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VARIOUS NOTIONS OF AMENABILITY FOR CERTAIN BANACH
ALGEBRAS RELATED TO THE MULTIPLIERS

A. Sahami', S. F. Shariati?, A. Pourabbas®

In this paper, for the Banach algebra Ar, we study the various notions of
amenability like pseudo amenability, Johnson pseudo-contractibility and module amenabil-
ity, where A is a Banach algebra and T is a left multiplier on A. For a dual Ba-
nach algebra A, under some conditions, we show that if Ar is Connes amenable (resp.
Connes biprojective), then A is Connes amenable (resp. Connes biprojective). For a
non-zero multiplicative linear functional ¢ : A — C, we study the relationship between
p-amenability of A and pR-amenability of Ar, where (T, R) be a double centralizer of
A.

Keywords: Multiplier, pseudo amenability, Johnson pseudo-contractibility, Connes amenabil-
ity, Character amenability.
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1. Introduction and preliminaries

Let A be a Banach algebra and T' a bounded multiplier on A. Laali in [7] introduced
a new Banach algebra Ar related to A and T. Indeed a new multiplication on A was defined
by a*b=aT'(b) for every a,b € A. With the norm

lallz = Tl (a€A).

Ar becomes a Banach algebra, provided that T € Mul;(A), see [7, Theorem 2.1(i)]. Laali
also studied approximate amenability of Ar, see [7, Theorem 3.1].

Motivated by these considerations, we investigate the other various notions of amenabil-
ity for this new multiplication on Banach algebras. For a dual Banach algebra A, under
certain conditions, we show that if Az is Connes amenable (resp. Connes biprojective),
then A is Connes amenable (resp. Connes biprojective). Also we show that if A is John-
son pseudo-contractible, then A7 is Johnson pseudo-contractible with additional conditions.
We study Module amenability of Ap. Finally we give some examples of Banach algebras
which are not ¢-biprojective (resp. ¢-biflat), but with this new multiplication they are
@-biprojective (resp. @-biflat).

Suppose that T is a left multiplier and R is a right multiplier of A, respectively. Then
the pair (T, R) is a double centralizer of A, if aT'(b) = R(a)b for every a,b € A. The set of all
left (right) multipliers of A is denoted by Mul;(A)(Mul,.(A)), respectively. It is easy to see
that Mul;(A) and Mul,(A) are unital Banach subalgebras of B(A). For further information
see [2].
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Let A be a Banach algebra and let E be a Banach A-bimodule. Then a bounded linear
map D : A — E is called derivation if D(ab) = a-D(b)+ D(a)-b, for every a,b € A. Suppose
that E is a Banach A-bimodule. So E* is also a Banach A-bimodule via the following actions

(@-f)@)=fz-a), (f-a)()=fla-2) (acAzcE, fecE)

A Banach algebra A is called amenable if for every Banach A-bimodule E, each derivation
D : A — FE* is inner, that is, D has the form

D(a):a'f_f'av (aE.A),

for some f € E*. A derivation D : A — E* is approximately inner if there exists a net
(fo) in E* such that D(a) =||- || —limg a- fo — fo - a for every a € A. A Banach algebra A
is called approximately amenable if every derivation D : A — E* is approximately inner
for all Banach A-bimodule E, see [3].

2. Amenability and amenable-like properties of Ay

The class of dual Banach algebras was introduced by Runde [8]. Let A be a Banach
algebra and let ¥ be a Banach A-bimodule. An A-bimodule E is called dual, if there exists
a closed submodule F, of E* such that E = (E,)*. The Banach algebra A is called dual
if it is dual as a Banach A-bimodule. A dual Banach A-bimodule F is normal, if for each
x € F, the module maps A — FE; a+— a-x and a — x - a are wk™-wk* continuous.

A dual Banach algebra A is called Connes amenable if every wk*-continuous derivation
D : A — E is inner, for all normal dual Banach A-bimodule E, see [8].

For a Banach algebra A and for every a € A, consider the operators L, and R,
defined by

Lo(b) =ab, Ry(b)=0ba (beA).
Then L, € Mul;(A), Ry € Mul,.(A) and also (L., R,) is the double centralizer of A. Let
A be a dual Banach algebra. Since the multiplication in A is separately wk*-continuous [8,
Proposition 2.1], L, and R, are wk*-continuous.

Theorem 2.1. Let A be a dual Banach algebra. Suppose that T € Mul;(A) and T is a
wk*-continuous map. Then At is a dual Banach algebra.

Proof. Since the underlying space of A and Ag are the same and || - ||z = || - ||, the predual
of them are the same. We only show that the multiplication in Ap is separately wk*-

continuous. To see this, suppose that ag € Ar. Let (a,) be a net in Ap such that a, LN
ag. Since T is wk*-continuous and the multiplication in A is separately wk*-continuous,
bT (aq) whky bT (agp). So b* ag LIy agp. Similarly we can show that a, * b whky ao *b. Thus
Ar is a dual Banach algebra. O

For a given dual Banach algebra A and a Banach A-bimodule E, we denote by cwc(E),
the set of all elements x € E such that the module maps A - F; a+> a-z and a — x - a
are wk*-wk-continuous. Note that cwc(FE) is a closed submodule of E.

A dual Banach algebra A is called Connes biprojective, if there exists a bounded
A-bimodule morphism p : A — (cwc(ARA)*)* such that 7y, 0 p = ida, see [14].

Using argument as in the proof of [7, Theorem 3.1], we have the following theorem.

Theorem 2.2. Let A be a dual Banach algebra and let T € Mul;(A). Suppose that T is
surjective and wk™-continuous. Then the following statements hold:

(i) If Ap is Connes amenable, then A is Connes amenable.
(ii) If A is Connes biprojective, then A is Connes biprojective.
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Proof. (i) Define 6 : Ax — A by 0(a) = T'(a) for every a € Ar. So
O(axb) =0(aT(b)) =T (aT (b)) =T(a)T(b) =0(a)d(b) (a,be Ar).

Since T is surjective and wk*-continuous, 6 is a wk*-continuous epimorphism. Applying [8,
Proposition 4.2(ii)], A is Connes amenable.

(ii) Suppose that Az is Connes biprojective. Let 6 be as above. Then 6 is a wk*-continuous
epimorphism. Using [14, Theorem 2.7(ii)] follows that A is Connes biprojective. O

For a Banach algebra A and a sequence (S,,) in Mul;(A), define
Ty=1, To=]]S (n=>1).
k=1

It is clear that T,, € Mul;(A) for every n € N. Laali defined a new Banach algebra A, =
(A, *y) by the following multiplication

a*pb=aTl,(b) (n>0).

We remind that if A is a dual Banach algebra and S,, is wk*-continuous for every n € N,
then A, is a dual Banach algebra.
Inspired by arguments as in [7, Theorem 3.2], we have the following theorem:

Theorem 2.3. Let (S,) be a sequence of elements in Mulj(A) such that S, is wk*-
continuous for every n € N. Then the following statements hold:

(i) Suppose that Sy, is surjective for all n and Ay is Connes amenable for some k. Then
A is Connes amenable.

(ii) Suppose that S,, is surjective for all n and Ay is Connes biprojective for some k. Then
A is Connes biprojective.

Proof. (i) Suppose that S, is surjective for all n and Ay, is Connes amenable for some k. If
k = 1, then Theorem 2.2(i) implies that A is Connes amenable. Now suppose that k > 1
and Ay is Connes amenable. Define ¢ : Ay — Ag_1 by p(a) = Sk(a) for every a € Ay.
Since Sy is wk*-continuous, ¢ is wk*-continuous. Also we have

p(a i b) = Sp(aTk(b)) = Sk(a)Tk(b) = Sk(a)Tk—15k(b)
= Sk(a) *x—1 Sk(b) = p(a) *k_1 p(b),

for every a,b € Aj. Since Sy is surjective, ¢ is an epimorphism. Using [8, Proposition
4.2(ii)], Ak—1 is Connes amenable. Repeating this method on & implies that A is Connes
amenable.

(ii) Suppose that S,, is surjective for all n and Ay is Connes biprojective for some k. Let
@ Ar — Ag_1 be as in (i). Clearly ¢ is a wk*-continuous epimorphism. Applying [14,
Theorem 2.7(ii)] follows that Ag_; is Connes biprojective. Repeating this method on k,
gives that A is Connes biprojective. O

A Banach algebra A is called pseudo-amenable if there exists a not necessarily bounded
net (uy) in A®RA such that a - uy — ua - a — 0 and 74 (ug)a — a for every a € A. For more
details, see [4].

Theorem 2.4. Let A be a Banach algebra and let T € Mulj(A). Then the following
statements hold:

(i) Suppose that T is surjective and Ay is pseudo-amenable. Then A is pseudo-amenable.
(ii) Suppose that T is bijective and A is pseudo-amenable. Then A is pseudo-amenable.
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Proof. (i) Define 6 : Ax — A by 0(a) = T'(a) for every a € Ar. So
O(axb) =0(aT(b)) =T (aT(b)) =T (a)T(b) =0(a)d(b) (a,be Ar).

Since T is surjective and continuous, € is a continuous epimorphism. Applying [4, Proposi-
tion 2.2] gives that A is pseudo amenable.

(ii) Since T is bijective, it is invertible. By open mapping theorem 7! is a continuous
and [7, Lemma 2.3] implies that T-! € Mul;(A). Define 6 : A — Az by 0(a) = T~ (a).
It is easy to see that @ is continuous epimorphism. Applying [4, Proposition 2.2], A is
pseudo-amenable. (]

Theorem 2.5. Let (S,) be a sequence of elements in Mul;(A). Then the following state-
ments hold:

(i) Let S, be surjective for all n. Suppose that Ay, is pseudo-amenable for some k. Then
A is pseudo-amenable.

(ii) Suppose that Sy, is invertible for every n. Let A be a pseudo-amenable Banach algebra.
Then A, is pseudo-amenable for every n.

Proof. (i) Let S,, be surjective for all n. Suppose that Ay is pseudo-amenable for some k.
If Kk =1, then Theorem 2.4(i) implies that A is pseudo-amenable. Now suppose that k > 1
and Ay is pseudo amenable. Define ¢ : A — Agx_1 by ¢(a) = Sk(a) for every a € Ay.
By similar arguments as in the proof of Theorem 2.3(i) and by [4, Proposition 2.2], Ap_1 is
pseudo amenable. It follows that A is pseudo-amenable.

(ii) By induction, we show that A,, is pseudo-amenable for every n. If n = 1, Theorem 2.4(ii)
implies that A, is pseudo amenable. Now suppose that A, Ao, ..., A, are pseudo-amenable.
Define 6 : A, — A,41 by 0(a) = S, (a) for every a € A.

O(a*, b) = S;h(aTn(b)) = S;il(aTn-s-lS;h(b))
= S41(@)Top1 (S41(0) = 0(a) 41 0(D).

Then 6 is a continuous epimorphism. Using [4, Proposition 2.2], A, 41 is pseudo-amenable.
a

A Banach algebra A is called biprojective, if there exists a bounded A-bimodule
morphism p : A — A®A such that p is a right inverse for 74, see [2].

Theorem 2.6. Let (T, R) be a double centralizer of A such that T is bijective. If A is
biprojective, then A is biprojective.

Proof. Since A is biprojective, there exists a bounded A-bimodule morphism p : A — ARA
such that w4 o p(a) = a for every a € A. Since T is bijective, it is invertible. By open
mapping theorem 7! is continuous. Now [7, Lemma 2.3] implies that T-! € Mul;(A).
Consider the bounded maps ¢ : A — Ar;a — T~ Y(a) for every a € A. Define the map
pr : Ar — Ar@Ar by pr(a) = (i ® ¥) o p(a), where i : A — Ag;a + a for every a € A.
It is easy to see that pr is a bounded map. We show that pr is a bounded Ap-bimodule
morphism. To see this, take an arbitrary element a € A. Without loss of generality, suppose
that p(a) = b ® ¢, for some b, c € A. So we have

pr(A*a) = pr(AT(a)) = pr(R(X)a) = (i ® ) o p(R(N)a)
= (i @) (RND®c) = RN T (c)
=AT(L) T ') =Axb@ T (c)
=X-pr(a) (A e Arp),
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and
pr(as A) = pr(aT(V) = (i@ §) 0 plaT(N)) = (i @ ¥)(b® T (V)
=0T HeT\) =0T He)T\) =b@ T (c) * A
= pT(a) - A ()\ S .AT)
Also we have
mrpr(a) = mr(i@Y)(b®c) = mr(b® T~ (c)
=bxT c)=bc=ma(b®c) =7map(a)
=a.
It gives that Ap is biprojective. |
The notion of p-amenability for a Banach algebra was introduced by Kaniuth, Lau
and Pym [6], where ¢ is a non-zero multiplicative linear functional on A. Indeed A is
p-amenable if there exists a bounded linear functional m on A* satisfying m(¢) = 1 and
m(f-a) = @(a)m(f) for every a € A and f € A*. They characterized p-amenability through
the existence of a bounded net (uy) in A such that |lau, — ¢(a)uq|] — 0 and @(uy) = 1 for
every o and a € A, see [6, Theorem 1.4]. The set of all non-zero characters on A is denoted
by A(A).
Let (T, R) be a double centralizer of A. One can see that R and ©T are non-zero
characters on Ap, where ¢ € A(A).

Theorem 2.7. Let (T, R) be a double centralizer of A and let ¢ € A(A) such that Im(R) €
ker(p). If A is p-amenable, then Ar is o R-amenable.

Proof. Since A is p-amenable, by [6, Theorem 1.4] there exists a bounded net (uq) in A
such that au, — @(a)u, — 0 and p(us) = 1 for every @ and a € A . So we have
a*uy — pR(a)uy = aT(uq) — @(R(a))uy = R(a)uqs — @(R(a))uq — 0.

Since Im(R) € ker(yp), we have pR(uq) # 0. Let o = ey Then axiq — wR(a)l, — 0
and ¢R(l,) = 1 for every a and for every a € Ap. It implies that Ap is ¢ R-amenable. O

A Banach algebra A is left p-contractible, if there exists m € A such that am = @(a)m
and ¢(m) = 1, for every a € A [5].

Theorem 2.8. Let (T, R) be a double centralizer of A and let p € A(A) such that Im(R) €
ker(p). If A is left p-contractible, then At is left pR-contractible.

Proof. 1t is similar to the arguments as in the proof of Theorem 2.7. O

3. Johnson pseudo-contractibility of Ap

The notion of Johnson pseudo-contractibility for a Banach algebra was introduced
by Sahami et. al.. Although it is weaker than amenability and pseudo-contractibility,
it is stronger than pseudo-amenability, see [9]. A Banach algebra A is called Johnson
pseudo-contractible, if there exists a not necessarily bounded net (m,) in (A®A)** such
that a - ma = mq - @ and 75" (mqa)a — a for every a € A.

Theorem 3.1. Let A be a Banach algebra and let T € Mul;(A). Then the following
statements hold:

(i) If T is surjective and Ar is Johnson pseudo-contractible, then A is Johnson pseudo-
contractible.
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(ii) If T is bijective and A is Johnson pseudo-contractible, then At is Johnson pseudo-
contractible.

Proof. (i) Use the similar argument as in the proof of Theorem 2.2(i) and apply [9, Propo-
sition 2.9] which finishes the proof.

(i) Since T is bijective, it is invertible. By open mapping theorem 7'~! is continuous and [7,
Lemma 2.3] implies that T—! € Mul;(A). Define § : A — Ar by 6(a) = T"1(a). It is easy
to see that 6 is a continuous epimorphism. By applying [9, Proposition 2.9], Az is Johnson
pseudo-contractible. O

Theorem 3.2. Let (Sy,) be a sequence of elements in Mul;(A). Then the following state-
ments hold:

(i) Suppose that S, is surjective for all n. If Ay is Johnson pseudo-contractible for some
k, then A is Johnson pseudo-contractible.

(ii) Suppose that S, is invertible for every n. If A is Johnson pseudo-contractible, then
A, is Johnson pseudo-contractible for every n.

Proof. (i) Suppose that Ay is Johnson pseudo-contractible for some k. If k& = 1, then
Theorem 3.1(i) implies that A is Johnson pseudo-contractible. Now suppose that & > 1
and Ay is Johnson pseudo-contractible. Define ¢ : Ap — Ap_1 by ¢(a) = Sk(a) for every
a € Ag. By similar argument as in the proof of Theorem 2.3 and using [9, Proposition 2.9],
Ax_1 is Johnson pseudo-contractible. It gives that A is Johnson pseudo-contractible.

(ii) By induction we show that A, is Johnson pseudo-contractible for every n. If n =
1, Theorem 3.1 (ii) implies that A; is Johnson pseudo-contractible. Now suppose that
Aq,As, ..., A, are Johnson pseudo-contractible. Define 6 : A, — A, 1 by 6(a) = S;il(a)
for every a € A.

0(a*n b) = S;il(aTn(b)) = S;il(aTnHS;il(b))
= S, 11(a)To11(S; 11 (0) = 0(a) 5 g1 O(D).

Then 6 is a continuous epimorphism. Using [9, Proposition 2.9], A, 11 is Johnson pseudo-
contractible. It finishes the proof. |

Let A be a Banach algebra and (T,)o € I be a family of invertible elements of
Mul;(A). So we have the family (Ar, )aer of Banach algebras. We define

£°°- @IAT“ = {(xa)aej | Vo; x4 € Ar, and sup||za||7, < oo}.
ac «
Consider the subalgebra cg- EBI A, of £°°- @1 Ar, which is defined by
ae ae
co- ® Ar, = {(xa)aej | (a)acr € £°- & Ar, and lim||zq||7, = O}.
ael ael (¢

Theorem 3.3. With above notations, if A is Johnson pseudo-contractible, then co- & Ar,
acl

18 Johnson pseudo-contractible.

Proof. Since A is Johnson pseudo-contractible, Theorem 3.1(ii) implies that for every o, A,
is Johnson pseudo-contractible. Let € > 0 and F' be an arbitrary finite subset co- & Ar, .
acl

Then there exists a finite set J of I such that ||a — Py(a)|| < €/2, where a € F and Py
is the projection function from co- ® Ag, onto co- @ Ar,. Since every A, is Johnson
a€el acJ

pseudo-contractible, there exists a net (m§) in (Ar, ®Ar,)** such that z - m§ =m§ - x and
lién . (m3) -z =z for every x € Ar,. We know that Ar, is complemented in co- & Ar,,
o ael
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for every a. Thus we have an embedding L, : Ar, @A, — (co- 69 A1 )@(co- 69 Ar,).

Follow the arguments as in the proof of [9, Theorem 2.11], let ng = > L (mﬁ) So for
aeclJ

ang=y a-Lymg) =3 Li(a-mg) = Li(Pala) m3)

each a € F|

acJ acJ acJ

= Z Ly (mG - Z Ly (mG - a) Z Ly (m3)-a
acJ acJ acJ

= n/[’} . a,

and also for a large enough § we have

Y i, (m§) - Pala) = Pa(a)l| < ¢/2.

aeJ
Hence for each a € F
74 (ng) -a—all = |74 (ng - a) — al| = |74 (ng - Ps(a)) — al|

= |l74 (ng - Ps(a)) = Ps(a) + Py(a) — af
< |I7 (ng - Ps(a)) = Py(a)|| +[|Ps(a) — all

< DI, (m§) - Pala) = Pa(@)|l + || Ps(a) — d|

acJ
<e¢/2+€/2=c¢
Therefore cp- @& Ar, is Johnson pseudo-contractible. g
ael

A dual Banach algebra A is called Johnson pseudo-Connes amenable, if there exists
a not necessarily bounded net (mg) in (A®A)*™* such that (T,a - ms) = (T,m, - a) and
it i (ma)a — a for every a € A and T € owc(ARA)*, where ig, : A, < A* is the
canonical embedding. For more details see [13].

Theorem 3.4. Let A be a dual Banach algebra. Then the following statements hold:

(i) Let T € Mul;(A) be surjective and wk*-continuous. If Ar is Johnson pseudo-Connes
amenable, then A is Johnson pseudo-Connes amenable.

(ii) Let (Sn) be a sequence of elements in Mul;(A) such that S, is wk*-continuous for
every n € N. If S, is surjective for alln and Ay, is Johnson pseudo-Connes amenable
for some k, then A is Johnson pseudo-Connes amenable.

Proof. (i) Suppose that Ar is Johnson pseudo-Connes amenable. Define 6 : Ar — A by
6(a) = T(a) for every a € Ar. So

0(a + b) = 0(aT(b)) = T(aT(b)) = T(a)T(b) = 0(a)0(b) (a,be€ Ar).

Since T is surjective and wk*-continuous, 6 is a wk*-continuous epimorphism. Applying [13,
Proposition 2.8] follows that A is Johnson pseudo-Connes amenable.

(ii) Suppose that Ay is Johnson pseudo-Connes amenable for some k. If k = 1, then (i)
implies that A is Johnson pseudo-Connes amenable. Now suppose that & > 1 and Ay
is Johnson pseudo-Connes amenable. Define ¢ : Ay — Ak_1 by ¢(a) = Sk(a) for every
a € Ay. Similar arguments as in th eproof of Theorem 2.3, and using [13, Proposition 2.8]
follows that Ay_; is Johnson pseudo-Connes amenable. By repeating this method on &, A
is Johnson pseudo-Connes amenable. O
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4. Module amenability of Ar
Let A and 2 be Banach algebras such that A is a Banach 2A-bimodule with the

following compatible actions:
a-(ab) =(a-a)h, (ab)-a=alb-a) (a,be A ,ac).
Let X be a Banach A-bimodule and a Banach 2-bimodule with the compatible actions:
a-(a-z)=(a-a)-z, a(e-z)=(a-a) -z, (a-2)-a=a-(r-a),

for every a € A, « € 2 and z € X. Similarly the right action is defined. In this case we say
that X is a Banach A-2-module. If moreover o - x = x - « for every a € A, x € X, then X
is called a commutative Banach A-2A-module. If X is a commutative Banach A-2(-module,
then so is X*, where the actions of A and 2l on X* are defined as follows:

(a-f,x>=<f,x-a>, <a-f,x>=(f,x~a> (aGQl,aeA,xeX,feX*).
Similarly we can define the right action. Let A and 2 be as above and X be a Banach
A-2A-module. A bounded map D : A — X is called a module derivation if

D(a+b) =D(a) £ D(), D(ab)=D(a)-b+a-D() (a,beA),
and
D(a-a)=a-D(a), D(a-a)=D(a)-a (a€A,ac).
If X is commutative, then each x € X defines a module derivation as follows:
Dy(a)=a-x—x-a (a€A),

These are called inner module derivations. A is called module amenable as an 2A-module,
if for any commutative Banach A-2-module X, every module derivation D : A — X* is
inner [1, Definition 2.1]. Let A be a Banach U-bimodule and let T € Mul;(A) satisfying
T(a-a)=T(a)- o for every a € A and a € A. Then Ar be a Banach 2-bimodule with the
following actions:

a-(axb)=(a-a)xb, (axb)-a=ax(b-a) (a,beA,ac),
where - is the module action of 2 on A.

Theorem 4.1. Let A be a Banach A-bimodule and let T € Mul;(A) satisfying T(a - a) =
T(a) -« for every a« € A and a € A. Then following statements hold:

(i) If T is surjective and Ar is module A-amenable, then A is module A-amenable.

(ii) If T is bijective and A is module A-amenable, then At is module 2A-amenable.

Proof. (i) Define ¢ : Ay — A by 9(a) = T'(a) for every a € Ap. So
Plaxb) = ¢(aT (b)) = T(aT (b)) = T(a)T(b) = (a)(b) (a,b€ Ar).

Since T is surjective and continuous, 1 is a continuous epimorphism. Applying [1, Proposi-
tion 2.5], A is module 2A-amenable.

(ii) Since T is bijective, it is invertible. By open mapping theorem 7! is continuous and
[7, Lemma 2.3] implies that 7= € Mul;(A). Define 6 : A — Ar by 0(a) = T"(a). Tt is
easy to see that 6 is continuous epimorphism. applying [1, Proposition 2.5], Ar is module
2A-amenable. g

Theorem 4.2. Let (S),) be a sequence of elements in Mul;(A) such that for every n, Sy(a-
a) = Sp(a) - «, where « € A and a € A. Then the following statements hold:
(i) Suppose that Sy, is surjective for all n. If Ay is module A-amenable for some k, then
so is A.
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(ii) If S, is invertible for every n and A is module A-amenable, then A, is module -
amenable for every n.

Proof. (i) Suppose that Ay is module 2A-amenable for some k. If k& = 1, then Theorem
4.1(i) implies that A is module 2-amenable. Now suppose that & > 1 and A is module
A-amenable. Define ¢ : A — Ap_1 by ¢(a) = Si(a) for every a € Aj. By similar argument
as in the proof of Theorem 2.3 and using [1, Proposition 2.5], follows that Ag_; is module
2-amenable. By repeating this method on &, gives that A is module 2A-amenable.

(ii) By induction, we show that A, is module 2A-amenable for every n. If n = 1, then
Theorem 4.1 (ii) implies that A; is module 2-amenable. Now suppose that A;, Aq,... A,
are module A-amenable. Define 0 : A,, — A1 by 0(a) = S,/ (a) for every a € A.

0 b) = Sy (0T ) = Sk (a1 574 ()
= S;-il-l(a)Tn-H(S;-il-l(b)) = 0(a) *n+1 6(D).

Then 6 is a continuous epimorphism. Using [1, Proposition 2.5], A, 1 is module 2-amenable.
It finishes the proof. O

5. ¢-homological properties of some matrix algebras

Let A be a Banach algebra and ¢ € A(A). Then A is called ¢-biprojective, if there
exists a bounded A-bimodule morphism p : A — A®A such that pomys 0 p = . Also A is
called ¢-biflat if there exists a bounded A-bimodule morphism p : A — (A®.A)** such that
pomh*op=, where ¢ is a character on A** defined by ¢(F) = F(yp) for every F € A**.
Obviously every ¢-biprojective Banach algebra is ¢-biflat. For more details see [12].

Cc C

Example 5.1. Let A = ( 0 C

). With the usual matriz multiplication and ¢*-norm,

a b

0 ¢ )) =c. We
show that A is not ¢-biflat but Ar is ¢-biflat, for some T € Mul;(A) (it follows that A
is not p-biprojective). Suppose towards a contradiction that A is p-biflat. Since A has an
identity, [11, Theorem 2.1] implies that A is left ¢-amenable. Consider the closed ideal

= ( 0 C ) of A. Since |1 # 0, by [6, Lemma 3.1], I is left p-amenable. So there exists

A is a Banach algebra. Consider a character ¢ on A defined by <p( (

anet((o e ))in[suchthat
(25)-(2 (2 )23 )

Ao i N=ra=t

which is a contradiction with v, — 0. Define
T:-A—A

a b . 0 0

0 ¢ 0 ¢/’
It is easy to see that T € Mul;(A). So Ar is a Banach algebra with the multiplication
[7, Theorem 2.1(i)]. Define p : Ar — Ar@Ar by ( “ i ) — ( 0 i ) ® ( 00 )

and

0 0 01
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One can see that p is a bounded Ap-bimodule morphism and also @ omy, © p(( 8 i )) =

90(( ., ZC) )) So At is p-biprojective. It follows that At is @-biflat.

0
Now consider a character ¢ on A such that <p( ( 8 i ) ) = a. We show that A is

not p-biflat but At is ¢-biflat, for some T € Mul;(A). It gives that A is not @-biprojective.
To see this assume in a contradiction that A is p-biflat. Since A has an identity, [11,

Theorem 2.1] implies that A is right ¢p-amenable. Consider the closed ideal J = ( % (E): >

of A. Since p|; # 0, similar to [6, Lemma 3.1], J is right @-amenable. Then there exists
a net (aq) in J such that an X — @(X)as — 0 for every X € J and ¢(a,) = 1. Pick an
element X € J such that o(X) =1. So
X = p(X)aa = p(aa)X = ¢(X)aa = aaX — p(X)aa = 0.
Thus ao — X. Hence for each’Y € J, we have Y — ¢(Y)aq = a0y —@(Y)an — 0. It gives
that o(Y)X =Y. Therefore dim(J) = 1, which is a contradiction. Define
T-A— A

a b N b
0 ¢ 0 0 )"
It is easy to see that T € Mul;(A). So Ar is a Banach algebra with the multiplication x
. N a b 11 a b
[7, Theorem 2.1(i)]. Define p : Ar — ArQAr by < 0 o > — < 0 0 > ® < 0 0 )

One can see that p is a bounded Ar-bimodule morphism and also ¢ o w4, o p( 8 l; ) =

90(( 8 lc) )) So At is p-biprojective. It follows that Ar is @-biflat.

Let A be a Banach algebra and ¢ € A(A). Then A is called approximate left (right)
@-biprojective if there exists a net of bounded linear maps from A into A®A, say (pa)acr,
such that

(i) palab) —a-pa(b) =0 (pa(ab) = pala) - b —0),
(i) palab) = ¢(b)pala) =0 (pa(ad) = ¢(a)pa(b) = 0),
(iii) poma 0 pala) — ¢(a) — 0.
for every a,b € A, respectively. For more details see [10].

Example 5.2. The Banach algebra of N x N upper triangular matrices over C, with finite
0 -norm and matriz multiplication is denoted by

UP(N,C) = { [ ai; ]ijeN;aiJ € Cand a;; =0 for every i >j}.

a1l a2 ais
Consider a character ¢ on UP(N,C) such that <p( 0 as ass ... ) = ay;. We

claim that UP(N,C) is not p-biflat (so UP(N,C) is not @-biprojective). Suppose in con-
tradiction that UP(N,C) is ¢-biflat. Since UP(N,C) has a right approximate identity [11,
Lemma 5.1], UP(N, C) is right ¢-amenable [11, Theorem 2.1]. Consider the closed ideal

J = { [ ai; ]ijeN € UP(N,C)| ai; =0 for every i # 1},
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of UP(N,C). We know that J has at least two columns, thus dim(J) > 2. Since ¢|; # 0,
by similar to [6, Lemma 3.1], J is right p-amenable. So there exists a net (aq) in J such
that o X —p(X)as — 0 and p(a) =1, for every X € J. Pick an element X € J such that
p(X)=1. So

X —o(X)ag = p(an)X — o(X)ag = anX —o(X)a, — 0.
Then a, — X. We have
Y —p(Y)aa =anY —p(Y)asa — 0 (Y €J).

So o(Y)X =Y. Therefore dim(J) = 1, which is a contradiction.
We show that U P(N, C)r is approximate right p-biprojective. Define T : UP(N,C) —

ajx a2 aiz ... a1l a2 ais
UPN,C) by T 0 ag asz ... = 0 0 0 ... |. It is easy to see that

T € Mul;(UP(N,C)). So UP(N,C)r is a Banach algebra with the multiplication * [7,
Theorem 2.1(i)]. For each n € N, define p, : UP(N,C)r — UP(N,C)r&UP(N,C)r by

—_—
P ail a2 a3 ... _ 1 ... 1 0 ... ® aj; a2 Qi3
" 0 ax axs ... 0O ... 0 0 ... 0 0 0

One can see that p, is a bounded linear map for every n € N. Also we have
(i) pn(XY) = pa(X) Y =0,
(i) pu(XY) = o(X)pn(Y) =0,
(111) @ o WUP(N,(C)T 0 p’ﬂ(X) - QO(X) — 07
for every X, Y in UP(N,C)p. So UP(N,C)r is approzimate right p-biprojective.
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