

VARIOUS NOTIONS OF AMENABILITY FOR CERTAIN BANACH ALGEBRAS RELATED TO THE MULTIPLIERS

A. Sahami¹, S. F. Shariati², A. Pourabbas³

In this paper, for the Banach algebra \mathcal{A}_T , we study the various notions of amenability like pseudo amenability, Johnson pseudo-contractibility and module amenability, where \mathcal{A} is a Banach algebra and T is a left multiplier on \mathcal{A} . For a dual Banach algebra \mathcal{A} , under some conditions, we show that if \mathcal{A}_T is Connes amenable (resp. Connes biprojective), then \mathcal{A} is Connes amenable (resp. Connes biprojective). For a non-zero multiplicative linear functional $\varphi : \mathcal{A} \rightarrow \mathbb{C}$, we study the relationship between φ -amenability of \mathcal{A} and φR -amenability of \mathcal{A}_T , where (T, R) be a double centralizer of \mathcal{A} .

Keywords: Multiplier, pseudo amenability, Johnson pseudo-contractibility, Connes amenability, Character amenability.

MSC2010: Primary 46H20, 43A22, Secondary 46H25, 46M10.

1. Introduction and preliminaries

Let \mathcal{A} be a Banach algebra and T a bounded multiplier on \mathcal{A} . Laali in [7] introduced a new Banach algebra \mathcal{A}_T related to \mathcal{A} and T . Indeed a new multiplication on \mathcal{A} was defined by $a * b = aT(b)$ for every $a, b \in \mathcal{A}$. With the norm

$$\|a\|_T = \|T\| \|a\| \quad (a \in \mathcal{A}).$$

\mathcal{A}_T becomes a Banach algebra, provided that $T \in \text{Mul}_l(\mathcal{A})$, see [7, Theorem 2.1(i)]. Laali also studied approximate amenability of \mathcal{A}_T , see [7, Theorem 3.1].

Motivated by these considerations, we investigate the other various notions of amenability for this new multiplication on Banach algebras. For a dual Banach algebra \mathcal{A} , under certain conditions, we show that if \mathcal{A}_T is Connes amenable (resp. Connes biprojective), then \mathcal{A} is Connes amenable (resp. Connes biprojective). Also we show that if \mathcal{A} is Johnson pseudo-contractible, then \mathcal{A}_T is Johnson pseudo-contractible with additional conditions. We study Module amenability of \mathcal{A}_T . Finally we give some examples of Banach algebras which are not φ -biprojective (resp. φ -biflat), but with this new multiplication they are φ -biprojective (resp. φ -biflat).

Suppose that T is a left multiplier and R is a right multiplier of \mathcal{A} , respectively. Then the pair (T, R) is a double centralizer of \mathcal{A} , if $aT(b) = R(a)b$ for every $a, b \in \mathcal{A}$. The set of all left (right) multipliers of \mathcal{A} is denoted by $\text{Mul}_l(\mathcal{A})(\text{Mul}_r(\mathcal{A}))$, respectively. It is easy to see that $\text{Mul}_l(\mathcal{A})$ and $\text{Mul}_r(\mathcal{A})$ are unital Banach subalgebras of $B(\mathcal{A})$. For further information see [2].

¹Department of Mathematics, Faculty of Basic Sciences Ilam University P.O. Box 69315-516 Ilam, Iran.
E-mail: a.sahami@ilam.ac.ir

²Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran. E-mail: f.shariati@aut.ac.ir

³Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran. E-mail: arpabbas@aut.ac.ir

Let \mathcal{A} be a Banach algebra and let E be a Banach \mathcal{A} -bimodule. Then a bounded linear map $D : \mathcal{A} \rightarrow E$ is called derivation if $D(ab) = a \cdot D(b) + D(a) \cdot b$, for every $a, b \in \mathcal{A}$. Suppose that E is a Banach \mathcal{A} -bimodule. So E^* is also a Banach \mathcal{A} -bimodule via the following actions

$$(a \cdot f)(x) = f(x \cdot a), \quad (f \cdot a)(x) = f(a \cdot x) \quad (a \in \mathcal{A}, x \in E, f \in E^*).$$

A Banach algebra \mathcal{A} is called amenable if for every Banach \mathcal{A} -bimodule E , each derivation $D : \mathcal{A} \rightarrow E^*$ is inner, that is, D has the form

$$D(a) = a \cdot f - f \cdot a, \quad (a \in \mathcal{A}),$$

for some $f \in E^*$. A derivation $D : \mathcal{A} \rightarrow E^*$ is approximately inner if there exists a net (f_α) in E^* such that $D(a) = \|\cdot\| - \lim_\alpha a \cdot f_\alpha - f_\alpha \cdot a$ for every $a \in \mathcal{A}$. A Banach algebra \mathcal{A} is called approximately amenable if every derivation $D : \mathcal{A} \rightarrow E^*$ is approximately inner for all Banach \mathcal{A} -bimodule E , see [3].

2. Amenability and amenable-like properties of \mathcal{A}_T

The class of dual Banach algebras was introduced by Runde [8]. Let \mathcal{A} be a Banach algebra and let E be a Banach \mathcal{A} -bimodule. An \mathcal{A} -bimodule E is called dual, if there exists a closed submodule E_* of E^* such that $E = (E_*)^*$. The Banach algebra \mathcal{A} is called dual if it is dual as a Banach \mathcal{A} -bimodule. A dual Banach \mathcal{A} -bimodule E is normal, if for each $x \in E$, the module maps $\mathcal{A} \rightarrow E$; $a \mapsto a \cdot x$ and $a \mapsto x \cdot a$ are wk^* -continuous.

A dual Banach algebra \mathcal{A} is called Connes amenable if every wk^* -continuous derivation $D : \mathcal{A} \rightarrow E$ is inner, for all normal dual Banach \mathcal{A} -bimodule E , see [8].

For a Banach algebra \mathcal{A} and for every $a \in \mathcal{A}$, consider the operators L_a and R_a defined by

$$L_a(b) = ab, \quad R_a(b) = ba \quad (b \in \mathcal{A}).$$

Then $L_a \in \text{Mul}_l(\mathcal{A})$, $R_a \in \text{Mul}_r(\mathcal{A})$ and also (L_a, R_a) is the double centralizer of \mathcal{A} . Let \mathcal{A} be a dual Banach algebra. Since the multiplication in \mathcal{A} is separately wk^* -continuous [8, Proposition 2.1], L_a and R_a are wk^* -continuous.

Theorem 2.1. *Let \mathcal{A} be a dual Banach algebra. Suppose that $T \in \text{Mul}_l(\mathcal{A})$ and T is a wk^* -continuous map. Then \mathcal{A}_T is a dual Banach algebra.*

Proof. Since the underlying space of \mathcal{A} and \mathcal{A}_T are the same and $\|\cdot\|_T \simeq \|\cdot\|$, the predual of them are the same. We only show that the multiplication in \mathcal{A}_T is separately wk^* -continuous. To see this, suppose that $a_0 \in \mathcal{A}_T$. Let (a_α) be a net in \mathcal{A}_T such that $a_\alpha \xrightarrow{wk^*} a_0$. Since T is wk^* -continuous and the multiplication in \mathcal{A} is separately wk^* -continuous, $bT(a_\alpha) \xrightarrow{wk^*} bT(a_0)$. So $b * a_\alpha \xrightarrow{wk^*} b * a_0$. Similarly we can show that $a_\alpha * b \xrightarrow{wk^*} a_0 * b$. Thus \mathcal{A}_T is a dual Banach algebra. \square

For a given dual Banach algebra \mathcal{A} and a Banach \mathcal{A} -bimodule E , we denote by $\sigma wc(E)$, the set of all elements $x \in E$ such that the module maps $\mathcal{A} \rightarrow E$; $a \mapsto a \cdot x$ and $a \mapsto x \cdot a$ are wk^* -continuous. Note that $\sigma wc(E)$ is a closed submodule of E .

A dual Banach algebra \mathcal{A} is called Connes biprojective, if there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \rightarrow (\sigma wc(\mathcal{A} \hat{\otimes} \mathcal{A})^*)^*$ such that $\pi_{\sigma wc} \circ \rho = id_{\mathcal{A}}$, see [14].

Using argument as in the proof of [7, Theorem 3.1], we have the following theorem.

Theorem 2.2. *Let \mathcal{A} be a dual Banach algebra and let $T \in \text{Mul}_l(\mathcal{A})$. Suppose that T is surjective and wk^* -continuous. Then the following statements hold:*

- (i) *If \mathcal{A}_T is Connes amenable, then \mathcal{A} is Connes amenable.*
- (ii) *If \mathcal{A}_T is Connes biprojective, then \mathcal{A} is Connes biprojective.*

Proof. (i) Define $\theta : \mathcal{A}_T \rightarrow \mathcal{A}$ by $\theta(a) = T(a)$ for every $a \in \mathcal{A}_T$. So

$$\theta(a * b) = \theta(aT(b)) = T(aT(b)) = T(a)T(b) = \theta(a)\theta(b) \quad (a, b \in \mathcal{A}_T).$$

Since T is surjective and wk^* -continuous, θ is a wk^* -continuous epimorphism. Applying [8, Proposition 4.2(ii)], \mathcal{A} is Connes amenable.

(ii) Suppose that \mathcal{A}_T is Connes biprojective. Let θ be as above. Then θ is a wk^* -continuous epimorphism. Using [14, Theorem 2.7(ii)] follows that \mathcal{A} is Connes biprojective. \square

For a Banach algebra \mathcal{A} and a sequence (S_n) in $Mul_l(\mathcal{A})$, define

$$T_0 = I, \quad T_n = \prod_{k=1}^n S_k \quad (n \geq 1).$$

It is clear that $T_n \in Mul_l(\mathcal{A})$ for every $n \in \mathbb{N}$. Laali defined a new Banach algebra $\mathcal{A}_n = (\mathcal{A}, *_n)$ by the following multiplication

$$a *_n b = aT_n(b) \quad (n \geq 0).$$

We remind that if \mathcal{A} is a dual Banach algebra and S_n is wk^* -continuous for every $n \in \mathbb{N}$, then \mathcal{A}_n is a dual Banach algebra.

Inspired by arguments as in [7, Theorem 3.2], we have the following theorem:

Theorem 2.3. *Let (S_n) be a sequence of elements in $Mul_l(\mathcal{A})$ such that S_n is wk^* -continuous for every $n \in \mathbb{N}$. Then the following statements hold:*

- (i) *Suppose that S_n is surjective for all n and \mathcal{A}_k is Connes amenable for some k . Then \mathcal{A} is Connes amenable.*
- (ii) *Suppose that S_n is surjective for all n and \mathcal{A}_k is Connes biprojective for some k . Then \mathcal{A} is Connes biprojective.*

Proof. (i) Suppose that S_n is surjective for all n and \mathcal{A}_k is Connes amenable for some k . If $k = 1$, then Theorem 2.2(i) implies that \mathcal{A} is Connes amenable. Now suppose that $k > 1$ and \mathcal{A}_k is Connes amenable. Define $\varphi : \mathcal{A}_k \rightarrow \mathcal{A}_{k-1}$ by $\varphi(a) = S_k(a)$ for every $a \in \mathcal{A}_k$. Since S_k is wk^* -continuous, φ is wk^* -continuous. Also we have

$$\begin{aligned} \varphi(a *_k b) &= S_k(aT_k(b)) = S_k(a)T_k(b) = S_k(a)T_{k-1}S_k(b) \\ &= S_k(a) *_{k-1} S_k(b) = \varphi(a) *_{k-1} \varphi(b), \end{aligned}$$

for every $a, b \in \mathcal{A}_k$. Since S_k is surjective, φ is an epimorphism. Using [8, Proposition 4.2(ii)], \mathcal{A}_{k-1} is Connes amenable. Repeating this method on k implies that \mathcal{A} is Connes amenable.

(ii) Suppose that S_n is surjective for all n and \mathcal{A}_k is Connes biprojective for some k . Let $\varphi : \mathcal{A}_k \rightarrow \mathcal{A}_{k-1}$ be as in (i). Clearly φ is a wk^* -continuous epimorphism. Applying [14, Theorem 2.7(ii)] follows that \mathcal{A}_{k-1} is Connes biprojective. Repeating this method on k , gives that \mathcal{A} is Connes biprojective. \square

A Banach algebra \mathcal{A} is called pseudo-amenable if there exists a not necessarily bounded net (u_α) in $\mathcal{A} \hat{\otimes} \mathcal{A}$ such that $a \cdot u_\alpha - u_\alpha \cdot a \rightarrow 0$ and $\pi_{\mathcal{A}}(u_\alpha)a \rightarrow a$ for every $a \in \mathcal{A}$. For more details, see [4].

Theorem 2.4. *Let \mathcal{A} be a Banach algebra and let $T \in Mul_l(\mathcal{A})$. Then the following statements hold:*

- (i) *Suppose that T is surjective and \mathcal{A}_T is pseudo-amenable. Then \mathcal{A} is pseudo-amenable.*
- (ii) *Suppose that T is bijective and \mathcal{A} is pseudo-amenable. Then \mathcal{A}_T is pseudo-amenable.*

Proof. (i) Define $\theta : \mathcal{A}_T \longrightarrow \mathcal{A}$ by $\theta(a) = T(a)$ for every $a \in \mathcal{A}_T$. So

$$\theta(a * b) = \theta(aT(b)) = T(aT(b)) = T(a)T(b) = \theta(a)\theta(b) \quad (a, b \in \mathcal{A}_T).$$

Since T is surjective and continuous, θ is a continuous epimorphism. Applying [4, Proposition 2.2] gives that \mathcal{A} is pseudo amenable.

(ii) Since T is bijective, it is invertible. By open mapping theorem T^{-1} is a continuous and [7, Lemma 2.3] implies that $T^{-1} \in \text{Mul}_l(\mathcal{A})$. Define $\theta : \mathcal{A} \rightarrow \mathcal{A}_T$ by $\theta(a) = T^{-1}(a)$. It is easy to see that θ is continuous epimorphism. Applying [4, Proposition 2.2], \mathcal{A} is pseudo-amenable. \square

Theorem 2.5. *Let (S_n) be a sequence of elements in $\text{Mul}_l(\mathcal{A})$. Then the following statements hold:*

- (i) *Let S_n be surjective for all n . Suppose that \mathcal{A}_k is pseudo-amenable for some k . Then \mathcal{A} is pseudo-amenable.*
- (ii) *Suppose that S_n is invertible for every n . Let \mathcal{A} be a pseudo-amenable Banach algebra. Then \mathcal{A}_n is pseudo-amenable for every n .*

Proof. (i) Let S_n be surjective for all n . Suppose that \mathcal{A}_k is pseudo-amenable for some k . If $k = 1$, then Theorem 2.4(i) implies that \mathcal{A} is pseudo-amenable. Now suppose that $k > 1$ and \mathcal{A}_k is pseudo amenable. Define $\varphi : \mathcal{A}_k \rightarrow \mathcal{A}_{k-1}$ by $\varphi(a) = S_k(a)$ for every $a \in \mathcal{A}_k$. By similar arguments as in the proof of Theorem 2.3(i) and by [4, Proposition 2.2], \mathcal{A}_{k-1} is pseudo amenable. It follows that \mathcal{A} is pseudo-amenable.

(ii) By induction, we show that \mathcal{A}_n is pseudo-amenable for every n . If $n = 1$, Theorem 2.4(ii) implies that \mathcal{A}_1 is pseudo amenable. Now suppose that $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$ are pseudo-amenable. Define $\theta : \mathcal{A}_n \rightarrow \mathcal{A}_{n+1}$ by $\theta(a) = S_{n+1}^{-1}(a)$ for every $a \in \mathcal{A}$.

$$\begin{aligned} \theta(a *_n b) &= S_{n+1}^{-1}(aT_n(b)) = S_{n+1}^{-1}(aT_{n+1}S_{n+1}^{-1}(b)) \\ &= S_{n+1}^{-1}(a)T_{n+1}(S_{n+1}^{-1}(b)) = \theta(a) *_n \theta(b). \end{aligned}$$

Then θ is a continuous epimorphism. Using [4, Proposition 2.2], \mathcal{A}_{n+1} is pseudo-amenable. \square

A Banach algebra \mathcal{A} is called biprojective, if there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \rightarrow \mathcal{A} \hat{\otimes} \mathcal{A}$ such that ρ is a right inverse for $\pi_{\mathcal{A}}$, see [2].

Theorem 2.6. *Let (T, R) be a double centralizer of \mathcal{A} such that T is bijective. If \mathcal{A} is biprojective, then \mathcal{A}_T is biprojective.*

Proof. Since \mathcal{A} is biprojective, there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \rightarrow \mathcal{A} \hat{\otimes} \mathcal{A}$ such that $\pi_{\mathcal{A}} \circ \rho(a) = a$ for every $a \in \mathcal{A}$. Since T is bijective, it is invertible. By open mapping theorem T^{-1} is continuous. Now [7, Lemma 2.3] implies that $T^{-1} \in \text{Mul}_l(\mathcal{A})$. Consider the bounded maps $\psi : \mathcal{A} \rightarrow \mathcal{A}_T; a \mapsto T^{-1}(a)$ for every $a \in \mathcal{A}$. Define the map $\rho_T : \mathcal{A}_T \rightarrow \mathcal{A}_T \hat{\otimes} \mathcal{A}_T$ by $\rho_T(a) = (i \otimes \psi) \circ \rho(a)$, where $i : \mathcal{A} \rightarrow \mathcal{A}_T; a \mapsto a$ for every $a \in \mathcal{A}$. It is easy to see that ρ_T is a bounded map. We show that ρ_T is a bounded \mathcal{A}_T -bimodule morphism. To see this, take an arbitrary element $a \in \mathcal{A}$. Without loss of generality, suppose that $\rho(a) = b \otimes c$, for some $b, c \in \mathcal{A}$. So we have

$$\begin{aligned} \rho_T(\lambda * a) &= \rho_T(\lambda T(a)) = \rho_T(R(\lambda)a) = (i \otimes \psi) \circ \rho(R(\lambda)a) \\ &= (i \otimes \psi)(R(\lambda)b \otimes c) = R(\lambda)b \otimes T^{-1}(c) \\ &= \lambda T(b) \otimes T^{-1}(c) = \lambda * b \otimes T^{-1}(c) \\ &= \lambda \cdot \rho_T(a) \quad (\lambda \in \mathcal{A}_T), \end{aligned}$$

and

$$\begin{aligned}\rho_T(a * \lambda) &= \rho_T(aT(\lambda)) = (i \otimes \psi) \circ \rho(aT(\lambda)) = (i \otimes \psi)(b \otimes cT(\lambda)) \\ &= b \otimes T^{-1}(cT(\lambda)) = b \otimes T^{-1}(c)T(\lambda) = b \otimes T^{-1}(c) * \lambda \\ &= \rho_T(a) \cdot \lambda \quad (\lambda \in \mathcal{A}_T).\end{aligned}$$

Also we have

$$\begin{aligned}\pi_T \rho_T(a) &= \pi_T(i \otimes \psi)(b \otimes c) = \pi_T(b \otimes T^{-1}(c)) \\ &= b * T^{-1}(c) = bc = \pi_{\mathcal{A}}(b \otimes c) = \pi_{\mathcal{A}} \rho(a) \\ &= a.\end{aligned}$$

It gives that \mathcal{A}_T is biprojective. \square

The notion of φ -amenability for a Banach algebra was introduced by Kaniuth, Lau and Pym [6], where φ is a non-zero multiplicative linear functional on \mathcal{A} . Indeed \mathcal{A} is φ -amenable if there exists a bounded linear functional m on \mathcal{A}^* satisfying $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$ for every $a \in \mathcal{A}$ and $f \in \mathcal{A}^*$. They characterized φ -amenability through the existence of a bounded net (u_α) in \mathcal{A} such that $\|au_\alpha - \varphi(a)u_\alpha\| \rightarrow 0$ and $\varphi(u_\alpha) = 1$ for every α and $a \in \mathcal{A}$, see [6, Theorem 1.4]. The set of all non-zero characters on \mathcal{A} is denoted by $\Delta(\mathcal{A})$.

Let (T, R) be a double centralizer of \mathcal{A} . One can see that φR and φT are non-zero characters on \mathcal{A}_T , where $\varphi \in \Delta(\mathcal{A})$.

Theorem 2.7. *Let (T, R) be a double centralizer of \mathcal{A} and let $\varphi \in \Delta(\mathcal{A})$ such that $Im(R) \not\subseteq \ker(\varphi)$. If \mathcal{A} is φ -amenable, then \mathcal{A}_T is φR -amenable.*

Proof. Since \mathcal{A} is φ -amenable, by [6, Theorem 1.4] there exists a bounded net (u_α) in \mathcal{A} such that $au_\alpha - \varphi(a)u_\alpha \rightarrow 0$ and $\varphi(u_\alpha) = 1$ for every α and $a \in \mathcal{A}$. So we have

$$a * u_\alpha - \varphi R(a)u_\alpha = aT(u_\alpha) - \varphi(R(a))u_\alpha = R(a)u_\alpha - \varphi(R(a))u_\alpha \rightarrow 0.$$

Since $Im(R) \not\subseteq \ker(\varphi)$, we have $\varphi R(u_\alpha) \neq 0$. Let $\tilde{u}_\alpha = \frac{u_\alpha}{\varphi R(u_\alpha)}$. Then $a * \tilde{u}_\alpha - \varphi R(a)\tilde{u}_\alpha \rightarrow 0$ and $\varphi R(\tilde{u}_\alpha) = 1$ for every α and for every $a \in \mathcal{A}_T$. It implies that \mathcal{A}_T is φR -amenable. \square

A Banach algebra \mathcal{A} is left φ -contractible, if there exists $m \in \mathcal{A}$ such that $am = \varphi(a)m$ and $\varphi(m) = 1$, for every $a \in \mathcal{A}$ [5].

Theorem 2.8. *Let (T, R) be a double centralizer of \mathcal{A} and let $\varphi \in \Delta(\mathcal{A})$ such that $Im(R) \not\subseteq \ker(\varphi)$. If \mathcal{A} is left φ -contractible, then \mathcal{A}_T is left φR -contractible.*

Proof. It is similar to the arguments as in the proof of Theorem 2.7. \square

3. Johnson pseudo-contractibility of \mathcal{A}_T

The notion of Johnson pseudo-contractibility for a Banach algebra was introduced by Sahami *et. al.*. Although it is weaker than amenability and pseudo-contractibility, it is stronger than pseudo-amenability, see [9]. A Banach algebra \mathcal{A} is called Johnson pseudo-contractible, if there exists a not necessarily bounded net (m_α) in $(\mathcal{A} \hat{\otimes} \mathcal{A})^{**}$ such that $a \cdot m_\alpha = m_\alpha \cdot a$ and $\pi_{\mathcal{A}}^{**}(m_\alpha)a \rightarrow a$ for every $a \in \mathcal{A}$.

Theorem 3.1. *Let \mathcal{A} be a Banach algebra and let $T \in \text{Mul}_l(\mathcal{A})$. Then the following statements hold:*

- (i) *If T is surjective and \mathcal{A}_T is Johnson pseudo-contractible, then \mathcal{A} is Johnson pseudo-contractible.*

(ii) If T is bijective and \mathcal{A} is Johnson pseudo-contractible, then \mathcal{A}_T is Johnson pseudo-contractible.

Proof. (i) Use the similar argument as in the proof of Theorem 2.2(i) and apply [9, Proposition 2.9] which finishes the proof.

(ii) Since T is bijective, it is invertible. By open mapping theorem T^{-1} is continuous and [7, Lemma 2.3] implies that $T^{-1} \in \text{Mul}_l(\mathcal{A})$. Define $\theta : \mathcal{A} \rightarrow \mathcal{A}_T$ by $\theta(a) = T^{-1}(a)$. It is easy to see that θ is a continuous epimorphism. By applying [9, Proposition 2.9], \mathcal{A}_T is Johnson pseudo-contractible. \square

Theorem 3.2. Let (S_n) be a sequence of elements in $\text{Mul}_l(\mathcal{A})$. Then the following statements hold:

- (i) Suppose that S_n is surjective for all n . If \mathcal{A}_k is Johnson pseudo-contractible for some k , then \mathcal{A} is Johnson pseudo-contractible.
- (ii) Suppose that S_n is invertible for every n . If \mathcal{A} is Johnson pseudo-contractible, then \mathcal{A}_n is Johnson pseudo-contractible for every n .

Proof. (i) Suppose that \mathcal{A}_k is Johnson pseudo-contractible for some k . If $k = 1$, then Theorem 3.1(i) implies that \mathcal{A} is Johnson pseudo-contractible. Now suppose that $k > 1$ and \mathcal{A}_k is Johnson pseudo-contractible. Define $\varphi : \mathcal{A}_k \rightarrow \mathcal{A}_{k-1}$ by $\varphi(a) = S_k(a)$ for every $a \in \mathcal{A}_k$. By similar argument as in the proof of Theorem 2.3 and using [9, Proposition 2.9], \mathcal{A}_{k-1} is Johnson pseudo-contractible. It gives that \mathcal{A} is Johnson pseudo-contractible.

(ii) By induction we show that \mathcal{A}_n is Johnson pseudo-contractible for every n . If $n = 1$, Theorem 3.1 (ii) implies that \mathcal{A}_1 is Johnson pseudo-contractible. Now suppose that $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$ are Johnson pseudo-contractible. Define $\theta : \mathcal{A}_n \rightarrow \mathcal{A}_{n+1}$ by $\theta(a) = S_{n+1}^{-1}(a)$ for every $a \in \mathcal{A}$.

$$\begin{aligned} \theta(a *_n b) &= S_{n+1}^{-1}(aT_n(b)) = S_{n+1}^{-1}(aT_{n+1}S_{n+1}^{-1}(b)) \\ &= S_{n+1}^{-1}(a)T_{n+1}(S_{n+1}^{-1}(b)) = \theta(a) *_{n+1} \theta(b). \end{aligned}$$

Then θ is a continuous epimorphism. Using [9, Proposition 2.9], \mathcal{A}_{n+1} is Johnson pseudo-contractible. It finishes the proof. \square

Let \mathcal{A} be a Banach algebra and $(T_\alpha)_{\alpha \in I}$ be a family of invertible elements of $\text{Mul}_l(\mathcal{A})$. So we have the family $(\mathcal{A}_{T_\alpha})_{\alpha \in I}$ of Banach algebras. We define

$$\ell^\infty \text{-} \bigoplus_{\alpha \in I} \mathcal{A}_{T_\alpha} = \{(x_\alpha)_{\alpha \in I} \mid \forall \alpha; \quad x_\alpha \in \mathcal{A}_{T_\alpha} \text{ and } \sup_\alpha \|x_\alpha\|_{T_\alpha} < \infty\}.$$

Consider the subalgebra $c_0 \text{-} \bigoplus_{\alpha \in I} \mathcal{A}_{T_\alpha}$ of $\ell^\infty \text{-} \bigoplus_{\alpha \in I} \mathcal{A}_{T_\alpha}$ which is defined by

$$c_0 \text{-} \bigoplus_{\alpha \in I} \mathcal{A}_{T_\alpha} = \{(x_\alpha)_{\alpha \in I} \mid (x_\alpha)_{\alpha \in I} \in \ell^\infty \text{-} \bigoplus_{\alpha \in I} \mathcal{A}_{T_\alpha} \text{ and } \lim_\alpha \|x_\alpha\|_{T_\alpha} = 0\}.$$

Theorem 3.3. With above notations, if \mathcal{A} is Johnson pseudo-contractible, then $c_0 \text{-} \bigoplus_{\alpha \in I} \mathcal{A}_{T_\alpha}$ is Johnson pseudo-contractible.

Proof. Since \mathcal{A} is Johnson pseudo-contractible, Theorem 3.1(ii) implies that for every α , \mathcal{A}_{T_α} is Johnson pseudo-contractible. Let $\epsilon > 0$ and F be an arbitrary finite subset $c_0 \text{-} \bigoplus_{\alpha \in I} \mathcal{A}_{T_\alpha}$. Then there exists a finite set J of I such that $\|a - P_J(a)\| < \epsilon/2$, where $a \in F$ and P_J is the projection function from $c_0 \text{-} \bigoplus_{\alpha \in I} \mathcal{A}_{T_\alpha}$ onto $c_0 \text{-} \bigoplus_{\alpha \in J} \mathcal{A}_{T_\alpha}$. Since every \mathcal{A}_{T_α} is Johnson pseudo-contractible, there exists a net (m_β^α) in $(\mathcal{A}_{T_\alpha} \hat{\otimes} \mathcal{A}_{T_\alpha})^{**}$ such that $x \cdot m_\beta^\alpha = m_\beta^\alpha \cdot x$ and $\lim_\beta \pi_{\mathcal{A}_{T_\alpha}}^{**}(m_\beta^\alpha) \cdot x = x$ for every $x \in \mathcal{A}_{T_\alpha}$. We know that \mathcal{A}_{T_α} is complemented in $c_0 \text{-} \bigoplus_{\alpha \in I} \mathcal{A}_{T_\alpha}$,

for every α . Thus we have an embedding $L_\alpha : \mathcal{A}_{T_\alpha} \hat{\otimes} \mathcal{A}_{T_\alpha} \rightarrow (c_0 \cdot \bigoplus_{\alpha \in J} \mathcal{A}_{T_\alpha}) \hat{\otimes} (c_0 \cdot \bigoplus_{\alpha \in J} \mathcal{A}_{T_\alpha})$. Follow the arguments as in the proof of [9, Theorem 2.11], let $n_\beta = \sum_{\alpha \in J} L_\alpha^{**}(m_\beta^\alpha)$. So for each $a \in F$,

$$\begin{aligned} a \cdot n_\beta &= \sum_{\alpha \in J} a \cdot L_\alpha^{**}(m_\beta^\alpha) = \sum_{\alpha \in J} L_\alpha^{**}(a \cdot m_\beta^\alpha) = \sum_{\alpha \in J} L_\alpha^{**}(P_\alpha(a) \cdot m_\beta^\alpha) \\ &= \sum_{\alpha \in J} L_\alpha^{**}(m_\beta^\alpha \cdot P_\alpha(a)) = \sum_{\alpha \in J} L_\alpha^{**}(m_\beta^\alpha \cdot a) = \sum_{\alpha \in J} L_\alpha^{**}(m_\beta^\alpha) \cdot a \\ &= n_\beta \cdot a, \end{aligned}$$

and also for a large enough β we have

$$\sum_{\alpha \in J} \|\pi_{\mathcal{A}_{T_\alpha}}^{**}(m_\beta^\alpha) \cdot P_\alpha(a) - P_\alpha(a)\| < \epsilon/2.$$

Hence for each $a \in F$

$$\begin{aligned} \|\pi_{\mathcal{A}}^{**}(n_\beta) \cdot a - a\| &= \|\pi_{\mathcal{A}}^{**}(n_\beta \cdot a) - a\| = \|\pi_{\mathcal{A}}^{**}(n_\beta \cdot P_J(a)) - a\| \\ &= \|\pi_{\mathcal{A}}^{**}(n_\beta \cdot P_J(a)) - P_J(a) + P_J(a) - a\| \\ &\leq \|\pi_{\mathcal{A}}^{**}(n_\beta \cdot P_J(a)) - P_J(a)\| + \|P_J(a) - a\| \\ &\leq \sum_{\alpha \in J} \|\pi_{\mathcal{A}_{T_\alpha}}^{**}(m_\beta^\alpha) \cdot P_\alpha(a) - P_\alpha(a)\| + \|P_J(a) - a\| \\ &\leq \epsilon/2 + \epsilon/2 = \epsilon. \end{aligned}$$

Therefore $c_0 \cdot \bigoplus_{\alpha \in J} \mathcal{A}_{T_\alpha}$ is Johnson pseudo-contractible. \square

A dual Banach algebra \mathcal{A} is called Johnson pseudo-Connes amenable, if there exists a not necessarily bounded net (m_α) in $(\mathcal{A} \hat{\otimes} \mathcal{A})^{**}$ such that $\langle T, a \cdot m_\alpha \rangle = \langle T, m_\alpha \cdot a \rangle$ and $i_{\mathcal{A}_*}^* \pi_{\mathcal{A}}^{**}(m_\alpha) a \rightarrow a$ for every $a \in \mathcal{A}$ and $T \in \sigma wc(\mathcal{A} \hat{\otimes} \mathcal{A})^*$, where $i_{\mathcal{A}_*} : \mathcal{A}_* \hookrightarrow \mathcal{A}^*$ is the canonical embedding. For more details see [13].

Theorem 3.4. *Let \mathcal{A} be a dual Banach algebra. Then the following statements hold:*

- (i) *Let $T \in \text{Mul}_l(\mathcal{A})$ be surjective and wk^* -continuous. If \mathcal{A}_T is Johnson pseudo-Connes amenable, then \mathcal{A} is Johnson pseudo-Connes amenable.*
- (ii) *Let (S_n) be a sequence of elements in $\text{Mul}_l(\mathcal{A})$ such that S_n is wk^* -continuous for every $n \in \mathbb{N}$. If S_n is surjective for all n and \mathcal{A}_k is Johnson pseudo-Connes amenable for some k , then \mathcal{A} is Johnson pseudo-Connes amenable.*

Proof. (i) Suppose that \mathcal{A}_T is Johnson pseudo-Connes amenable. Define $\theta : \mathcal{A}_T \rightarrow \mathcal{A}$ by $\theta(a) = T(a)$ for every $a \in \mathcal{A}_T$. So

$$\theta(a * b) = \theta(aT(b)) = T(aT(b)) = T(a)T(b) = \theta(a)\theta(b) \quad (a, b \in \mathcal{A}_T).$$

Since T is surjective and wk^* -continuous, θ is a wk^* -continuous epimorphism. Applying [13, Proposition 2.8] follows that \mathcal{A} is Johnson pseudo-Connes amenable.

(ii) Suppose that \mathcal{A}_k is Johnson pseudo-Connes amenable for some k . If $k = 1$, then (i) implies that \mathcal{A} is Johnson pseudo-Connes amenable. Now suppose that $k > 1$ and \mathcal{A}_k is Johnson pseudo-Connes amenable. Define $\varphi : \mathcal{A}_k \rightarrow \mathcal{A}_{k-1}$ by $\varphi(a) = S_k(a)$ for every $a \in \mathcal{A}_k$. Similar arguments as in the proof of Theorem 2.3, and using [13, Proposition 2.8] follows that \mathcal{A}_{k-1} is Johnson pseudo-Connes amenable. By repeating this method on k , \mathcal{A} is Johnson pseudo-Connes amenable. \square

4. Module amenability of \mathcal{A}_T

Let \mathcal{A} and \mathfrak{A} be Banach algebras such that \mathcal{A} is a Banach \mathfrak{A} -bimodule with the following compatible actions:

$$\alpha \cdot (ab) = (\alpha \cdot a)b, \quad (ab) \cdot \alpha = a(b \cdot \alpha) \quad (a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).$$

Let X be a Banach \mathcal{A} -bimodule and a Banach \mathfrak{A} -bimodule with the compatible actions:

$$\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, \quad a \cdot (\alpha \cdot x) = (a \cdot \alpha) \cdot x, \quad (a \cdot x) \cdot \alpha = a \cdot (x \cdot \alpha),$$

for every $a \in \mathcal{A}$, $\alpha \in \mathfrak{A}$ and $x \in X$. Similarly the right action is defined. In this case we say that X is a Banach \mathcal{A} - \mathfrak{A} -module. If moreover $\alpha \cdot x = x \cdot \alpha$ for every $a \in \mathcal{A}$, $x \in X$, then X is called a commutative Banach \mathcal{A} - \mathfrak{A} -module. If X is a commutative Banach \mathcal{A} - \mathfrak{A} -module, then so is X^* , where the actions of \mathcal{A} and \mathfrak{A} on X^* are defined as follows:

$$\langle \alpha \cdot f, x \rangle = \langle f, x \cdot \alpha \rangle, \quad \langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle \quad (\alpha \in \mathfrak{A}, a \in \mathcal{A}, x \in X, f \in X^*).$$

Similarly we can define the right action. Let \mathcal{A} and \mathfrak{A} be as above and X be a Banach \mathcal{A} - \mathfrak{A} -module. A bounded map $D : \mathcal{A} \rightarrow X$ is called a module derivation if

$$D(a \pm b) = D(a) \pm D(b), \quad D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in \mathcal{A}),$$

and

$$D(\alpha \cdot a) = \alpha \cdot D(a), \quad D(a \cdot \alpha) = D(a) \cdot \alpha \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}).$$

If X is commutative, then each $x \in X$ defines a module derivation as follows:

$$D_x(a) = a \cdot x - x \cdot a \quad (a \in \mathcal{A}),$$

These are called inner module derivations. \mathcal{A} is called module amenable as an \mathfrak{A} -module, if for any commutative Banach \mathcal{A} - \mathfrak{A} -module X , every module derivation $D : \mathcal{A} \rightarrow X^*$ is inner [1, Definition 2.1]. Let \mathcal{A} be a Banach \mathfrak{A} -bimodule and let $T \in \text{Mul}_l(\mathcal{A})$ satisfying $T(a \cdot \alpha) = T(a) \cdot \alpha$ for every $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$. Then \mathcal{A}_T be a Banach \mathfrak{A} -bimodule with the following actions:

$$\alpha \cdot (a * b) = (\alpha \cdot a) * b, \quad (a * b) \cdot \alpha = a * (b \cdot \alpha) \quad (a, b \in \mathcal{A}, \alpha \in \mathfrak{A}),$$

where \cdot is the module action of \mathfrak{A} on \mathcal{A} .

Theorem 4.1. *Let \mathcal{A} be a Banach \mathfrak{A} -bimodule and let $T \in \text{Mul}_l(\mathcal{A})$ satisfying $T(a \cdot \alpha) = T(a) \cdot \alpha$ for every $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$. Then following statements hold:*

- (i) *If T is surjective and \mathcal{A}_T is module \mathfrak{A} -amenable, then \mathcal{A} is module \mathfrak{A} -amenable.*
- (ii) *If T is bijective and \mathcal{A} is module \mathfrak{A} -amenable, then \mathcal{A}_T is module \mathfrak{A} -amenable.*

Proof. (i) Define $\psi : \mathcal{A}_T \rightarrow \mathcal{A}$ by $\psi(a) = T(a)$ for every $a \in \mathcal{A}_T$. So

$$\psi(a * b) = \psi(aT(b)) = T(aT(b)) = T(a)T(b) = \psi(a)\psi(b) \quad (a, b \in \mathcal{A}_T).$$

Since T is surjective and continuous, ψ is a continuous epimorphism. Applying [1, Proposition 2.5], \mathcal{A} is module \mathfrak{A} -amenable.

(ii) Since T is bijective, it is invertible. By open mapping theorem T^{-1} is continuous and [7, Lemma 2.3] implies that $T^{-1} \in \text{Mul}_l(\mathcal{A})$. Define $\theta : \mathcal{A} \rightarrow \mathcal{A}_T$ by $\theta(a) = T^{-1}(a)$. It is easy to see that θ is continuous epimorphism. applying [1, Proposition 2.5], \mathcal{A}_T is module \mathfrak{A} -amenable. \square

Theorem 4.2. *Let (S_n) be a sequence of elements in $\text{Mul}_l(\mathcal{A})$ such that for every n , $S_n(a \cdot \alpha) = S_n(a) \cdot \alpha$, where $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$. Then the following statements hold:*

- (i) *Suppose that S_n is surjective for all n . If \mathcal{A}_k is module \mathfrak{A} -amenable for some k , then so is \mathcal{A} .*

(ii) If S_n is invertible for every n and \mathcal{A} is module \mathfrak{A} -amenable, then \mathcal{A}_n is module \mathfrak{A} -amenable for every n .

Proof. (i) Suppose that \mathcal{A}_k is module \mathfrak{A} -amenable for some k . If $k = 1$, then Theorem 4.1(i) implies that \mathcal{A} is module \mathfrak{A} -amenable. Now suppose that $k > 1$ and \mathcal{A}_k is module \mathfrak{A} -amenable. Define $\varphi : \mathcal{A}_k \rightarrow \mathcal{A}_{k-1}$ by $\varphi(a) = S_k(a)$ for every $a \in \mathcal{A}_k$. By similar argument as in the proof of Theorem 2.3 and using [1, Proposition 2.5], follows that \mathcal{A}_{k-1} is module \mathfrak{A} -amenable. By repeating this method on k , gives that \mathcal{A} is module \mathfrak{A} -amenable.

(ii) By induction, we show that \mathcal{A}_n is module \mathfrak{A} -amenable for every n . If $n = 1$, then Theorem 4.1 (ii) implies that \mathcal{A}_1 is module \mathfrak{A} -amenable. Now suppose that $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$ are module \mathfrak{A} -amenable. Define $\theta : \mathcal{A}_n \rightarrow \mathcal{A}_{n+1}$ by $\theta(a) = S_{n+1}^{-1}(a)$ for every $a \in \mathcal{A}$.

$$\begin{aligned}\theta(a *_n b) &= S_{n+1}^{-1}(aT_n(b)) = S_{n+1}^{-1}(aT_{n+1}S_{n+1}^{-1}(b)) \\ &= S_{n+1}^{-1}(a)T_{n+1}(S_{n+1}^{-1}(b)) = \theta(a) *_n \theta(b).\end{aligned}$$

Then θ is a continuous epimorphism. Using [1, Proposition 2.5], \mathcal{A}_{n+1} is module \mathfrak{A} -amenable. It finishes the proof. \square

5. ϕ -homological properties of some matrix algebras

Let \mathcal{A} be a Banach algebra and $\varphi \in \Delta(\mathcal{A})$. Then \mathcal{A} is called φ -biprojective, if there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \rightarrow \mathcal{A} \hat{\otimes} \mathcal{A}$ such that $\varphi \circ \pi_A \circ \rho = \varphi$. Also \mathcal{A} is called φ -biflat if there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \rightarrow (\mathcal{A} \hat{\otimes} \mathcal{A})^{**}$ such that $\tilde{\varphi} \circ \pi_A^{**} \circ \rho = \varphi$, where $\tilde{\varphi}$ is a character on \mathcal{A}^{**} defined by $\tilde{\varphi}(F) = F(\varphi)$ for every $F \in \mathcal{A}^{**}$. Obviously every φ -biprojective Banach algebra is φ -biflat. For more details see [12].

Example 5.1. Let $\mathcal{A} = \begin{pmatrix} \mathbb{C} & \mathbb{C} \\ 0 & \mathbb{C} \end{pmatrix}$. With the usual matrix multiplication and ℓ^1 -norm,

\mathcal{A} is a Banach algebra. Consider a character φ on \mathcal{A} defined by $\varphi(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = c$. We show that \mathcal{A} is not ϕ -biflat but \mathcal{A}_T is ϕ -biflat, for some $T \in \text{Mul}_l(\mathcal{A})$ (it follows that \mathcal{A} is not φ -biprojective). Suppose towards a contradiction that \mathcal{A} is φ -biflat. Since \mathcal{A} has an identity, [11, Theorem 2.1] implies that \mathcal{A} is left φ -amenable. Consider the closed ideal $I = \begin{pmatrix} 0 & \mathbb{C} \\ 0 & \mathbb{C} \end{pmatrix}$ of \mathcal{A} . Since $\varphi|_I \neq 0$, by [6, Lemma 3.1], I is left φ -amenable. So there exists a net $(\begin{pmatrix} 0 & u_\alpha \\ 0 & v_\alpha \end{pmatrix})$ in I such that

$$\begin{pmatrix} 0 & v_\alpha \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & u_\alpha \\ 0 & v_\alpha \end{pmatrix} - \varphi(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}) \begin{pmatrix} 0 & u_\alpha \\ 0 & v_\alpha \end{pmatrix} \rightarrow 0,$$

and

$$\varphi(\begin{pmatrix} 0 & u_\alpha \\ 0 & v_\alpha \end{pmatrix}) = v_\alpha = 1,$$

which is a contradiction with $v_\alpha \rightarrow 0$. Define

$$T : \mathcal{A} \longrightarrow \mathcal{A}$$

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mapsto \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix}.$$

It is easy to see that $T \in \text{Mul}_l(\mathcal{A})$. So \mathcal{A}_T is a Banach algebra with the multiplication $*$ [7, Theorem 2.1(i)]. Define $\rho : \mathcal{A}_T \rightarrow \mathcal{A}_T \hat{\otimes} \mathcal{A}_T$ by $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mapsto \begin{pmatrix} 0 & b \\ 0 & c \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

One can see that ρ is a bounded \mathcal{A}_T -bimodule morphism and also $\varphi \circ \pi_{\mathcal{A}_T} \circ \rho(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = \varphi(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix})$. So \mathcal{A}_T is φ -biprojective. It follows that \mathcal{A}_T is φ -biflat.

Now consider a character φ on \mathcal{A} such that $\varphi(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = a$. We show that \mathcal{A} is not φ -biflat but \mathcal{A}_T is φ -biflat, for some $T \in \text{Mul}_l(\mathcal{A})$. It gives that \mathcal{A} is not φ -biprojective.

To see this assume in a contradiction that \mathcal{A} is φ -biflat. Since \mathcal{A} has an identity, [11, Theorem 2.1] implies that \mathcal{A} is right φ -amenable. Consider the closed ideal $J = \begin{pmatrix} \mathbb{C} & \mathbb{C} \\ 0 & 0 \end{pmatrix}$ of \mathcal{A} . Since $\varphi|_J \neq 0$, similar to [6, Lemma 3.1], J is right φ -amenable. Then there exists a net (a_α) in J such that $a_\alpha X - \varphi(X)a_\alpha \rightarrow 0$ for every $X \in J$ and $\varphi(a_\alpha) = 1$. Pick an element $X \in J$ such that $\varphi(X) = 1$. So

$$X - \varphi(X)a_\alpha = \varphi(a_\alpha)X - \varphi(X)a_\alpha = a_\alpha X - \varphi(X)a_\alpha \rightarrow 0.$$

Thus $a_\alpha \rightarrow X$. Hence for each $Y \in J$, we have $Y - \varphi(Y)a_\alpha = a_\alpha Y - \varphi(Y)a_\alpha \rightarrow 0$. It gives that $\varphi(Y)X = Y$. Therefore $\dim(J) = 1$, which is a contradiction. Define

$$T : \mathcal{A} \longrightarrow \mathcal{A}$$

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}.$$

It is easy to see that $T \in \text{Mul}_l(\mathcal{A})$. So \mathcal{A}_T is a Banach algebra with the multiplication * [7, Theorem 2.1(i)]. Define $\rho : \mathcal{A}_T \rightarrow \mathcal{A}_T \hat{\otimes} \mathcal{A}_T$ by $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$.

One can see that ρ is a bounded \mathcal{A}_T -bimodule morphism and also $\varphi \circ \pi_{\mathcal{A}_T} \circ \rho(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = \varphi(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix})$. So \mathcal{A}_T is φ -biprojective. It follows that \mathcal{A}_T is φ -biflat.

Let \mathcal{A} be a Banach algebra and $\varphi \in \Delta(\mathcal{A})$. Then \mathcal{A} is called approximate left (right) φ -biprojective if there exists a net of bounded linear maps from \mathcal{A} into $\mathcal{A} \hat{\otimes} \mathcal{A}$, say $(\rho_\alpha)_{\alpha \in I}$, such that

- (i) $\rho_\alpha(ab) - a \cdot \rho_\alpha(b) \rightarrow 0$ $(\rho_\alpha(ab) - \rho_\alpha(a) \cdot b \rightarrow 0)$,
- (ii) $\rho_\alpha(ab) - \varphi(b)\rho_\alpha(a) \rightarrow 0$ $(\rho_\alpha(ab) - \varphi(a)\rho_\alpha(b) \rightarrow 0)$,
- (iii) $\varphi \circ \pi_{\mathcal{A}} \circ \rho_\alpha(a) - \varphi(a) \rightarrow 0$.

for every $a, b \in \mathcal{A}$, respectively. For more details see [10].

Example 5.2. The Banach algebra of $\mathbb{N} \times \mathbb{N}$ upper triangular matrices over \mathbb{C} , with finite ℓ^1 -norm and matrix multiplication is denoted by

$$UP(\mathbb{N}, \mathbb{C}) = \left\{ \left[\begin{array}{c} a_{i,j} \end{array} \right]_{i,j \in \mathbb{N}} ; a_{i,j} \in \mathbb{C} \text{ and } a_{i,j} = 0 \text{ for every } i > j \right\}.$$

Consider a character φ on $UP(\mathbb{N}, \mathbb{C})$ such that $\varphi(\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ 0 & a_{22} & a_{23} & \dots \\ \vdots & \vdots & \vdots & \dots \end{pmatrix}) = a_{11}$. We

claim that $UP(\mathbb{N}, \mathbb{C})$ is not φ -biflat (so $UP(\mathbb{N}, \mathbb{C})$ is not φ -biprojective). Suppose in contradiction that $UP(\mathbb{N}, \mathbb{C})$ is φ -biflat. Since $UP(\mathbb{N}, \mathbb{C})$ has a right approximate identity [11, Lemma 5.1], $UP(\mathbb{N}, \mathbb{C})$ is right φ -amenable [11, Theorem 2.1]. Consider the closed ideal

$$J = \left\{ \left[\begin{array}{c} a_{i,j} \end{array} \right]_{i,j \in \mathbb{N}} \in UP(\mathbb{N}, \mathbb{C}) \mid a_{i,j} = 0 \text{ for every } i \neq 1 \right\},$$

of $UP(\mathbb{N}, \mathbb{C})$. We know that J has at least two columns, thus $\dim(J) \geq 2$. Since $\varphi|_J \neq 0$, by similar to [6, Lemma 3.1], J is right φ -amenable. So there exists a net (a_α) in J such that $a_\alpha X - \varphi(X)a_\alpha \rightarrow 0$ and $\varphi(a_\alpha) = 1$, for every $X \in J$. Pick an element $X \in J$ such that $\varphi(X) = 1$. So

$$X - \varphi(X)a_\alpha = \varphi(a_\alpha)X - \varphi(X)a_\alpha = a_\alpha X - \varphi(X)a_\alpha \rightarrow 0.$$

Then $a_\alpha \rightarrow X$. We have

$$Y - \varphi(Y)a_\alpha = a_\alpha Y - \varphi(Y)a_\alpha \rightarrow 0 \quad (Y \in J).$$

So $\varphi(Y)X = Y$. Therefore $\dim(J) = 1$, which is a contradiction.

We show that $UP(\mathbb{N}, \mathbb{C})_T$ is approximate right φ -biprojective. Define $T : UP(\mathbb{N}, \mathbb{C}) \longrightarrow UP(\mathbb{N}, \mathbb{C})$ by $T \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ 0 & a_{22} & a_{23} & \dots \\ \vdots & \vdots & \vdots & \dots \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \dots \end{pmatrix}$. It is easy to see that $T \in \text{Mul}_l(UP(\mathbb{N}, \mathbb{C}))$. So $UP(\mathbb{N}, \mathbb{C})_T$ is a Banach algebra with the multiplication $*$ [7, Theorem 2.1(i)]. For each $n \in \mathbb{N}$, define $\rho_n : UP(\mathbb{N}, \mathbb{C})_T \rightarrow UP(\mathbb{N}, \mathbb{C})_T \hat{\otimes} UP(\mathbb{N}, \mathbb{C})_T$ by

$$\rho_n \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ 0 & a_{22} & a_{23} & \dots \\ \vdots & \vdots & \vdots & \dots \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & \dots & 1 & 0 & \dots \\ 0 & \dots & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \dots \end{pmatrix}}_n \otimes \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \dots \end{pmatrix}.$$

One can see that ρ_n is a bounded linear map for every $n \in \mathbb{N}$. Also we have

- (i) $\rho_n(XY) - \rho_n(X) \cdot Y \rightarrow 0$,
- (ii) $\rho_n(XY) - \varphi(X)\rho_n(Y) \rightarrow 0$,
- (iii) $\varphi \circ \pi_{UP(\mathbb{N}, \mathbb{C})_T} \circ \rho_n(X) - \varphi(X) \rightarrow 0$,

for every X, Y in $UP(\mathbb{N}, \mathbb{C})_T$. So $UP(\mathbb{N}, \mathbb{C})_T$ is approximate right φ -biprojective.

Acknowledgments. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. Also the first author is grateful to Ilam University for its support.

REFERENCES

- [1] M. Amini, Module amenability for semigroup algebras, *Semigroup Forum*. **69** (2004), 243-254.
- [2] H. G. Dales, Banach algebras and automatic continuity, Clarendon Press, Oxford, 2000.
- [3] F. Ghahramani and R. J. Loy, Generalized notions of amenability, *J. Func. Anal.* **208** (2004), 229-260.
- [4] F. Ghahramani and Y. Zang, Pseudo-amenable and pseudo-contractible Banach algebras, *Math. Proc. Camb. Philos. Soc.* **142** (2007), 111-123.
- [5] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, *Studia Math.* **193** (2009), 53-78.
- [6] E. Kaniuth, A. T. Lau and J. Pym, On α -amenability of Banach algebras, *Math. Proc. Camb. Philos. Soc.* **144** (2008), 85-96.
- [7] J. Laali, The multipliers related products in Banach algebras, *Quaestiones Mathematicae*. **37** (2014), 507-523.
- [8] V. Runde, Amenability for dual Banach algebras, *Studia Math.* **148** (2001), 47-66.
- [9] A. Sahami and A. Pourabbas, Johnson pseudo-contractibility of various classes of Banach algebras, *Bull. Belg. Math. Soc. Simon Stevin*. **25**. N. 2 (2018), 171-182.
- [10] A. Sahami and A. Pourabbas, On approximate left φ -biprojective Banach algebras, *Glasnik Matematički*. **53** (2018), 187-203.

- [11] *A. Sahami*, On biflatness and φ -biflatness of some Banach algebras, U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 1, (2018), 111-122.
- [12] *A. Sahami and A. Pourabbas*, On φ -biflat and φ -biprojective Banach algebras, Bull. Belg. Math. Soc. Simon Stevin. **20** (2013), 789-801.
- [13] *S. F. Shariati, A. Pourabbas and A. Sahami*, Johnson pseudo-Connes amenability of dual Banach algebras, see <https://arxiv.org/abs/1801.03369v2> (2018).
- [14] *A. Shirinkalam and A. Pourabbas*, Connes-biprojective dual Banach algebras, U.P.B. Sci. Bull. Series A. **78**. Iss. 3 (2016), 174-184.