Marmara University, Istanbul, Turkey, e-mail: suat.koc@marmara.edu.tr

³Professor, Department of Mathematics, Trakya University, Edirne, Turkey, e-mail: cekensecil@gmail.com

⁴Professor, Faculty of Mathematics, Al.I. Cuza University, Bd. Carol I, nr. 11, 700506 Iași, Romania, e-mail: foteavioleta@gmail.com

Recall from [21] that a nonzero submodule N of an R -module M is said to be a *second submodule* if, for all $r \in R$, $rN = 0$ or $rN = N$. If N is a second submodule of M , then $p = \text{ann}_R(N)$ is a prime ideal of R and N is called a p -second submodule of M [21].

In recent years, second submodules have been studied by various authors in a number of papers (see for example [6], [7], [10], [11]).

In 2023, F. Farshadifar introduced the dual notion of r -submodules, which is called $\text{co-}r$ -submodule, and studied ascending chain condition on $\text{co-}r$ -submodules.

Recall from [20] that the dual notion of zero-divisors of a submodule N of M is defined as the set $W(N) := \{r \in R : rN \neq N\}$. A nonzero submodule N of M is said to be a *co- r -submodule* if $W(N) \subseteq W(M)$ [13].

Also M is said to be a *co- r -Noetherian module* if it satisfies the ascending chain condition on $\text{co-}r$ -submodules [13].

Our aim in this paper is to study further properties of $\text{co-}r$ -submodules and $\text{co-}r$ -Noetherian modules. Among the other results in this paper, we prove that every nonzero submodule of a finitely generated module is an *co- r -submodule* (see Proposition 2.9). We investigate when a submodule N of an R -module M contains a *co- r -submodule* (see Theorem 2.18).

We give a characterization of reduced *co- r -Noetherian* modules via localization (see Theorem 2.21). We also investigate *co- r -Noetherian* property for multiplication and comultiplication modules (see Proposition 2.25 and Theorem 2.27).

2. Main Results

Definition 2.1 [13] We say that a non-zero submodule N of an R -module M is a *co- r -submodule* of M if for $a \in R$ and a submodule K of M , whenever $aN \subseteq K$ and $aM = M$, then $N \subseteq K$.

Remark 2.2. [13, Remark 2.3] Let M be an R -module and N be a non-zero submodule of M . It is easily seen that N is a *co- r -submodule* of M if and only if $W(N) \subseteq W(M)$.

Remark 2.3.

- (1) It is clear from the definition that every non-zero R -module M is a *co- r -submodule* of itself.
- (2) If R is an integral domain and N is a non-zero divisible submodule of an R -module M , then N is a *co- r -submodule* of M .
- (3) Let M be a semisimple R -module. Then every non-zero submodule of M is a *co- r -submodule* of M .

Definition 2.4. [18] A proper submodule N of an R -module M is called a *pure submodule* of M if $rN = rM \cap N$ for every $r \in R$.

Remark 2.5. It is clear that if N is a non-zero pure submodule of M , then N is a *co- r -submodule* of M .

Definition 2.6. [12] An R -module M is said to be a *multiplication module* if each submodule N of M has the form $N = IM$ for some ideal I of R .

Remark 2.7. It is well-known that M is a multiplication module if and only if $N = (N : M)M$ for every submodule N of M (see [12]).

Proposition 2.8. [13, Theorem 2.4] *Every non-zero submodule of a multiplication module is a *co- r -submodule*.*

Proposition 2.9. *Every nonzero submodule N of a finitely generated R -module M is a *co- r -submodule*.*

Proof. Let M be a finitely generated R -module and N be a nonzero submodule of M . Assume that there exists $a \in W(N) \setminus W(M)$. Then it is clear that $aM = M$. Since M is finitely generated, by [8, Corollary 2.5], there exists $x \in R$ such that $(1 + xa)M = 0$ and so $(1 + xa)N = 0$.

This implies that $N = xaN \subseteq aN$ and so $N = aN$, a contradiction. Hence, we have $W(N) \subseteq W(M)$. \square

Proposition 2.10. *Let M be an R -module. Then the following hold.*

- (1) [13, Remark 2.3] *If N is a co- r -submodule of M , then $\text{ann}_R(N) \subseteq W(M)$.*
- (2) [13, Proposition 2.6] *The sum of an arbitrary non-empty set of co- r -submodules of an R -module M is a co- r -submodule.*

Proposition 2.11. [13, Proposition 2.11] *Let N be a non-zero submodule of an R -module M . Then the following are equivalent.*

- (1) N is a co- r -submodule.
- (2) $(0 :_M a) + N = (N :_M a)$ for every $a \in R \setminus W(M)$.
- (3) $aN = N$ for every $a \in R \setminus W(M)$.

Recall from [16], an R -module M is said to be an α -reduced module where α is an endomorphism of R with $\alpha(1) = 1$, if for any $a \in R$ and $m \in M$,

- (1) $a^2m = 0$ implies $Rm \cap aM = 0$.
- (2) $am = 0$ if and only if $\alpha(a)m = 0$.

If α is the identity map on R , then M is called a reduced module [16]. By [16, Lemma 1.2], M is a reduced module if and only if for any $a \in R$ and $m \in M$, $a^2m = 0$ implies that $am = 0$.

Proposition 2.12. *Let M be a reduced module and N be a nonzero submodule of M . If N is a co- r -submodule, then $N = (N :_M a)$ for each $a \in R \setminus W(M)$.*

Proof. Assume that M is a reduced module and N is a co- r -submodule of M . Then, by Proposition 2.12, we have $(0 :_M a) + N = (N :_M a)$ for each $a \in R \setminus W(M)$. In order to complete the proof, it is enough to show that $(0 :_M a) = 0$ for each $a \in R \setminus W(M)$. Let $m^* \in (0 :_M a)$. Then we have $am^* = 0$. Since $a \notin W(M)$, $aM = M$ and so $m^* = am'$ for some $m' \in M$. This implies that $am^* = a^2m' = 0$. As M is reduced, we conclude that $m^* = am' = 0$ and thus $(0 :_M a) = 0$. Therefore, $N = (N :_M a)$, as required. \square

Recall that a proper submodule N of M is said to be a prime submodule if $am \in N$, where $a \in R$ and $m \in M$, then either $a \in (N : M)$ or $m \in N$. Note that a submodule N of M is a prime submodule if and only if $N = (N :_M a)$ for each $a \in R \setminus (N : M)$. As an immediate consequence of Proposition 2.12 we give the following explicit result.

Corollary 2.13. *Assume that M is a reduced module and N is a nonzero submodule of M with $W(M) \subseteq (N : M)$. If N is a co- r -submodule, then N is prime.*

Definition 2.14. Let S be a non-empty subset of R . We say that S is a co- r -multiplicatively closed subset of R if $R \setminus W(M) \subseteq S$ and $ab \in S$ for every $a \in R \setminus W(M)$ and $b \in S$.

Proposition 2.15. *If N is a co- r -submodule of M , then $R \setminus \text{ann}_R(N)$ is a co- r -multiplicatively closed subset of R .*

Proof. Since N is a co- r -submodule of M , by Proposition 2.10 (1), we have $R \setminus W(M) \subseteq R \setminus \text{ann}_R(N)$. Let $a \in R \setminus W(M)$ and $b \in R \setminus \text{ann}_R(N)$. $a \in R \setminus W(M)$ and $W(N) \subseteq W(M)$ (since N is a co- r -submodule of M) implies $aN = N$. Assume that $ab \in \text{ann}_R(N)$. Then $abN = 0$ and $aN = N$.

It follows that $abN = bN = 0$ and so $b \in \text{ann}_R(N)$, a contradiction. Hence, $ab \in R \setminus \text{ann}_R(N)$, as required. \square

Proposition 2.16. Suppose that N is a nonzero submodule of M . Then N is a co- r -submodule if and only if $R \setminus W(N)$ is a co- r -multiplicatively closed subset of R .

Proof. Assume that $R \setminus W(N)$ is a co- r -multiplicatively closed subset of R . Then $R \setminus W(M) \subseteq R \setminus W(N)$ and so $W(N) \subseteq W(M)$.

Conversely, assume that N is a co- r -submodule of M . Then $W(N) \subseteq W(M)$ and so $R \setminus W(M) \subseteq R \setminus W(N)$. Let $a \in R \setminus W(M)$ and $b \in R \setminus W(N)$. Now, we will show that $ab \in R \setminus W(N)$.

If $ab \in W(N)$, then $abN \neq N$. Since $b \in R \setminus W(N)$, we have $bN = N$ and thus $abN = aN \neq N$ and this yields that $a \in W(N)$. As N is a co- r -submodule, $W(N) \subseteq W(M)$ and so $a \in W(M)$, a contradiction.

Hence $ab \in R \setminus W(N)$, that is, $R \setminus W(N)$ is a co- r -multiplicatively closed subset of R . \square

Definition 2.17. Let T be a co- r -multiplicatively closed subset of R and T^* be a non-empty subset of M . We say that T^* is a T -closed subset of M if $ax \in T^*$ for each $a \in T$ and $x \in T^*$.

The following theorem is the dual result of [15, Theorem 4].

Theorem 2.18. Let T be a co- r -multiplicatively closed subset of R and T^* be a T -closed subset of M . Suppose that N is a submodule of M with $N \cup T^* = M$. Then there exists a co- r -submodule L of M such that $L \subseteq N$ and $L \cup T^* = M$.

Proof. Let $\Psi := \{L' : L' \text{ is a submodule of } M \text{ with } L' \subseteq N \text{ and } L' \cup T^* = M\}$. Then $\Psi \neq \emptyset$ as $N \in \Psi$. By Zorn's Lemma, Ψ has a minimal element, say L . Suppose that L is not a co- r -submodule of M . Then there exists an $a \in R$ such that $aL \neq L$ and $aM = M$. By the minimality of L , we have $aL \cup T^* \neq M$. Therefore, there exists $m \in M$ such that $m \notin aL$ and $m \notin T^*$.

Since $aM = M$, we have $m = ax$ for some $x \in M$. $m \notin aL$ implies $x \notin L$. It follows that $x \in T^*$. Since T^* is a T -closed subset of M , we have $m = ax \in T^*$, a contradiction. Therefore, L is a co- r -submodule of M . \square

Definition 2.19. Let M be an R -module. If M satisfies ascending chain condition on co- r -submodules, then M is called co- r -Noetherian module.

Let M be an R -module and S a multiplicatively closed subset of R . Then $S^{-1}M$ denotes the quotient module of M . Note that $S^{-1}M$ is both an R -module and $S^{-1}R$ -module. $0_{S^{-1}M}$ denotes the zero element of $S^{-1}M$.

The natural R -homomorphism $\pi : M \rightarrow S^{-1}M$ is defined as $\pi(m) = \frac{m}{1}$ for each $m \in M$. We use the notation K^c to denote $\pi^{-1}(K)$ for a submodule K of $S^{-1}M$ and N^e to denote the submodule generated by $\pi(N)$. It is well-known that $K^{ce} = K$ for a submodule K of $S^{-1}M$ [8].

Lemma 2.20. Let M be an R -module and $S = R \setminus W(M)$. If L is a non-zero submodule of $S^{-1}M$, then $\pi^{-1}(L)$ is a co- r -submodule of M .

Proof. We have $\pi^{-1}(L) = L^c \neq 0$ because if $L^c = 0$, then we would have $L^{ce} = L = (0_{S^{-1}M})$, a contradiction. Put $\pi^{-1}(L) := N$. Let $a \in R \setminus W(M)$. We will show that $aN = N$. Let $x \in N$. Then $x = ay$ for some $y \in M$. We have $\pi(x) = \frac{x}{1} \in L$. Then $\frac{y}{1} = \frac{1}{a} \frac{ay}{1} \in L$.

This shows that $y \in \pi^{-1}(L) = N$. Thus $x = ay \in aN$ and so $aN = N$. Therefore, N is a co- r -submodule of M . \square

Theorem 2.21. Let M be an R -module. Let us consider the following two assertions.

- (1) M is a co- r -Noetherian R -module.

(2) $S^{-1}M$ is a Noetherian $S^{-1}R$ -module, where $S = R \setminus W(M)$.
Then (1) implies (2). If M is a reduced R -module, then (2) implies (1).

Proof. (1) \Rightarrow (2) Suppose that M is a co- r -Noetherian module and let

$$L_1 \subseteq L_2 \subseteq \cdots \subseteq L_n \subseteq \cdots$$

be an ascending chain of $S^{-1}R$ -submodules of $S^{-1}M$. Consider the natural R -homomorphism π previously defined. By Lemma 2.20 we have the following ascending chain of co- r -submodules of M :

$$\pi^{-1}(L_1) \subseteq \pi^{-1}(L_2) \subseteq \cdots \subseteq \pi^{-1}(L_n) \subseteq \cdots$$

As M is a co- r -Noetherian module, then there exists $k \in \mathbb{Z}^+$ such that $\pi^{-1}(L_k) = \pi^{-1}(L_n)$ for all $n \geq k$. We fix an integer $n \geq k$ and we show that $L_n = L_k$. By the above chain, we have $L_k \subseteq L_n$.

For the converse, take $\frac{m}{s} \in L_n$, where $m \in M$, $s \in R \setminus W(M)$. Since $sM = M$, $m = sm'$ for some $m' \in M$. It follows that $\frac{m}{s} = \frac{sm'}{s} = \frac{m'}{1} = \pi(m') \in L_n$ and so $m' \in \pi^{-1}(L_n) = \pi^{-1}(L_k)$. Thus $\frac{m'}{1} = \frac{m}{s} \in L_k$. Hence, $L_n = L_k$. Thus $S^{-1}M$ is a Noetherian $S^{-1}R$ -module.

(2) \Rightarrow (1) Suppose that $S^{-1}M$ is a Noetherian $S^{-1}R$ -module. Take any ascending chain of co- r -submodules $N_1 \subseteq N_2 \subseteq \cdots \subseteq N_n \subseteq \cdots$ of M . Then, by hypothesis, there is a $k \in \mathbb{Z}^+$ such that $S^{-1}N_k = S^{-1}N_n$ for all $n \geq k$.

We fix an integer $n \geq k$. Note that $N_k \subseteq N_n$. Let $m \in N_n$. Then there exists an element $s \in R \setminus W(M)$ such that $m \in (N_k :_M s)$. Since M is reduced, by Proposition 2.12, we have $N_k = (N_k :_M s)$. Hence $m \in N_k$ and, thus $N_n = N_k$. This shows that M is a co- r -Noetherian module. \square

In the previous theorem, if we remove the condition " M is a reduced module", then (2) \Rightarrow (1) may be wrong. See the following example derived from [13, Example 3.7].

Example 2.22. Let p be a prime number and consider \mathbb{Z} -module

$M = \mathbb{Z}(p^\infty) \times \mathbb{Q}$, where $\mathbb{Z}(p^\infty) = \{x \in \mathbb{Q}/\mathbb{Z} : x = (r/p^t) + \mathbb{Z}$ for some $r \in \mathbb{Z}$ and $t \in \mathbb{N} \cup \{0\}\}$ is the Prüfer group.

Then note that M is a divisible \mathbb{Z} -module, so by Example 2.28, every nonzero submodule of M is a co- r -submodule of M . Also note that

$$\left\langle \frac{1}{p} + \mathbb{Z} \right\rangle \times \mathbb{Q} \subsetneq \left\langle \frac{1}{p^2} + \mathbb{Z} \right\rangle \times \mathbb{Q} \subsetneq \cdots \subsetneq \left\langle \frac{1}{p^n} + \mathbb{Z} \right\rangle \times \mathbb{Q} \subsetneq \cdots$$

is a strictly ascending chain of co- r -submodules of M .

Thus, M is not a co- r -Noetherian R -module.

On the other hand, note that $\mathbb{Z} \setminus W(M) = \mathbb{Z} \setminus \{0\}$ and $S^{-1}\mathbb{Z}$ -module $S^{-1}M$ is isomorphic to \mathbb{Q} -module \mathbb{Q} .

Thus, $S^{-1}\mathbb{Z}$ -module $S^{-1}M$ is a Noetherian module.

Let S be a multiplicatively closed subset of R and M be an R -module. An increasing sequence $(N_n)_{n \in \mathbb{Z}^+}$ of submodules of M is called S -stationary if there exists a positive integer k and $s \in S$ such that for each $n \geq k$, $sN_n \subseteq N_k$ [14].

Proposition 2.23. Let M be an R -module and S be a multiplicatively closed subset of R such that $S \cap W(M) = \emptyset$. If every ascending chain of co- r -submodules of M is S -stationary, then M is a co- r -Noetherian module.

Proof. Let $N_1 \subseteq N_2 \subseteq \cdots \subseteq N_n \subseteq \cdots$ be an ascending chain of co- r -submodules of M . Then, by hypothesis, there exists an $s \in S$ and $k \in \mathbb{Z}^+$ such that $sN_n \subseteq N_k$ for all $n \geq k$. Since $S \subseteq R \setminus W(M)$, $sN_n = N_n$ by Proposition 2.11. Thus $N_n = N_k$ for all $n \geq k$ and this shows that M is a co- r -Noetherian module. \square

Recall from [2] that a multiplicatively closed subset S of R is said to *satisfy the maximal multiple condition* if there exists an $s \in S$ such that $t|s$ for all $t \in S$.

Note that every finite multiplicatively closed set S of R and the set of all units in R are examples of multiplicatively closed sets satisfying the maximal multiple condition.

Theorem 2.24. *Let M be an R -module such that $S = R \setminus W(M)$ satisfies the maximal multiple condition. Then the following are equivalent:*

- (1) M is a co- r -Noetherian R -module.
- (2) $S^{-1}M$ is a Noetherian $S^{-1}R$ -module.

Proof. (1) \Rightarrow (2) It follows from Theorem 2.21.

(2) \Rightarrow (1) Suppose that $N_1 \subseteq N_2 \subseteq \dots \subseteq N_n \subseteq \dots$ is an ascending chain of co- r -submodules of M . Then by assumption, there exists $k \in \mathbb{Z}^+$ such that $S^{-1}N_k = S^{-1}N_n$ for all $n \geq k$. Let $m \in N_n$. Then we have $\frac{m}{1} \in S^{-1}N_n = S^{-1}N_k$ and this yields $tm \in N_k$ for some $t \in R \setminus W(M)$.

Since $R \setminus W(M)$ satisfies maximal multiple condition, there exists $s \in S$ such that $t|s$ for each $t \in S$. Then we have $sm \in N_k$ and so $sN_n \subseteq N_k$. Thus every ascending chain of co- r -submodules of M is S -stationary. Then by Proposition 2.23, M is a co- r -Noetherian module. \square

Note that in Example 2.22, $S = R \setminus W(M) = \mathbb{Z} \setminus \{0\}$ does not satisfy the maximal multiple condition. In Example 2.22, although $S^{-1}\mathbb{Z}$ -module $S^{-1}M$ is a Noetherian module, M is not a co- r -Noetherian \mathbb{Z} -module. This shows that the condition " $S = R \setminus W(M)$ satisfies the maximal multiple condition" in the previous theorem is necessary.

Recall from [15] that a proper ideal I of R is called an r -ideal if $ab \in I$ and $\text{ann}_R(a) = 0$, then $b \in I$ for all $a, b \in R$. Recall from [3] that a ring R is said to be r -Artinian if it satisfies descending chain condition on r -ideals.

An R -module M is said to be a *comultiplication module* if each submodule N of M has the form $N = (0 :_M I)$ for some ideal I of R .

According to [5, Lemma 3.7], an R -module M is a comultiplication module if and only if for each submodule N of M , $N = (0 :_M \text{ann}_R(N))$.

Proposition 2.25. *Let R be an r -Artinian ring and M be a comultiplication R -module such that $W(M) \subseteq Z(R)$. Then M is a co- r -Noetherian module.*

Proof. Let $N_1 \subseteq N_2 \subseteq \dots \subseteq N_n \subseteq \dots$ be an ascending chain of co- r -submodules of M . Since $W(M) \subseteq Z(R)$, one can see that $\text{ann}_R(N_i)$ is an r -ideal of R for each i .

Since R is an r -Artinian ring, there exists $k \in \mathbb{Z}^+$ such that $\text{ann}_R(N_n) = \text{ann}_R(N_k)$ for all $n \geq k$. As M is a comultiplication module, this implies that $N_n = N_k$ for all $n \geq k$. Thus M is a co- r -Noetherian module. \square

Proposition 2.26. *Let M be a co- r -Noetherian module. Then, for every co- r -submodule N of M and every family of co- r -submodules $\{K_i\}_{i \in \Lambda}$ of N , $\sum_{i \in \Lambda} K_i = N$ implies that $\sum_{i \in \Lambda'} K_i = N$ for some finite subset Λ' of Λ .*

Proof. Let N be a co- r -submodule of M and $\{K_i\}_{i \in \Lambda}$ be a family of co- r -submodules of N such that $\sum_{i \in \Lambda} K_i = N$. The fact that N is a co- r -submodule of M implies that K_i is a co- r -submodule of M for all $i \in \Lambda$. Now, set

$$\mathcal{F} = \{\sum_{i \in \Lambda'} K_i : \Lambda' \text{ is a finite subset of } \Lambda\}.$$

By Proposition 2.10-(2) and the hypothesis, \mathcal{F} has a maximal element $N' = \sum_{i \in \Lambda'} K_i$. Let $j \in \Lambda \setminus \Lambda'$. Then $N' \subseteq N' + K_j$. The maximality of N' implies that $N' + K_j = N'$ and so $K_j \subseteq N'$. Thus $N \subseteq N'$ which implies that $N' = \sum_{i \in \Lambda'} K_i = N$. \square

The following result can be found in [13, Theorem 3.9]. However, we shall give it with a different proof.

Theorem 2.27. *Let R be a ring satisfying ascending chain condition on r -ideals and M be a multiplication R -module with $W(M) \subseteq Z(R)$. Then M is a Noetherian R -module.*

Proof. Let $N_1 \subseteq N_2 \subseteq \dots \subseteq N_n \subseteq \dots$ be an ascending chain of co- r -submodules of M . Since M is multiplication module, we can write $N_i = (N_i :_R M)M$ for each i . Now, we will show that $(N_i :_R M)$ is an r -ideal of R . Let $ab \in (N_i :_R M)$ with $a \in R \setminus Z(R)$.

Then, by assumption, $aM = M$. It follows that $abM = bM \subseteq N_i$ and so $b \in (N_i :_R M)$. Thus $(N_1 :_R M) \subseteq (N_2 :_R M) \subseteq \dots \subseteq (N_n :_R M) \subseteq \dots$ is an ascending chain of r -ideals of R . By the hypothesis, there exists $m \in \mathbb{Z}^+$ such that $(N_i :_R M) = (N_m :_R M)$ for each $i \geq m$.

Since M is a multiplication module, this gives that $N_i = N_m$ for each $i \geq m$. Thus M is a co- r -Noetherian module. By Proposition 2.8, M is a Noetherian R -module. \square

The condition " M is a multiplication module" can not be removed from Theorem 2.27. See the following example.

Example 2.28. Consider the \mathbb{Z} -module $\mathbb{Z}(p^\infty)$ where p is a prime number and $\mathbb{Z}(p^\infty)$ is the Prüfer group. Then clearly $\mathbb{Z}(p^\infty)$ is not a multiplication \mathbb{Z} -module and $W(\mathbb{Z}(p^\infty)) = 0 = Z(\mathbb{Z})$.

Also note that \mathbb{Z} satisfies ascending chain condition on r -ideals since it is a domain. However, $\mathbb{Z}(p^\infty)$ is not a Noetherian \mathbb{Z} -module.

3. Conclusions

In this paper, we give some new properties and characterizations of co- r -submodules and co- r -Noetherian modules. We prove that every nonzero submodule of a finitely generated module is an co- r -submodule. We investigate when a submodule N of an R -module M contains a co- r -submodule. We give a characterization of reduced co- r -Noetherian modules via localization. We also investigate co- r -Noetherian property for multiplication and comultiplication modules.

REFERENCES

- [1] *M. Alan, M. Kılıç, S. Koç, Ü. Tekir*, On Quasi Maximal Ideals of Commutative Rings. *C. R. Acad. Bulg. Sci* (2023), **76**(12), 1801-1810.
- [2] *D. D. Anderson, T. Arabaci, Ü. Tekir, S. Koç*, On S-multiplication modules. *Commun. Algebra* (2020), **48**(8), 3398-3407.
- [3] *A. Anebri, N. Mahdou, Ü. Tekir*, On modules satisfying the descending chain condition on r -submodules, *Commun. Algebra* (2022), **50**(1), 383-391.
- [4] *A. Anebri, N. Mahdou, Ü. Tekir*, Commutative rings and modules that are r -Noetherian. *Bull. Korean Math. Soc.* (2021), **58**(5), 1221-1233.
- [5] *H. Ansari-Toroghy and F. Farshadifar*, The dual notion of multiplication modules, *Taiwan. J. Math.* (2007), **11** (4), 1189-1201.
- [6] *H. Ansari-Toroghy, F. Farshadifar*, On the dual notion of prime submodules, *Algebra Colloq.*, **19** (1) (2012), 1109-1116.
- [7] *H. Ansari-Toroghy, F. Farshadifar*, On the dual notion of prime submodules II, *Mediterr. J. Math.*, **9** (2) (2012), 327-336.
- [8] *M. Atiyah* (2018). *Introduction to commutative algebra*. CRC Press.
- [9] *E. M. Bouba, M. Tamekkante, U. Tekir, S. Koç*, Notes on 1-absorbing prime ideals. *C. R. Acad. Bulg. Sci.*, (2022), **75**(5), 631-639.
- [10] *S. Çeken, M. Alkan and P. F. Smith*, Second modules over noncommutative rings, *Commun. Algebra*, **41** (1) (2013), 83-98.
- [11] *S. Çeken, M. Alkan and P. F. Smith*, The dual notion of the prime radical of a module, *J. Algebra*, **392** (2013), 265-275.
- [12] *Z. A. El-Bast and P. F. Smith* (1988). Multiplication modules. *Commun. Algebra*, **16** (4), 755-779.
- [13] *F. Farshadifar* (2023). The dual notion of r -submodules of modules. *Int. Electron. J. Algebra*, **34**, 112-125.

- [14] *A. Hamed, S. Hizem*, (2016). Modules satisfying the S -Noetherian property and S -ACCR. *Commun. Algebra* **44**, 1941–1951.
- [15] *S. Koç and Ü. Tekir*, r-Submodules and sr-Submodules, *Turk. J. Math.* **42** (4) (2018), 1863–1876.
- [16] *T. K. Lee and Y. Zhou* (2004). Reduced modules. *Rings, modules, algebras and abelian groups*, **236**, 365–377.
- [17] *N. Mahdou, S. Koç, E. Yıldız, Ü. Tekir*, Annihilator Condition on Modules. *Iran. J. Sci. Technol. Trans. A: Sci.* (2023), **47**(5), 1713–1721.
- [18] *P. Ribenboim*, *Algebraic Numbers*. Wiley 1974.
- [19] *Ü. Tekir, S. Koç*, Eisenstein irreducibility criterion for modules. *C. R. Acad. Bulg. Sci.* (2021), **74**(1), 23–28.
- [20] *S. Yassemi*, Coassociated primes, *Commun. Algebra* **23** (4) (1995), 1473–1498.
- [21] *S. Yassemi*, The dual notion of prime submodules, *Arch. Math. (Brno)* **37** (2001), 273–278.