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VARIOUS NOTIONS OF AMENABILITY FOR CERTAIN BANACH

ALGEBRAS RELATED TO THE MULTIPLIERS

A. Sahami1, S. F. Shariati2, A. Pourabbas3

In this paper, for the Banach algebra AT , we study the various notions of

amenability like pseudo amenability, Johnson pseudo-contractibility and module amenabil-

ity, where A is a Banach algebra and T is a left multiplier on A. For a dual Ba-

nach algebra A, under some conditions, we show that if AT is Connes amenable (resp.

Connes biprojective), then A is Connes amenable (resp. Connes biprojective). For a

non-zero multiplicative linear functional ϕ : A → C, we study the relationship between

ϕ-amenability of A and ϕR-amenability of AT , where (T,R) be a double centralizer of

A.
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1. Introduction and preliminaries

Let A be a Banach algebra and T a bounded multiplier on A. Laali in [7] introduced

a new Banach algebra AT related to A and T . Indeed a new multiplication on A was defined

by a ∗ b = aT (b) for every a, b ∈ A. With the norm

‖a‖T = ‖T‖‖a‖ (a ∈ A).

AT becomes a Banach algebra, provided that T ∈ Mull(A), see [7, Theorem 2.1(i)]. Laali

also studied approximate amenability of AT , see [7, Theorem 3.1].

Motivated by these considerations, we investigate the other various notions of amenabil-

ity for this new multiplication on Banach algebras. For a dual Banach algebra A, under

certain conditions, we show that if AT is Connes amenable (resp. Connes biprojective),

then A is Connes amenable (resp. Connes biprojective). Also we show that if A is John-

son pseudo-contractible, then AT is Johnson pseudo-contractible with additional conditions.

We study Module amenability of AT . Finally we give some examples of Banach algebras

which are not ϕ-biprojective (resp. ϕ-biflat), but with this new multiplication they are

ϕ-biprojective (resp. ϕ-biflat).

Suppose that T is a left multiplier and R is a right multiplier of A, respectively. Then

the pair (T,R) is a double centralizer of A, if aT (b) = R(a)b for every a, b ∈ A. The set of all

left (right) multipliers of A is denoted by Mull(A)(Mulr(A)), respectively. It is easy to see

that Mull(A) and Mulr(A) are unital Banach subalgebras of B(A). For further information

see [2].
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Let A be a Banach algebra and let E be a Banach A-bimodule. Then a bounded linear

map D : A→ E is called derivation if D(ab) = a ·D(b)+D(a) ·b, for every a, b ∈ A. Suppose

that E is a Banach A-bimodule. So E∗ is also a Banach A-bimodule via the following actions

(a · f)(x) = f(x · a), (f · a)(x) = f(a · x) (a ∈ A, x ∈ E, f ∈ E∗).

A Banach algebra A is called amenable if for every Banach A-bimodule E, each derivation

D : A −→ E∗ is inner, that is, D has the form

D(a) = a · f − f · a, (a ∈ A),

for some f ∈ E∗. A derivation D : A −→ E∗ is approximately inner if there exists a net

(fα) in E∗ such that D(a) = || · || − limα a · fα− fα · a for every a ∈ A. A Banach algebra A

is called approximately amenable if every derivation D : A −→ E∗ is approximately inner

for all Banach A-bimodule E, see [3].

2. Amenability and amenable-like properties of AT

The class of dual Banach algebras was introduced by Runde [8]. Let A be a Banach

algebra and let E be a Banach A-bimodule. An A-bimodule E is called dual, if there exists

a closed submodule E∗ of E∗ such that E = (E∗)
∗. The Banach algebra A is called dual

if it is dual as a Banach A-bimodule. A dual Banach A-bimodule E is normal, if for each

x ∈ E, the module maps A→ E; a 7→ a · x and a 7→ x · a are wk∗-wk∗ continuous.

A dual Banach algebra A is called Connes amenable if every wk∗-continuous derivation

D : A −→ E is inner, for all normal dual Banach A-bimodule E, see [8].

For a Banach algebra A and for every a ∈ A, consider the operators La and Ra
defined by

La(b) = ab, Ra(b) = ba (b ∈ A).

Then La ∈ Mull(A), Ra ∈ Mulr(A) and also (La, Ra) is the double centralizer of A. Let

A be a dual Banach algebra. Since the multiplication in A is separately wk∗-continuous [8,

Proposition 2.1], La and Ra are wk∗-continuous.

Theorem 2.1. Let A be a dual Banach algebra. Suppose that T ∈ Mull(A) and T is a

wk∗-continuous map. Then AT is a dual Banach algebra.

Proof. Since the underlying space of A and AT are the same and ‖ · ‖T ' ‖ · ‖, the predual

of them are the same. We only show that the multiplication in AT is separately wk∗-

continuous. To see this, suppose that a0 ∈ AT . Let (aα) be a net in AT such that aα
wk∗−→

a0. Since T is wk∗-continuous and the multiplication in A is separately wk∗-continuous,

bT (aα)
wk∗−→ bT (a0). So b ∗ aα

wk∗−→ b ∗ a0. Similarly we can show that aα ∗ b
wk∗−→ a0 ∗ b. Thus

AT is a dual Banach algebra. �

For a given dual Banach algebra A and a Banach A-bimodule E, we denote by σwc(E),

the set of all elements x ∈ E such that the module maps A → E; a 7→ a · x and a 7→ x · a
are wk∗-wk-continuous. Note that σwc(E) is a closed submodule of E.

A dual Banach algebra A is called Connes biprojective, if there exists a bounded

A-bimodule morphism ρ : A −→ (σwc(A⊗̂A)∗)∗ such that πσwc ◦ ρ = idA, see [14].

Using argument as in the proof of [7, Theorem 3.1], we have the following theorem.

Theorem 2.2. Let A be a dual Banach algebra and let T ∈ Mull(A). Suppose that T is

surjective and wk∗-continuous. Then the following statements hold:

(i) If AT is Connes amenable, then A is Connes amenable.

(ii) If AT is Connes biprojective, then A is Connes biprojective.
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Proof. (i) Define θ : AT −→ A by θ(a) = T (a) for every a ∈ AT . So

θ(a ∗ b) = θ(aT (b)) = T (aT (b)) = T (a)T (b) = θ(a)θ(b) (a, b ∈ AT ).

Since T is surjective and wk∗-continuous, θ is a wk∗-continuous epimorphism. Applying [8,

Proposition 4.2(ii)], A is Connes amenable.

(ii) Suppose that AT is Connes biprojective. Let θ be as above. Then θ is a wk∗-continuous

epimorphism. Using [14, Theorem 2.7(ii)] follows that A is Connes biprojective. �

For a Banach algebra A and a sequence (Sn) in Mull(A), define

T0 = I, Tn =

n∏
k=1

Sk (n ≥ 1).

It is clear that Tn ∈ Mull(A) for every n ∈ N. Laali defined a new Banach algebra An =

(A, ∗n) by the following multiplication

a ∗n b = aTn(b) (n ≥ 0).

We remind that if A is a dual Banach algebra and Sn is wk∗-continuous for every n ∈ N,

then An is a dual Banach algebra.

Inspired by arguments as in [7, Theorem 3.2], we have the following theorem:

Theorem 2.3. Let (Sn) be a sequence of elements in Mull(A) such that Sn is wk∗-

continuous for every n ∈ N. Then the following statements hold:

(i) Suppose that Sn is surjective for all n and Ak is Connes amenable for some k. Then

A is Connes amenable.

(ii) Suppose that Sn is surjective for all n and Ak is Connes biprojective for some k. Then

A is Connes biprojective.

Proof. (i) Suppose that Sn is surjective for all n and Ak is Connes amenable for some k. If

k = 1, then Theorem 2.2(i) implies that A is Connes amenable. Now suppose that k > 1

and Ak is Connes amenable. Define ϕ : Ak → Ak−1 by ϕ(a) = Sk(a) for every a ∈ Ak.

Since Sk is wk∗-continuous, ϕ is wk∗-continuous. Also we have

ϕ(a ∗k b) = Sk(aTk(b)) = Sk(a)Tk(b) = Sk(a)Tk−1Sk(b)

= Sk(a) ∗k−1 Sk(b) = ϕ(a) ∗k−1 ϕ(b),

for every a, b ∈ Ak. Since Sk is surjective, ϕ is an epimorphism. Using [8, Proposition

4.2(ii)], Ak−1 is Connes amenable. Repeating this method on k implies that A is Connes

amenable.

(ii) Suppose that Sn is surjective for all n and Ak is Connes biprojective for some k. Let

ϕ : Ak → Ak−1 be as in (i). Clearly ϕ is a wk∗-continuous epimorphism. Applying [14,

Theorem 2.7(ii)] follows that Ak−1 is Connes biprojective. Repeating this method on k,

gives that A is Connes biprojective. �

A Banach algebra A is called pseudo-amenable if there exists a not necessarily bounded

net (uα) in A⊗̂A such that a · uα − uα · a→ 0 and πA(uα)a→ a for every a ∈ A. For more

details, see [4].

Theorem 2.4. Let A be a Banach algebra and let T ∈ Mull(A). Then the following

statements hold:

(i) Suppose that T is surjective and AT is pseudo-amenable. Then A is pseudo-amenable.

(ii) Suppose that T is bijective and A is pseudo-amenable. Then AT is pseudo-amenable.
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Proof. (i) Define θ : AT −→ A by θ(a) = T (a) for every a ∈ AT . So

θ(a ∗ b) = θ(aT (b)) = T (aT (b)) = T (a)T (b) = θ(a)θ(b) (a, b ∈ AT ).

Since T is surjective and continuous, θ is a continuous epimorphism. Applying [4, Proposi-

tion 2.2] gives that A is pseudo amenable.

(ii) Since T is bijective, it is invertible. By open mapping theorem T−1 is a continuous

and [7, Lemma 2.3] implies that T−1 ∈ Mull(A). Define θ : A → AT by θ(a) = T−1(a).

It is easy to see that θ is continuous epimorphism. Applying [4, Proposition 2.2], A is

pseudo-amenable. �

Theorem 2.5. Let (Sn) be a sequence of elements in Mull(A). Then the following state-

ments hold:

(i) Let Sn be surjective for all n. Suppose that Ak is pseudo-amenable for some k. Then

A is pseudo-amenable.

(ii) Suppose that Sn is invertible for every n. Let A be a pseudo-amenable Banach algebra.

Then An is pseudo-amenable for every n.

Proof. (i) Let Sn be surjective for all n. Suppose that Ak is pseudo-amenable for some k.

If k = 1, then Theorem 2.4(i) implies that A is pseudo-amenable. Now suppose that k > 1

and Ak is pseudo amenable. Define ϕ : Ak → Ak−1 by ϕ(a) = Sk(a) for every a ∈ Ak.

By similar arguments as in the proof of Theorem 2.3(i) and by [4, Proposition 2.2], Ak−1 is

pseudo amenable. It follows that A is pseudo-amenable.

(ii) By induction, we show that An is pseudo-amenable for every n. If n = 1, Theorem 2.4(ii)

implies that A1 is pseudo amenable. Now suppose that A1,A2, . . . ,An are pseudo-amenable.

Define θ : An → An+1 by θ(a) = S−1n+1(a) for every a ∈ A.

θ(a ∗n b) = S−1n+1(aTn(b)) = S−1n+1(aTn+1S
−1
n+1(b))

= S−1n+1(a)Tn+1(S−1n+1(b)) = θ(a) ∗n+1 θ(b).

Then θ is a continuous epimorphism. Using [4, Proposition 2.2], An+1 is pseudo-amenable.

�

A Banach algebra A is called biprojective, if there exists a bounded A-bimodule

morphism ρ : A→ A⊗̂A such that ρ is a right inverse for πA, see [2].

Theorem 2.6. Let (T,R) be a double centralizer of A such that T is bijective. If A is

biprojective, then AT is biprojective.

Proof. Since A is biprojective, there exists a bounded A-bimodule morphism ρ : A→ A⊗̂A
such that πA ◦ ρ(a) = a for every a ∈ A. Since T is bijective, it is invertible. By open

mapping theorem T−1 is continuous. Now [7, Lemma 2.3] implies that T−1 ∈ Mull(A).

Consider the bounded maps ψ : A → AT ; a 7→ T−1(a) for every a ∈ A. Define the map

ρT : AT → AT ⊗̂AT by ρT (a) = (i ⊗ ψ) ◦ ρ(a), where i : A → AT ; a 7→ a for every a ∈ A.

It is easy to see that ρT is a bounded map. We show that ρT is a bounded AT -bimodule

morphism. To see this, take an arbitrary element a ∈ A. Without loss of generality, suppose

that ρ(a) = b⊗ c, for some b, c ∈ A. So we have

ρT (λ ∗ a) = ρT (λT (a)) = ρT (R(λ)a) = (i⊗ ψ) ◦ ρ(R(λ)a)

= (i⊗ ψ)(R(λ)b⊗ c) = R(λ)b⊗ T−1(c)

= λT (b)⊗ T−1(c) = λ ∗ b⊗ T−1(c)

= λ · ρT (a) (λ ∈ AT ),
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and

ρT (a ∗ λ) = ρT (aT (λ)) = (i⊗ ψ) ◦ ρ(aT (λ)) = (i⊗ ψ)(b⊗ cT (λ))

= b⊗ T−1(cT (λ)) = b⊗ T−1(c)T (λ) = b⊗ T−1(c) ∗ λ
= ρT (a) · λ (λ ∈ AT ).

Also we have

πT ρT (a) = πT (i⊗ ψ)(b⊗ c) = πT (b⊗ T−1(c))

= b ∗ T−1(c) = bc = πA(b⊗ c) = πAρ(a)

= a.

It gives that AT is biprojective. �

The notion of ϕ-amenability for a Banach algebra was introduced by Kaniuth, Lau

and Pym [6], where ϕ is a non-zero multiplicative linear functional on A. Indeed A is

ϕ-amenable if there exists a bounded linear functional m on A∗ satisfying m(ϕ) = 1 and

m(f ·a) = ϕ(a)m(f) for every a ∈ A and f ∈ A∗. They characterized ϕ-amenability through

the existence of a bounded net (uα) in A such that ‖auα − ϕ(a)uα‖ → 0 and ϕ(uα) = 1 for

every α and a ∈ A, see [6, Theorem 1.4]. The set of all non-zero characters on A is denoted

by ∆(A).

Let (T,R) be a double centralizer of A. One can see that ϕR and ϕT are non-zero

characters on AT , where ϕ ∈ ∆(A).

Theorem 2.7. Let (T,R) be a double centralizer of A and let ϕ ∈ ∆(A) such that Im(R) *
ker(ϕ). If A is ϕ-amenable, then AT is ϕR-amenable.

Proof. Since A is ϕ-amenable, by [6, Theorem 1.4] there exists a bounded net (uα) in A

such that auα − ϕ(a)uα → 0 and ϕ(uα) = 1 for every α and a ∈ A . So we have

a ∗ uα − ϕR(a)uα = aT (uα)− ϕ(R(a))uα = R(a)uα − ϕ(R(a))uα → 0.

Since Im(R) * ker(ϕ), we have ϕR(uα) 6= 0. Let ũα = uα
ϕR(uα)

. Then a ∗ ũα−ϕR(a)ũα → 0

and ϕR(ũα) = 1 for every α and for every a ∈ AT . It implies that AT is ϕR-amenable. �

A Banach algebra A is left ϕ-contractible, if there exists m ∈ A such that am = ϕ(a)m

and ϕ(m) = 1, for every a ∈ A [5].

Theorem 2.8. Let (T,R) be a double centralizer of A and let ϕ ∈ ∆(A) such that Im(R) *
ker(ϕ). If A is left ϕ-contractible, then AT is left ϕR-contractible.

Proof. It is similar to the arguments as in the proof of Theorem 2.7. �

3. Johnson pseudo-contractibility of AT

The notion of Johnson pseudo-contractibility for a Banach algebra was introduced

by Sahami et. al.. Although it is weaker than amenability and pseudo-contractibility,

it is stronger than pseudo-amenability, see [9]. A Banach algebra A is called Johnson

pseudo-contractible, if there exists a not necessarily bounded net (mα) in (A⊗̂A)∗∗ such

that a ·mα = mα · a and π∗∗A (mα)a→ a for every a ∈ A.

Theorem 3.1. Let A be a Banach algebra and let T ∈ Mull(A). Then the following

statements hold:

(i) If T is surjective and AT is Johnson pseudo-contractible, then A is Johnson pseudo-

contractible.
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(ii) If T is bijective and A is Johnson pseudo-contractible, then AT is Johnson pseudo-

contractible.

Proof. (i) Use the similar argument as in the proof of Theorem 2.2(i) and apply [9, Propo-

sition 2.9] which finishes the proof.

(ii) Since T is bijective, it is invertible. By open mapping theorem T−1 is continuous and [7,

Lemma 2.3] implies that T−1 ∈ Mull(A). Define θ : A → AT by θ(a) = T−1(a). It is easy

to see that θ is a continuous epimorphism. By applying [9, Proposition 2.9], AT is Johnson

pseudo-contractible. �

Theorem 3.2. Let (Sn) be a sequence of elements in Mull(A). Then the following state-

ments hold:

(i) Suppose that Sn is surjective for all n. If Ak is Johnson pseudo-contractible for some

k, then A is Johnson pseudo-contractible.

(ii) Suppose that Sn is invertible for every n. If A is Johnson pseudo-contractible, then

An is Johnson pseudo-contractible for every n.

Proof. (i) Suppose that Ak is Johnson pseudo-contractible for some k. If k = 1, then

Theorem 3.1(i) implies that A is Johnson pseudo-contractible. Now suppose that k > 1

and Ak is Johnson pseudo-contractible. Define ϕ : Ak → Ak−1 by ϕ(a) = Sk(a) for every

a ∈ Ak. By similar argument as in the proof of Theorem 2.3 and using [9, Proposition 2.9],

Ak−1 is Johnson pseudo-contractible. It gives that A is Johnson pseudo-contractible.

(ii) By induction we show that An is Johnson pseudo-contractible for every n. If n =

1, Theorem 3.1 (ii) implies that A1 is Johnson pseudo-contractible. Now suppose that

A1,A2, . . . ,An are Johnson pseudo-contractible. Define θ : An → An+1 by θ(a) = S−1n+1(a)

for every a ∈ A.

θ(a ∗n b) = S−1n+1(aTn(b)) = S−1n+1(aTn+1S
−1
n+1(b))

= S−1n+1(a)Tn+1(S−1n+1(b)) = θ(a) ∗n+1 θ(b).

Then θ is a continuous epimorphism. Using [9, Proposition 2.9], An+1 is Johnson pseudo-

contractible. It finishes the proof. �

Let A be a Banach algebra and (Tα)α ∈ I be a family of invertible elements of

Mull(A). So we have the family (ATα)α∈I of Banach algebras. We define

`∞- ⊕
α∈I

ATα =
{

(xα)α∈I | ∀α; xα ∈ ATα and sup
α
‖xα‖Tα <∞

}
.

Consider the subalgebra c0- ⊕
α∈I

ATα of `∞- ⊕
α∈I

ATα which is defined by

c0- ⊕
α∈I

ATα =
{

(xα)α∈I | (xα)α∈I ∈ `∞- ⊕
α∈I

ATα and lim
α
‖xα‖Tα = 0

}
.

Theorem 3.3. With above notations, if A is Johnson pseudo-contractible, then c0- ⊕
α∈I

ATα

is Johnson pseudo-contractible.

Proof. Since A is Johnson pseudo-contractible, Theorem 3.1(ii) implies that for every α, ATα
is Johnson pseudo-contractible. Let ε > 0 and F be an arbitrary finite subset c0- ⊕

α∈I
ATα .

Then there exists a finite set J of I such that ‖a − PJ(a)‖ < ε/2, where a ∈ F and PJ
is the projection function from c0- ⊕

α∈I
ATα onto c0- ⊕

α∈J
ATα . Since every ATα is Johnson

pseudo-contractible, there exists a net (mα
β) in (ATα⊗̂ATα)∗∗ such that x ·mα

β = mα
β · x and

lim
β
π∗∗ATα (mα

β) ·x = x for every x ∈ ATα . We know that ATα is complemented in c0- ⊕
α∈I

ATα ,
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for every α. Thus we have an embedding Lα : ATα⊗̂ATα → (c0- ⊕
α∈I

ATα)⊗̂(c0- ⊕
α∈I

ATα).

Follow the arguments as in the proof of [9, Theorem 2.11], let nβ =
∑
α∈J

L∗∗α (mα
β). So for

each a ∈ F ,

a · nβ =
∑
α∈J

a · L∗∗α (mα
β) =

∑
α∈J

L∗∗α (a ·mα
β) =

∑
α∈J

L∗∗α (Pα(a) ·mα
β)

=
∑
α∈J

L∗∗α (mα
β · Pα(a)) =

∑
α∈J

L∗∗α (mα
β · a) =

∑
α∈J

L∗∗α (mα
β) · a

= nβ · a,

and also for a large enough β we have∑
α∈J
‖π∗∗ATα (mα

β) · Pα(a)− Pα(a)‖ < ε/2.

Hence for each a ∈ F
‖π∗∗A (nβ) · a− a‖ = ‖π∗∗A (nβ · a)− a‖ = ‖π∗∗A (nβ · PJ(a))− a‖

= ‖π∗∗A (nβ · PJ(a))− PJ(a) + PJ(a)− a‖
≤ ‖π∗∗A (nβ · PJ(a))− PJ(a)‖+ ‖PJ(a)− a‖

≤
∑
α∈J
‖π∗∗ATα (mα

β) · Pα(a)− Pα(a)‖+ ‖PJ(a)− a‖

≤ ε/2 + ε/2 = ε.

Therefore c0- ⊕
α∈I

ATα is Johnson pseudo-contractible. �

A dual Banach algebra A is called Johnson pseudo-Connes amenable, if there exists

a not necessarily bounded net (mα) in (A⊗̂A)∗∗ such that 〈T, a · mα〉 = 〈T,mα · a〉 and

i∗A∗
π∗∗A (mα)a → a for every a ∈ A and T ∈ σwc(A⊗̂A)∗, where iA∗ : A∗ ↪→ A∗ is the

canonical embedding. For more details see [13].

Theorem 3.4. Let A be a dual Banach algebra. Then the following statements hold:

(i) Let T ∈Mull(A) be surjective and wk∗-continuous. If AT is Johnson pseudo-Connes

amenable, then A is Johnson pseudo-Connes amenable.

(ii) Let (Sn) be a sequence of elements in Mull(A) such that Sn is wk∗-continuous for

every n ∈ N. If Sn is surjective for all n and Ak is Johnson pseudo-Connes amenable

for some k, then A is Johnson pseudo-Connes amenable.

Proof. (i) Suppose that AT is Johnson pseudo-Connes amenable. Define θ : AT −→ A by

θ(a) = T (a) for every a ∈ AT . So

θ(a ∗ b) = θ(aT (b)) = T (aT (b)) = T (a)T (b) = θ(a)θ(b) (a, b ∈ AT ).

Since T is surjective and wk∗-continuous, θ is a wk∗-continuous epimorphism. Applying [13,

Proposition 2.8] follows that A is Johnson pseudo-Connes amenable.

(ii) Suppose that Ak is Johnson pseudo-Connes amenable for some k. If k = 1, then (i)

implies that A is Johnson pseudo-Connes amenable. Now suppose that k > 1 and Ak
is Johnson pseudo-Connes amenable. Define ϕ : Ak → Ak−1 by ϕ(a) = Sk(a) for every

a ∈ Ak. Similar arguments as in th eproof of Theorem 2.3, and using [13, Proposition 2.8]

follows that Ak−1 is Johnson pseudo-Connes amenable. By repeating this method on k, A

is Johnson pseudo-Connes amenable. �
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4. Module amenability of AT

Let A and A be Banach algebras such that A is a Banach A-bimodule with the

following compatible actions:

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A).

Let X be a Banach A-bimodule and a Banach A-bimodule with the compatible actions:

α · (a · x) = (α · a) · x, a · (α · x) = (a · α) · x, (a · x) · α = a · (x · α),

for every a ∈ A, α ∈ A and x ∈ X. Similarly the right action is defined. In this case we say

that X is a Banach A-A-module. If moreover α · x = x · α for every a ∈ A, x ∈ X, then X

is called a commutative Banach A-A-module. If X is a commutative Banach A-A-module,

then so is X∗, where the actions of A and A on X∗ are defined as follows:

〈α · f, x〉 = 〈f, x · α〉, 〈a · f, x〉 = 〈f, x · a〉 (α ∈ A, a ∈ A, x ∈ X, f ∈ X∗).

Similarly we can define the right action. Let A and A be as above and X be a Banach

A-A-module. A bounded map D : A→ X is called a module derivation if

D(a± b) = D(a)±D(b), D(ab) = D(a) · b+ a ·D(b) (a, b ∈ A),

and

D(α · a) = α ·D(a), D(a · α) = D(a) · α (a ∈ A, α ∈ A).

If X is commutative, then each x ∈ X defines a module derivation as follows:

Dx(a) = a · x− x · a (a ∈ A),

These are called inner module derivations. A is called module amenable as an A-module,

if for any commutative Banach A-A-module X, every module derivation D : A → X∗ is

inner [1, Definition 2.1]. Let A be a Banach A-bimodule and let T ∈ Mull(A) satisfying

T (a · α) = T (a) · α for every α ∈ A and a ∈ A. Then AT be a Banach A-bimodule with the

following actions:

α · (a ∗ b) = (α · a) ∗ b, (a ∗ b) · α = a ∗ (b · α) (a, b ∈ A, α ∈ A),

where · is the module action of A on A.

Theorem 4.1. Let A be a Banach A-bimodule and let T ∈ Mull(A) satisfying T (a · α) =

T (a) · α for every α ∈ A and a ∈ A. Then following statements hold:

(i) If T is surjective and AT is module A-amenable, then A is module A-amenable.

(ii) If T is bijective and A is module A-amenable, then AT is module A-amenable.

Proof. (i) Define ψ : AT −→ A by ψ(a) = T (a) for every a ∈ AT . So

ψ(a ∗ b) = ψ(aT (b)) = T (aT (b)) = T (a)T (b) = ψ(a)ψ(b) (a, b ∈ AT ).

Since T is surjective and continuous, ψ is a continuous epimorphism. Applying [1, Proposi-

tion 2.5], A is module A-amenable.

(ii) Since T is bijective, it is invertible. By open mapping theorem T−1 is continuous and

[7, Lemma 2.3] implies that T−1 ∈ Mull(A). Define θ : A → AT by θ(a) = T−1(a). It is

easy to see that θ is continuous epimorphism. applying [1, Proposition 2.5], AT is module

A-amenable. �

Theorem 4.2. Let (Sn) be a sequence of elements in Mull(A) such that for every n, Sn(a ·
α) = Sn(a) · α, where α ∈ A and a ∈ A. Then the following statements hold:

(i) Suppose that Sn is surjective for all n. If Ak is module A-amenable for some k, then

so is A.
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(ii) If Sn is invertible for every n and A is module A-amenable, then An is module A-

amenable for every n.

Proof. (i) Suppose that Ak is module A-amenable for some k. If k = 1, then Theorem

4.1(i) implies that A is module A-amenable. Now suppose that k > 1 and Ak is module

A-amenable. Define ϕ : Ak → Ak−1 by ϕ(a) = Sk(a) for every a ∈ Ak. By similar argument

as in the proof of Theorem 2.3 and using [1, Proposition 2.5], follows that Ak−1 is module

A-amenable. By repeating this method on k, gives that A is module A-amenable.

(ii) By induction, we show that An is module A-amenable for every n. If n = 1, then

Theorem 4.1 (ii) implies that A1 is module A-amenable. Now suppose that A1,A2, . . . ,An
are module A-amenable. Define θ : An → An+1 by θ(a) = S−1n+1(a) for every a ∈ A.

θ(a ∗n b) = S−1n+1(aTn(b)) = S−1n+1(aTn+1S
−1
n+1(b))

= S−1n+1(a)Tn+1(S−1n+1(b)) = θ(a) ∗n+1 θ(b).

Then θ is a continuous epimorphism. Using [1, Proposition 2.5], An+1 is module A-amenable.

It finishes the proof. �

5. φ-homological properties of some matrix algebras

Let A be a Banach algebra and ϕ ∈ ∆(A). Then A is called ϕ-biprojective, if there

exists a bounded A-bimodule morphism ρ : A→ A⊗̂A such that ϕ ◦ πA ◦ ρ = ϕ. Also A is

called ϕ-biflat if there exists a bounded A-bimodule morphism ρ : A→ (A⊗̂A)∗∗ such that

ϕ̃ ◦ π∗∗A ◦ ρ = ϕ, where ϕ̃ is a character on A∗∗ defined by ϕ̃(F ) = F (ϕ) for every F ∈ A∗∗.

Obviously every ϕ-biprojective Banach algebra is ϕ-biflat. For more details see [12].

Example 5.1. Let A =

(
C C
0 C

)
. With the usual matrix multiplication and `1-norm,

A is a Banach algebra. Consider a character ϕ on A defined by ϕ
(( a b

0 c

))
= c. We

show that A is not φ-biflat but AT is φ-biflat, for some T ∈ Mull(A) (it follows that A

is not ϕ-biprojective). Suppose towards a contradiction that A is ϕ-biflat. Since A has an

identity, [11, Theorem 2.1] implies that A is left φ-amenable. Consider the closed ideal

I =

(
0 C
0 C

)
of A. Since ϕ|I 6= 0, by [6, Lemma 3.1], I is left ϕ-amenable. So there exists

a net (

(
0 uα
0 vα

)
) in I such that(

0 vα
0 0

)
=

(
0 1

0 0

)(
0 uα
0 vα

)
− ϕ(

(
0 1

0 0

)
)

(
0 uα
0 vα

)
→ 0,

and

ϕ(

(
0 uα
0 vα

)
) = vα = 1,

which is a contradiction with vα → 0. Define

T : A −→ A(
a b

0 c

)
7→
(

0 0

0 c

)
.

It is easy to see that T ∈ Mull(A). So AT is a Banach algebra with the multiplication ∗

[7, Theorem 2.1(i)]. Define ρ : AT → AT ⊗̂AT by

(
a b

0 c

)
7→
(

0 b

0 c

)
⊗
(

0 0

0 1

)
.
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One can see that ρ is a bounded AT -bimodule morphism and also ϕ ◦ πAT ◦ ρ(

(
a b

0 c

)
) =

ϕ(

(
a b

0 c

)
). So AT is ϕ-biprojective. It follows that AT is ϕ-biflat.

Now consider a character ϕ on A such that ϕ
(( a b

0 c

))
= a. We show that A is

not ϕ-biflat but AT is φ-biflat, for some T ∈Mull(A). It gives that A is not ϕ-biprojective.

To see this assume in a contradiction that A is ϕ-biflat. Since A has an identity, [11,

Theorem 2.1] implies that A is right φ-amenable. Consider the closed ideal J =

(
C C
0 0

)
of A. Since ϕ|J 6= 0, similar to [6, Lemma 3.1], J is right ϕ-amenable. Then there exists

a net (aα) in J such that aαX − ϕ(X)aα → 0 for every X ∈ J and ϕ(aα) = 1. Pick an

element X ∈ J such that ϕ(X) = 1. So

X − ϕ(X)aα = ϕ(aα)X − ϕ(X)aα = aαX − ϕ(X)aα → 0.

Thus aα → X. Hence for each Y ∈ J , we have Y − ϕ(Y )aα = aαY − ϕ(Y )aα → 0. It gives

that ϕ(Y )X = Y . Therefore dim(J) = 1, which is a contradiction. Define

T : A −→ A(
a b

0 c

)
7→
(
a b

0 0

)
.

It is easy to see that T ∈ Mull(A). So AT is a Banach algebra with the multiplication ∗

[7, Theorem 2.1(i)]. Define ρ : AT → AT ⊗̂AT by

(
a b

0 c

)
7→
(

1 1

0 0

)
⊗
(
a b

0 0

)
.

One can see that ρ is a bounded AT -bimodule morphism and also ϕ ◦ πAT ◦ ρ
(
a b

0 c

)
=

ϕ(

(
a b

0 c

)
). So AT is ϕ-biprojective. It follows that AT is ϕ-biflat.

Let A be a Banach algebra and ϕ ∈ ∆(A). Then A is called approximate left (right)

ϕ-biprojective if there exists a net of bounded linear maps from A into A⊗̂A, say (ρα)α∈I ,

such that

(i) ρα(ab)− a · ρα(b)→ 0 (ρα(ab)− ρα(a) · b→ 0),

(ii) ρα(ab)− ϕ(b)ρα(a)→ 0 (ρα(ab)− ϕ(a)ρα(b)→ 0),

(iii) ϕ ◦ πA ◦ ρα(a)− ϕ(a)→ 0.

for every a, b ∈ A, respectively. For more details see [10].

Example 5.2. The Banach algebra of N× N upper triangular matrices over C, with finite

`1-norm and matrix multiplication is denoted by

UP (N,C) =

{[
ai,j

]
i,j∈N ; ai,j ∈ C and ai,j = 0 for every i > j

}
.

Consider a character ϕ on UP (N,C) such that ϕ
( a11 a12 a13 . . .

0 a22 a23 . . .

: : : . . .

) = a11. We

claim that UP (N,C) is not ϕ-biflat (so UP (N,C) is not ϕ-biprojective). Suppose in con-

tradiction that UP (N,C) is ϕ-biflat. Since UP (N,C) has a right approximate identity [11,

Lemma 5.1], UP (N,C) is right φ-amenable [11, Theorem 2.1]. Consider the closed ideal

J =

{[
ai,j

]
i,j∈N ∈ UP (N,C) | ai,j = 0 for every i 6= 1

}
,
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of UP (N,C). We know that J has at least two columns, thus dim(J) ≥ 2. Since ϕ|J 6= 0,

by similar to [6, Lemma 3.1], J is right ϕ-amenable. So there exists a net (aα) in J such

that aαX−ϕ(X)aα → 0 and ϕ(aα) = 1, for every X ∈ J . Pick an element X ∈ J such that

ϕ(X) = 1. So

X − ϕ(X)aα = ϕ(aα)X − ϕ(X)aα = aαX − ϕ(X)aα → 0.

Then aα → X. We have

Y − ϕ(Y )aα = aαY − ϕ(Y )aα → 0 (Y ∈ J).

So ϕ(Y )X = Y . Therefore dim(J) = 1, which is a contradiction.

We show that UP (N,C)T is approximate right ϕ-biprojective. Define T : UP (N,C) −→

UP (N,C) by T

 a11 a12 a13 . . .

0 a22 a23 . . .

: : : . . .

 =

 a11 a12 a13 . . .

0 0 0 . . .

: : : . . .

. It is easy to see that

T ∈ Mull(UP (N,C)). So UP (N,C)T is a Banach algebra with the multiplication ∗ [7,

Theorem 2.1(i)]. For each n ∈ N, define ρn : UP (N,C)T → UP (N,C)T ⊗̂UP (N,C)T by

ρn

a11 a12 a13 . . .

0 a22 a23 . . .

: : : . . .

 =

n︷ ︸︸ ︷1 . . . 1 0 . . .

0 . . . 0 0 . . .

: : : : . . .

 ⊗
a11 a12 a13 . . .

0 0 0 . . .

: : : . . .

 .

One can see that ρn is a bounded linear map for every n ∈ N. Also we have

(i) ρn(XY )− ρn(X) · Y → 0,

(ii) ρn(XY )− ϕ(X)ρn(Y )→ 0,

(iii) ϕ ◦ πUP (N,C)T ◦ ρn(X)− ϕ(X)→ 0,

for every X,Y in UP (N,C)T . So UP (N,C)T is approximate right ϕ-biprojective.
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