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FIXED POINT THEOREMS FOR MULTIVALUED
v-FG-CONTRACTIONS WITH (o, .)-ADMISSIBLE MAPPINGS IN
PARTIAL b-METRIC SPACES AND APPLICATION

by Eskandar Ameer!, Huaping Huang?, Muhammad Nazam® and Muhammad Arshad?*

In this paper, we introduce and study the notion of cyclic (ax, Bx)-type-y-
FG-contractive mapping and establish some fized point theorems for such mappings of
rational type defined on a partial b-metric space. Our work generalizes several recent
results existing in the literature. We set up an example to elucidate our main result.
As application of our findings, we demonstrate the existence of the solution of class of
nonlinear integral equations.
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1. Introduction

The well known Banach’s Contraction Principle, has many fruitful generalizations in
various directions. One of these generalizations is for F-contraction presented by Wardowski
[6]: every F-contraction defined on a complete metric space has a unique fixed point. So
the concept of an F-contraction proved to be a milestone in fixed point theory. Numerous
research papers on F-contractions have been published (see for instant, ([9, 10, 14, 8, 16]).
Recently, Cosentino et al. [9] established a fixed point result for Hardy-Rogers type F-
contraction and Piri and Kumam [13] generalized the concept of F-contraction and proved
certain fixed and common fixed point results. Minak et al. [10] presented a fixed point
result for Ciri¢ type generalized F-contraction. Parvaneh et al. [12] used slightly modified
the family of functions, denoted by Ag g and generalized the Wardowski fixed point results
in b-metric and ordered b-metric spaces. Very recently, Padhan et al. [25] introduced a
new concept of cyclic («, 8)-type-y-FG-contractive mapping and proved some fixed point
theorems for such mappings in b-metric spaces. Following this line of work, Alizadeh et
al. [5] introduced the notion of cyclic (¢, 8)-admissible mapping and proved several fixed
point results. On the other hand, Bakhtin [3] investigated the concept of b-metric spaces.
Subsequently, Czerwik [2] initiated the study of fixed point results in b-metric spaces and
proved an analogue of Banach’s fixed point theorem. Afterwards, numerous research articles
have been published on fixed point theorems for various classes of single-valued and multi-
valued operators in b-metric spaces (see for example, ([17, 18, 19, 20, 21, 22, 23]). In this
article, we shall investigate fixed points of cyclic (., Bs)-type-y-FG-contractive mappings
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defined on a partial b-metric space.
Czerwik generalized the notion of metric as follows:

Definition 1.1. [2] Let X be a nonempty set and s > 1 be a real number. A mapping
d: X xX — [0,00) is said to be a b-metric if for all x,y,z € X, d satisfies following
azrioms;

(b1) d(z,y) =0 if and only if x =y,

(b2) d(z,y) = d(y,z),

(b) dl,y) < sld(x,2) +d(z,y))-

The pair (X, d) is called a b-metric space (with coefficient s ).

Matthews generalized the notion of metric as follows:

Definition 1.2. [1] Let X be a nonempty set. A mapping P : X x X — [0, 00) is said to be
a partial metric if for all x,y,z € X, P satisfies following axioms;

(P1) P(z,x) = P(x,y) = P(y,y) if and only if z =y,

(P) P(x,x) < P(x,y),

(Ps) P(z,y) = P(y,x),

(Py) P(z,y) < P(x,2) + P(z,y) — P(z,2).

The pair (X, P) is called a partial metric space.

Shukla generalized the notion of partial metric as follows:

Definition 1.3. [15] Let X be a nonempty set and s > 1 a real number. A mapping
P, : X x X — [0,00) is said to be a partial b-metric if for all x,y,z € X, Py, satisfies
following azxioms;
(P1) Pb(z z) = Py(
(P) Py(z,z) < Pb(x, Y)

(Ps) b(% y) = By, z),

(Py) Py(z,y) < s[Pb(a: 2) + Py(z,9)] — Po(z, 2).

The pair (X, Py) is called a partial b-metric space (with coefficient s).

z,y) = Po(y,y) if and only if x =y,

Remark 1.1. The self distance Py(x,x), referred to the size or weight of z, is a feature
used to describe the amount of information contained in x.

Remark 1.2. Obviously, every partial metric space is a partial b-metric space with coef-
ficient s = 1 and every b-metric space is a partial b-metric space with zero self-distance.
However, the converse of this fact need not to hold.

Example 1.1. Let X = RT and k > 1, the mapping P, : X x X — R* defined by
Py(z,y) = {(x\/y)k + |z — y|k} forall z,y € X

is a partial b-metric on X with s = 2¥. For x = y, Py(x,x) = 2* # 0, so, P, is not a b-metric
on X.
Let x,y, z € X such that z > z > y. Then following inequality always holds
(@ —y)" > (@ —2)"+ (= —y)"

Since, Py(x,y) = ¥ + (x — y)* and Py(x, 2) + Py(2,y) — Po(2,2) = aF + (z — 2)" + (z — p)*,
therefore,

Py(z,y) > Py(x,2) + Py(z,y) — Po(2, 2).
This shows that P, is not a partial metric on X.

Definition 1.4. [15] Let (X, Py) be a partial b-metric space with coefficient s > 1. Let {xy}
be a sequence in X and x € X. Then
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(i) {xn} is said to be convergent to x if limy, o0 Py(zn,x) = Py, x).
(i) {xn} is said to be Cauchy sequence if limy, y—o0 Py(Tn, Tm) ezists and is finite.
(iii) (X, Py) is said to be complete if every Cauchy sequence is convergent in X .

Alizadeh et al. [5] introduced the concept of cyclic («, 3)-admissible mapping as follows:

Definition 1.5. [5] Let X be a nonempty set and o, 8 : X — [0,00) be mappings. A
self-mapping T on X is called a cyclic (o, 8)-admissible mapping if,

alz)>1 (zeX)=p(T(z)) >1,
and

Blxz)>1 (reX)=a(T(z)) >1.

Let (X, Py) be a partial b-metric space and C'Bp, (X) denote the family of all bounded
and closed subsets of X. For z € X and A, B € CBp,(X), we define

Py(x, A) = inf Py(z,a), 6(A, B) = supPy(a, B).
a€A acA

Define a mapping H : CBp,(X) x CBp,(X) — [0,00) by
Hp,(A,B) =max{6(4,B),6(B,A)},
for every A, B € CBp,(X). It clear that for A, B € CBp,(X) and a € A, one has
Py(a,B) = big};Pb(a,b) < (A, B) < Hp,(A, B).

Lemma 1.1. [4] Let A and B be nonempty closed, bounded subsets of a partial b-metric space
(X, Py) and q > 1. Then, for all a € A, there exists b € B such that Py(a,b) < ¢Hp, (A, B).

Lemma 1.2. [4] Let (X, Py) be a partial b-metric space with coefficient s > 1. For A €
CBp,(X) and z € X, then Py(z, A) = Py(z,z) if and only if x € A, where A is the closure
of A.

Lemma 1.3. [4] Let (X, Py) be a partial b-metric space. For any A, B,C € CBp,(X), ones
have

(Hl) HPb(A?A) < HPb(A7 B)’

(HQ) HPb (A7 B) = HPb (Bv A)a

(Hs) Hr,(A, B) < s{Hp,(4,0) + Hp,(C, B)] - inf Py(c.c).

Lemma 1.4. [4] Let (X, By) be a partial b-metric space with coefficient s and B € CBp,(X).
If x € X and Py(x, B) < ¢ where ¢ > 0, then there exists y € B such that Py(z,y) < c.

In light with ([12],[24],[11]), we denote the set of all mappings F : Ry — R by Ap which
satisfy following axioms;
(A1) F is strictly increasing,
(Ag) for each sequence {t,} C Ry, lim, o0t = 0 < lim,, 00 F(t,) = —00,
(A3) there exists k € (0,1) such that lim,_,o+ t*F(t) = 0,
(Ay) F(sty) < F(tn-1) + G(y(tn-1)) = F(s"t,) < F(s" Mtn 1) + G(y(tn-1)),
(G’ 7) € AGK‘/’
(A5) F(inf A) = inf F(A) for all A C Ry with inf A > 0.
Let A¢,, represents the set of pairs (G,7), where G : R — R and v : [0,00) — [0,1) are
mappings such that
(Ag) for each sequence {t,} C Ry, lim, o sup G(t,) > 0 < lim, o supt, > 1,
(A7) for each sequence {t,} C [0,00), lim, oo supy(t,) =1 implies that

lim ¢, =0,
n—oo

(Ag) for each sequence {t,} TRy, S°7  G(y(t,)) = —cc.

n=1
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Example 1.2. Let F: R; — R be defined by
(1) FA(r)=r+Inr;
(2) Fa(r) =1Inr.

It is easy to check that Fy, Fy € Ap,.

2. Main results

In this section, we introduce the concept of cyclic (au, f«)-type-y-F G-contraction. We also
set up a fixed point theorem for such contraction. Moreover, we explain this theorem by an
supportive example.

Definition 2.1. Let (X,py) be a partial b-metric space. The mapping T : X — CBp,(X)
is called multivalued Py-continuous at point x € X if limy, o0 Po(xn,x) = Py(x,x) implies
that limy, oo Hp,T(2y, T(z)) = Hp,(Tx,Tx).

Definition 2.2. Let X be a nonempty set, a, : X — [0,00) be mappings and A, B be
subsets of X. A mapping T : X — CBp,(X) is called a cyclic (o, B«)-admissible mapping
if,

alz) 21 (z € X) = B(T(z)) 2 1, where f,(A) = inf 5(a),

and

B(x) >1 (z€X)= a.(T(x)) > 1, where a,(B) = biél}fga(b).

Definition 2.3. Let (X, P,) be a partial b-metric space with coefficient s > 1, T : X —
CBp,(X) and o, 8 : X — [0,00) be mappings. Then T is called cyclic (o, Bx)-type-y-FG-
contraction, if there exist F € Ap, (G,v) € Ag,y such that for all x,y € X, a(x)B(y) > 1
and Hp, (T (x),T(y)) > 0 imply

Fla(z)B(y)sHp, (T(x), T(y))) < F(Ms(2,9)) + G(v(Ms(2,9))), (1)

where

M, (2,y) = max {Pb<x,y>,Pb<y,T<y>>, Py, T(x),

; @
S

Theorem 2.1. Let (X, P,) be a complete partial b-metric space with coefficient s > 1,
a,f: X — [0,00) be mappings and T : X — CBPp,(X) be a cyclic (o, Bx)-type-y-FG-
contractive mapping satisfying the following conditions:

(1) either there exists xg € X such that a(xg) > 1 or there exists yo € X such that

B(yO) > 1;
(2) T is multivalued Py-continuous,

(3) T is cyclic (o, Bi)-admissible.
Then T has a fized point.

Proof. Let xg € X be such that a(xg) > 1. Since T is cyclic (ax, Bx)-admissible mapping,
there exist x1 € T'(xg), x2 € T(x1) such that

o) 2 15 B(e1) 2 Bo(T(20)) > 15 alez) > au(T(wr) 2 1 3)
Because of a(z)B(x1) > 1, it is easy to see that
sBy(x1,T(21)) < sHp, (T (20), T(21)) < a(xo)B(z1)sHp, (T (20), T(21))
by F1), we have
F(sPy(z1, T(21))) < F(a(xo)B(21)sHp, (T (x0), T (21)))

<F
< F(Ms (o, 21)) + G(v(Ms (20, 71)))- (4)
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The axiom (As) implies that F(sPy(z1,T(21))) = infyera,) F(sPy(21,7)). Thus, there
exists x = x9 € T'(x1) such that F(sPy(z1,T(x1))) = F(sPy(z1,22)) and the inequality (4)
implies

F(sPy(x1,x2)) < F(Ms (20, 21)) + G(y(Ms (w0, 1)), (5)

where

MS(I07x1)

= max {Pb(l’o,l’l),Pb(ﬂflaT(ﬂfl))a Py(z0,T(20)),

Pb(xo,xg) =+ Pb(xl,xl) }
2s
S[Pb(.%‘o,xl)) + Pb(l‘l,l‘g)] }
2s

Py(xo, T (1)) + Po(z1,T(20)) }
2s

< max {Pb(xo,m),Pb(ﬂ?lv@)v

< maX{Pb(-fO»xl),Pb(l'laxﬂa
< max {Py(z0, 1), Py(z1,22)}.
If M(zo,21) < Py(z1,22), then (5) yields that
F(sPy(z1,22)) < F(Py(z1,22)) + G(v(Ms (20, 71))),

which implies G(y(Ms(zo,21))) > 0 and by (Ag) we get v(Ms(zg,21)) > 1. This is a
contradiction to definition of v. Thus, M(zo, z1) < Py(x0,z1). By (5), we get

F(sPy(x1,22)) < F(By(x0,21)) + G(y(Ms (2o, 21)))-
Similarly, there exists x3 € T'(z2) such that
F(sPy(w2,13)) < F(Py(21,22)) + G(7(Ms (21, 22)))-

Continuing this process, we construct a sequence {z,} in X such that z,1 € T(z,), for all
ne N; O‘(xn)ﬂ(zn-‘rl) > 17 and

F(sPy(xn, Tny1)) < F(Py(zn—1,70)) + G(y(Ms(2p-1,25)))- (6)

By (6) and axiom (A4), we have
F(Snpb(xm mn+1)) < F(sn_lpb(xnfh xn)) + G(V(MS(xnflv xn))))v
for all n € N. which further implies,
F(s" Py(Tp, Tny1)) < F(Sn_gpb(xnf%xnfl)) + G(v(Ms(2n—2,7n-1)))
+ G('Y(Ms(mn—lvxn)))-

Thus,

F(" Poloms 2ns1)) < F(Pyla0,21)) + 3 GOV, (@11, 20)). (7)

i=1

Taking the limit as n — oo, we get

nlgr;o s"F(Py(Tp, Tny1)) = —00.

By (As), we get

lim s"Py(2pn, Tny1) = 0.
n— oo

By (As), there exists k € (0,1) such that

lim (S”Pb(xn,xn+1))kF(s”Pb(xn,xn+1)) =0.

n—o0
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By (7), for all n € N, we obtain
(8" Py(@n, tng1)) F (" Po(2n, ng1)) = (8" Po(Tn, Tng1))* F(Po(x0, 1))

n

< ($"Py(zp, Tpir) kZG s(wi-1,2:))) <0.
=1

On taking Limit n — oo in above inequality, we have

im ( ZG s(i1,23))) (8" Py(xp, 2ny1))*) = 0.

This implies that there exists n1 € N such that

n

Z G(yMy(zi—1,2:))) (8" Py(2n, 2ny1))® < 1 for all n > ny, or

i=1
" 1
$"Py(xn, Tpy1) < oG for all n > n;, where, A, ZG (i1, 1)) (8)
n
To prove {z,} is a Cauchy sequence, we use (8) and for m 2 n > np, we consider,
m—1
Ty T Z s Py(5,Ti41) Z s Py (24, 24)
i=n+1
m—1 0o 1
< Z s'pb(zi, i11) < ZS’Pb Tiy Tiy1) < Z W'
i=n i=n 3

The convergence of the series Y oo - entails imy, -0 Py(Zp, Tm) = 0. Therefore {z,}

i=n A, 1/
is a Cauchy sequence in (X, FPy), so, there exists € X such that

Py(z,x) = nhﬁngo Py(xy,z) = 7”lrllgoo Py(zp, zm) = 0.

By multivlued P,-continuity of T we get,
lim pb(n41,T(x)) < lim Hp, (T(zy),T(x)) = Hp,(T'(z), T (z)). (9)

n— o0 n—00
Using the triangular inequality, we have

Py(z,T(x)) < s[B(x,2n11) + Po(zni1, T(2))] — Po(Tnir, Tnir)

< s[Py(@, wnga) + Bo(2ns, T(2))]
Letting n — oo and using (9),
Pz, T(z)) < lim sPy(x,2n41)+ lim sPy(zpy1, T(2))]
n—oo n—oo

< sHp, (T(x),T(x)).

So we have Py(z,T(z)) < sHp,(T(x),T(x)). We will show that © € Tz. Suppose that
x ¢ Tx. By Lemma 1.2, we obtain that Py(z,Txz) # 0, which implies that

F(sHp,(T(x),T(z))) < F(a(z)B(z)sHp,(T(z),T(x)))
< F(Ms(z,z)) + G(v(Ms(z, 7)),
where
My(z,z) = max {Pb(x,x), Py(z, T(2)), Py(z, T(x)), Pb(x’T(‘”));Pf’(w’T(x» }

Py(xz,T(x)).
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We get
F(Hp,(T(x), T(x)))

IN

F(Py(z,T(x))) + G(v(Py(z, T(x))))
F(sHp,(T(x),T(x))) + G(v(sHp, (T (x), T (x))))-

Since G(y(sHp,(T(x),T(x)))) > 0, which yields that v(sHp, (T'(z),T(z))) > 1, a contradic-
tion. Therefore, x € Tx and hence T has a fixed point in X. O

IN

Example 2.1. Let X = {0,1,2,3} endowed with the partial b-metric P, : X x X — [0, 00)
defined by
Py(z,y) = |z — y|* + max {z, y}2 , forallz,y € X.
Clearly, (X, Py) is a complete partial b-metric space with coefficient s = 4, but
it is not a partial metric space since Py(0,3) = 18 > 14 = P,(0,1) + P(1,3) — Py(1,1).
Define mappings T : X — CBp,(X) and 7 :[0,00) — [0,1), by
9

T(0)=T(1)={1,2},T(2) =T() = {1} and 7(t) = ;-
Define mappings a,, B : X — [0,00) by
{ = ifr e (2,3},

0 otherwise.

0  otherwise.

ﬁ(w):{ =5 ifr e {2,3},

For, v € {2,3}, we have

o) 2 1= 6.(T2) = f.((1}) = 22 > 1,
and
Ba) > 1= ou(Te) = on({1}) = o2 > 1

Hence, T is cyclic (a., B«)-admissible mapping. Now, assume that x,y € X are such that
a(x)B(y) > 1, then we have z,y € {2,3} and Hp,(Tz,Ty) > 0 imply

Fla(x)B(y)sHp,(Tx, Ty)) = Fla(x)B(y)sHp, (T(1),T(1)))
= Fla(z)B(y)sP(1,1))
< F(By(2,9) + G(v(Po(z,y))
< F(Ms(z,y) + ( ( s(2,9)))-
Thus, all conditions of Theorem 2.1 are satisfied with F(t) = =In(t),t >0, and T has

a fized point.

Following Corollary provides a generalization of the results in [6], [25] in the set up of a
partial b-metric space.

Corollary 2.1. Let (X, P,) be a complete partial b-metric space with coefficient s > 1,
a,f: X — [0,00) and T : X — CBp,(X) be a multivalued mapping satisfying following
conditions:

(1) there exists xg € X such that a(xg) > 1 or there exists yo € X such that 5(yo) > 1;
(2) T is multivalued Py-continuous;
(3) there exist T > 0, for all z,y € X; a(x)B(y) > 1 and Hp,(T(z),T(y)) > 0 such that

= 7+ F(a(z)B(y)sHp,(T(x), T(y))) < F(Ms(z,9)),
(4) T is cyclic (o, By)-admissible.
Then T has a fixed point.

Proof. Set ~(t) =k, G(t) = In(t), where k € (0,1) and 7 = —In(k) in the Theorem 2.1. O
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Corollary 2.2. Let (X, P,) be a complete partial b-metric space with coefficient s > 1,
a,f: X = [0,00) and T : X — CBp,(X) be a multivalued mapping satisfying following
conditions:

(1) there exists xo € X such that a(xg) > 1 or there exists yo € X such that 5(yo) > 1;

(2) T is multivalued Py-continuous;

(3) for all x,y € X with a(x)B(y) =1, we have

sHp, (T(2), T(y)) < v(Ms(2,9)))Ms(z, y)),

(4) T is cyclic (o, By)-admissible.
Then T has a fized point.
Proof. Set F(t) = G(t) = In(¢t) in Theorem 2.1. a

Definition 2.4. Let (X, P,) be a partial b-metric space with coefficient s > 1, T : X — X
be a self-mapping. Then T is called v-FG-contraction, if there exist F € Ap, (G,7) € Ag
such that

F(sPy(T(x), T(y))) < F(Ms(z,y)) + G(v(Ms(z,9))),
forallz,y € X, Py(T(x),T(y)) > 0, where

M. (,y) = max {Pb<x7y>, Py, T(y)). Py(x, T(x)).

2s

Corollary 2.3. Let (X, Py) be a complete partial b-metric space with coefficient s > 1 and
T:X — X be ay-FG-contraction. If T is multivalued Py-continuous, then T has a fixed
point.

Py(x,T(y)) + Po(y, T(x)) } .

Proof. Consider Picard iterative sequence {z,, : @, = T(2n—1) }nen in the proof of Theorem
2.1. This proof contains similar steps as in the proof of Theorem 2.1, so, we omit details. [

Corollary 2.4. Let (X, Py) be a complete partial b-metric space with coefficient s > 1 and
T: X — CBp,(X) be a multivalued mapping, such that

SHPb(T(m)aT(y)) < TMS((E,y), (10)
for some r € [0,1) and for all x,y € X. Then T has a fized point.
Proof. Set F(t) =t,G(t) = (1 — k)t,v(t) =k, k € (0,1) and a(x) = B(y) = 1 in Theorem
2.1. ([l

Corollary 2.5. Let (X,pp) be a complete partial b-metric space with coefficient s > 1 and
T:X — CBp,(X) be a multivalued mapping, such that

Hp,(T(z),T(y)) < rMs(z,y), (11)
for some r € [0,1) and for all x,y € X. Then T has a fized point.
Proof. Set F(t) =t, G(t) = (r — 1)t, y(t) = r, r € [0,00), k = 1 aand a(x) = B(y) = 1 in
Theorem 2.1. ]

3. Some fixed point results of multivalued cyclic mappings

Definition 3.1. Let A and B be a nonempty subsets of a set X. T : AUB — CBp,(A) U
CBp,(B) is called a multivalued cyclic if T(A) C CBp,(B) and T(B) C CBp,(A).

Definition 3.2. Let (X, P,) be a partial b-metric space with coefficient s > 1. We sat that
T:AUB — CBp,(A)UCBp,(B) is a multivalued (A, B) — v — FG- contraction, if there
exist F € Ap, (G,v) € Ag, such that, for allz € A and y € B,

A(x)B(y) = 1, Hp,(T(x), T(y)) > 0
= F(A(z)B(y)sHp,(T (), T(y))) < F(Ms(z,y)) + G(y(Ms(2,9))), (12)
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where

M, (z, y) = max {Pm,y), By, (). By(a, T(x).

2s '
Theorem 3.1. Let A and B be two nonempty subsets of the partial b-metric space (X, Py)

with coefficient s > 1 and T : AUB — CBp,(A)UCBp, (B) is a multivalued (A, B)—y—FG-
contraction, Then T has a fized point in CBp,(A) N CBp,(B).

Proof. Define mappings «, 3 :— [0, 00) by

a(x):{ 1 ifzeA,

0 otherwise.

1 ifzeB,
Alz) _{ 0 otherwise.

For z,y € AU B such that a(z)B(y) > 1, we get x € A and y € B. Then
A(z)B(y) = 1, Hp,(T(2), T(y)) > 0

= F(A(z)B(y)sHp,(T(x), T(y))) < F(Ms(z,y)) + G(y(Ms(z,9))),
and thus contractive condition (12) holds. Therefore, T' is a multivalued (A, B) — vy — FG-
contractive mapping. It is easy to see that T is a cyclic (., B«)-admissible mapping. Since
A and B are nonempty closed bounded subsets, there exists zg € A such that a(zg) > 1
and there exists yo € B such that 5(yo) > 1. Now, all conditions of Theorem 3.1 hold, so T’
has a fixed point in AU B, say z. If z € A, then z = T(z) € CBp,(B). Similarly, if z € B
then z € CBp,(A). Hence z € CBp,(A) N CBp,(B). O

We can obtain the following corollaries.

Corollary 3.1. Let A and B be two nonempty subsets of the partial b-metric space (X, Pp)
with coefficient s > 1 and T : AUB — CBp,(A)UCBp,(B) be a multivalued mapping such
that,

A(z)B(y) > 1, Hp,(T(x),T(y)) > 0

= F(A(z)B(y)sHp,(T(x),T(y))) < F(Py(z,y)) + G(y(Po(z,y)))-
Then T has a fized point in CBp,(A) N CBp,(B).
Corollary 3.2. Let A and B be two nonempty subsets of the partial b-metric space (X, Py)

with coefficient s > 1 and T : AUB — CBp,(A) UCBp,(B) be a multivalued mapping such
that,

sHp, (T(x), T(y)) < Ms (2, y)y(Ms (2, y)), (13)
forallz € A andy € B. Then T has a fized point in CBp,(A) N CBp,(B).

Proof. Taking F(t) = G(t) = In(¢t) and A(z)B(y) = 1 in Theorem 3.1, we obtain this
proof. O
4. Application

We consider the following nonlinear integral equation:
1
z(t) =g(t) + )\/ k(t,0)f(0,2(0))do,t,0 € I =1[0,1],\ > 0. (14)
0

Let X = C(I) represents the space of all real valued mappings defined on I. Assume the
following conditions:

(a) g: I — R is a continuous mapping;
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(b) f:IxX — R is a continuous mapping and there exists a constant § € [0, 1) such
that for all z,y € X;

F(ta () = £t yO)] < 8y/ln (Mu(@(0), y(6))COOLEO L0 );

(¢) k:IxI— Ris continuous at ¢ € I for every § € I and measurable at 0 € I for all
t € I such that

1
sup/ k(t,0)do < K;
ter Jo

(d) MKS < 1;
(e) In(sPy(T(2),T(y))) < supses |T(2(t)) — T(y(t))[.

Let X = C(I) be the space of all continuous real valued mappings defined on I. Define
mapping P, : X x X — [0,00) by

2
Py(z,y) = (sup lz(t) —y(t)] + 77) for all x,y € X and n > 0. (15)
tel

Then (X, P,) is a complete partial b-metric space with s =2 > 1. Also, define

AT+ Bl Tw)],

O a.9) = max { P, ). P T(0). P, 7)) .
Lemma 4.1. Let X = C(I). Define mapping Py : X x X — [0,00) as in (15). Then

M(z,y) = sup M (2(t), y(t))-

(supye; [2(t) —y(t)| +m)°, (supe ly(t) — T(y(t)] +n)?,

N (a(t),y(0) = 3 (urer [2(6) = T((®)] +)°

(supyes |2(t) = T(y(1)| +m)* + (supey ly(t) — T(x())| + n)?
2s

Proof. Since,

2
Py(z,y) = <sup lx(t) —y(t)| + 77> for all z,y € X and n > 0.
tel

Result follows. O

Theorem 4.1. Let X = C(I). Define the mapping T : X — X by
1
Tz(t) = g(t) + )\/ k(t,0)f(0,2(0))db,t € T =1[0,1], A > 0. (16)
0

If the assumptions (a)-(e) hold, then the nonlinear integral equation (14) has a unique so-
lution in X.

Proof. We note that z*(-) € X is a solution of (14) if and only if z*(-) € X is a fixed point
of the mapping T' defined in (16).
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By assumption (b), we have
2

T2(t) — Ty(t)]? = ’/\/0 (2, 0) £(0, 2(0))d0 — /\/0 K (1, 0)£(60, y(0))do

1 2
< a2 (/0 K(t,0)|£(0,2(0)) — f(9,y(9))ld9)

2

<2 (] (.06 (3 (2(6). 1)) 000 9

0

< X281 (Sup M, (2(0), y(6))e GO uw0cs Ms<x<9),y(e>)))>
oel

</01 K(t, 0)d9>

By assumption (c) and (d), we have

2

sup |Tz(t) — Ty(t)|2 < A252K2?In <sup M, (z(0), y(o))ec(v(supeel Ms(l’(e)’y(e)))))
tel ocl

< (Sup M, (2(0), y(6))eCOw0cs Ms@c(e),y(e))))) _
ol

By assumption (e) and Lemma 4.1, we have

In(sPy(T(x), T(y))) < In (M, y)e SO )
< In(Ms(z,y)) + G(y(Ms(,y))).

Now F(r) = In(r) satisfies all the hypotheses of Corollary 2.3 and so the integral equations
given by (14) has a solution. O

5. Conclusions

In this paper, we obtained fixed point theorem for cyclic (., B« )-type-vy-F G-contraction
type for multivalued mappings in partial b-metric spaces. Our results are extensions of re-
cent fixed point theorems of Wardowski [6], Padhan et al. [25] and some other results in
the literature. Moreover, We also applied our main results to study existence of a solu-
tion for a nonlinear integral equation. The new concepts lead to further investigations and
applications.
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