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FIXED POINT THEOREMS FOR MULTIVALUED

γ-FG-CONTRACTIONS WITH (α∗, β∗)-ADMISSIBLE MAPPINGS IN

PARTIAL b-METRIC SPACES AND APPLICATION

by Eskandar Ameer1, Huaping Huang2, Muhammad Nazam3 and Muhammad Arshad4

In this paper, we introduce and study the notion of cyclic (α∗, β∗)-type-γ-

FG-contractive mapping and establish some fixed point theorems for such mappings of
rational type defined on a partial b-metric space. Our work generalizes several recent

results existing in the literature. We set up an example to elucidate our main result.
As application of our findings, we demonstrate the existence of the solution of class of

nonlinear integral equations.
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1. Introduction

The well known Banach’s Contraction Principle, has many fruitful generalizations in
various directions. One of these generalizations is for F -contraction presented by Wardowski
[6]: every F -contraction defined on a complete metric space has a unique fixed point. So
the concept of an F-contraction proved to be a milestone in fixed point theory. Numerous
research papers on F -contractions have been published (see for instant, ([9, 10, 14, 8, 16]).
Recently, Cosentino et al. [9] established a fixed point result for Hardy-Rogers type F -
contraction and Piri and Kumam [13] generalized the concept of F-contraction and proved
certain fixed and common fixed point results. Minak et al. [10] presented a fixed point

result for Ćirić type generalized F -contraction. Parvaneh et al. [12] used slightly modified
the family of functions, denoted by ∆G,β and generalized the Wardowski fixed point results
in b-metric and ordered b-metric spaces. Very recently, Padhan et al. [25] introduced a
new concept of cyclic (α, β)-type-γ-FG-contractive mapping and proved some fixed point
theorems for such mappings in b-metric spaces. Following this line of work, Alizadeh et
al. [5] introduced the notion of cyclic (α, β)-admissible mapping and proved several fixed
point results. On the other hand, Bakhtin [3] investigated the concept of b-metric spaces.
Subsequently, Czerwik [2] initiated the study of fixed point results in b-metric spaces and
proved an analogue of Banach’s fixed point theorem. Afterwards, numerous research articles
have been published on fixed point theorems for various classes of single-valued and multi-
valued operators in b-metric spaces (see for example, ([17, 18, 19, 20, 21, 22, 23]). In this
article, we shall investigate fixed points of cyclic (α∗, β∗)-type-γ-FG-contractive mappings
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defined on a partial b-metric space.
Czerwik generalized the notion of metric as follows:

Definition 1.1. [2] Let X be a nonempty set and s ≥ 1 be a real number. A mapping
d : X × X → [0,∞) is said to be a b-metric if for all x, y, z ∈ X, d satisfies following
axioms;

(b1) d(x, y) = 0 if and only if x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space (with coefficient s).

Matthews generalized the notion of metric as follows:

Definition 1.2. [1] Let X be a nonempty set. A mapping P : X ×X → [0,∞) is said to be
a partial metric if for all x, y, z ∈ X, P satisfies following axioms;

(P1) P (x, x) = P (x, y) = P (y, y) if and only if x = y,
(P2) P (x, x) ≤ P (x, y),
(P3) P (x, y) = P (y, x),
(P4) P (x, y) ≤ P (x, z) + P (z, y)− P (z, z).

The pair (X,P ) is called a partial metric space.

Shukla generalized the notion of partial metric as follows:

Definition 1.3. [15] Let X be a nonempty set and s ≥ 1 a real number. A mapping
Pb : X × X → [0,∞) is said to be a partial b-metric if for all x, y, z ∈ X, Pb satisfies
following axioms;

(P1) Pb(x, x) = Pb(x, y) = Pb(y, y) if and only if x = y,
(P2) Pb(x, x) ≤ Pb(x, y),
(P3) Pb(x, y) = Pb(y, x),
(P4) Pb(x, y) ≤ s[Pb(x, z) + Pb(z, y)]− Pb(z, z).

The pair (X,Pb) is called a partial b-metric space (with coefficient s).

Remark 1.1. The self distance Pb(x, x), referred to the size or weight of x, is a feature
used to describe the amount of information contained in x.

Remark 1.2. Obviously, every partial metric space is a partial b-metric space with coef-
ficient s = 1 and every b-metric space is a partial b-metric space with zero self-distance.
However, the converse of this fact need not to hold.

Example 1.1. Let X = R+ and k > 1, the mapping Pb : X ×X → R+ defined by

Pb(x, y) =
{

(x ∨ y)
k

+ |x− y|k
}

for all x, y ∈ X

is a partial b-metric on X with s = 2k. For x = y, Pb(x, x) = xk 6= 0, so, Pb is not a b-metric
on X.
Let x, y, z ∈ X such that x > z > y. Then following inequality always holds

(x− y)k > (x− z)k + (z − y)k.

Since, Pb(x, y) = xk + (x− y)k and Pb(x, z) + Pb(z, y)− Pb(z, z) = xk + (x− z)k + (z − y)k,
therefore,

Pb(x, y) > Pb(x, z) + Pb(z, y)− Pb(z, z).
This shows that Pb is not a partial metric on X.

Definition 1.4. [15] Let (X,Pb) be a partial b-metric space with coefficient s ≥ 1. Let {xn}
be a sequence in X and x ∈ X. Then
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(i) {xn} is said to be convergent to x if limn→∞ Pb(xn, x) = Pb(x, x).
(ii) {xn} is said to be Cauchy sequence if limn,m→∞ Pb(xn, xm) exists and is finite.
(iii) (X,Pb) is said to be complete if every Cauchy sequence is convergent in X.

Alizadeh et al. [5] introduced the concept of cyclic (α, β)-admissible mapping as follows:

Definition 1.5. [5] Let X be a nonempty set and α, β : X → [0,∞) be mappings. A
self-mapping T on X is called a cyclic (α, β)-admissible mapping if,

α(x) ≥ 1 (x ∈ X)⇒ β(T (x)) ≥ 1,

and
β(x) ≥ 1 (x ∈ X)⇒ α(T (x)) ≥ 1.

Let (X,Pb) be a partial b-metric space and CBPb(X) denote the family of all bounded
and closed subsets of X. For x ∈ X and A,B ∈ CBPb(X), we define

Pb(x,A) = inf
a∈A

Pb(x, a), δ(A,B) = sup
a∈A

Pb(a,B).

Define a mapping H : CBPb(X)× CBPb(X)→ [0,∞) by

HPb(A,B) = max {δ(A,B), δ(B,A)} ,
for every A,B ∈ CBPb(X). It clear that for A,B ∈ CBPb(X) and a ∈ A, one has

Pb(a,B) = inf
b∈B

Pb(a, b) ≤ δ(A,B) ≤ HPb(A,B).

Lemma 1.1. [4] Let A and B be nonempty closed, bounded subsets of a partial b-metric space
(X,Pb) and q > 1. Then, for all a ∈ A, there exists b ∈ B such that Pb(a, b) ≤ qHPb(A,B).

Lemma 1.2. [4] Let (X,Pb) be a partial b-metric space with coefficient s ≥ 1. For A ∈
CBPb(X) and x ∈ X, then Pb(x,A) = Pb(x, x) if and only if x ∈ A, where A is the closure
of A.

Lemma 1.3. [4] Let (X,Pb) be a partial b-metric space. For any A,B,C ∈ CBPb(X), ones
have

(H1) HPb(A,A) ≤ HPb(A,B),
(H2) HPb(A,B) = HPb(B,A),
(H3) HPb(A,B) ≤ s[HPb(A,C) +HPb(C,B)]− inf

c∈C
Pb(c, c).

Lemma 1.4. [4] Let (X,Pb) be a partial b-metric space with coefficient s and B ∈ CBPb(X).
If x ∈ X and Pb(x,B) < c where c > 0, then there exists y ∈ B such that Pb(x, y) < c.

In light with ([12],[24],[11]), we denote the set of all mappings F : R+ → R by ∆F which
satisfy following axioms;

(∆1) F is strictly increasing,
(∆2) for each sequence {tn} ⊆ R+, limn→∞ tn = 0⇔ limn→∞ F (tn) = −∞,
(∆3) there exists k ∈ (0, 1) such that limt→0+ t

kF (t) = 0,
(∆4) F (stn) ≤ F (tn−1) +G(γ(tn−1))⇒ F (sntn) ≤ F (sn−1tn−1) +G(γ(tn−1)),

(G, γ) ∈ ∆G,γ ,
(∆5) F (inf A) = inf F (A) for all A ⊆ R+ with inf A > 0.

Let ∆G,γ represents the set of pairs (G, γ), where G : R → R and γ : [0,∞) → [0, 1) are
mappings such that

(∆6) for each sequence {tn} ⊆ R+, limn→∞ supG(tn) ≥ 0⇔ limn→∞ sup tn ≥ 1,
(∆7) for each sequence {tn} ⊆ [0,∞), limn→∞ sup γ(tn) = 1 implies that

lim
n→∞

tn = 0,

(∆8) for each sequence {tn} ⊆ R+,
∑∞
n=1G(γ(tn)) = −∞.
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Example 1.2. Let F : R+ → R be defined by

(1) F1(r) = r + ln r;
(2) F2(r) = ln r.

It is easy to check that F1, F2 ∈ ∆Fs.

2. Main results

In this section, we introduce the concept of cyclic (α∗, β∗)-type-γ-FG-contraction. We also
set up a fixed point theorem for such contraction. Moreover, we explain this theorem by an
supportive example.

Definition 2.1. Let (X, pb) be a partial b-metric space. The mapping T : X → CBPb(X)
is called multivalued Pb-continuous at point x ∈ X if limn→∞ Pb(xn, x) = Pb(x, x) implies
that limn→∞HPbT (xn, T (x)) = HPb(Tx, Tx).

Definition 2.2. Let X be a nonempty set, α, β : X → [0,∞) be mappings and A,B be
subsets of X. A mapping T : X → CBPb(X) is called a cyclic (α∗, β∗)-admissible mapping
if,

α(x) ≥ 1 (x ∈ X)⇒ β∗(T (x)) ≥ 1, where β∗(A) = inf
a∈A

β(a),

and

β(x) ≥ 1 (x ∈ X)⇒ α∗(T (x)) ≥ 1, where α∗(B) = inf
b∈B

α(b).

Definition 2.3. Let (X,Pb) be a partial b-metric space with coefficient s ≥ 1, T : X →
CBPb(X) and α, β : X → [0,∞) be mappings. Then T is called cyclic (α∗, β∗)-type-γ-FG-
contraction, if there exist F ∈ ∆F , (G, γ) ∈ ∆G,γ such that for all x, y ∈ X, α(x)β(y) ≥ 1
and HPb(T (x), T (y)) > 0 imply

F (α(x)β(y)sHPb(T (x), T (y))) ≤ F (Ms(x, y)) +G(γ(Ms(x, y))), (1)

where

Ms(x, y) = max

{
Pb(x, y), Pb(y, T (y)), Pb(x, T (x)),

Pb(x, T (y)) + Pb(y, T (x))

2s

}
. (2)

Theorem 2.1. Let (X,Pb) be a complete partial b-metric space with coefficient s ≥ 1,
α, β : X → [0,∞) be mappings and T : X → CBPPb(X) be a cyclic (α∗, β∗)-type-γ-FG-
contractive mapping satisfying the following conditions:

(1) either there exists x0 ∈ X such that α(x0) ≥ 1 or there exists y0 ∈ X such that
β(y0) ≥ 1,

(2) T is multivalued Pb-continuous,
(3) T is cyclic (α∗, β∗)-admissible.

Then T has a fixed point.

Proof. Let x0 ∈ X be such that α(x0) ≥ 1. Since T is cyclic (α∗, β∗)-admissible mapping,
there exist x1 ∈ T (x0), x2 ∈ T (x1) such that

α(x0) ≥ 1⇒ β(x1) ≥ β∗(T (x0)) ≥ 1⇒ α(x2) ≥ α∗(T (x1)) ≥ 1. (3)

Because of α(x0)β(x1) ≥ 1, it is easy to see that

sPb(x1, T (x1)) ≤ sHPb(T (x0), T (x1)) ≤ α(x0)β(x1)sHPb(T (x0), T (x1))

by F1), we have

F (sPb(x1, T (x1))) ≤ F (α(x0)β(x1)sHPb(T (x0), T (x1)))

≤ F (Ms(x0, x1)) +G(γ(Ms(x0, x1))). (4)
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The axiom (∆5) implies that F (sPb(x1, T (x1))) = infx∈T (x1) F (sPb(x1, x)). Thus, there
exists x = x2 ∈ T (x1) such that F (sPb(x1, T (x1))) = F (sPb(x1, x2)) and the inequality (4)
implies

F (sPb(x1, x2)) ≤ F (Ms(x0, x1)) +G(γ(Ms(x0, x1))), (5)

where

Ms(x0, x1)

= max

{
Pb(x0, x1), Pb(x1, T (x1)), Pb(x0, T (x0)),

Pb(x0, T (x1)) + Pb(x1, T (x0))

2s

}
≤ max

{
Pb(x0, x1), Pb(x1, x2),

Pb(x0, x2) + Pb(x1, x1)

2s

}
≤ max

{
Pb(x0, x1), Pb(x1, x2),

s[Pb(x0, x1)) + Pb(x1, x2)]

2s

}
≤ max {Pb(x0, x1), Pb(x1, x2)} .

If M(x0, x1) ≤ Pb(x1, x2), then (5) yields that

F (sPb(x1, x2)) ≤ F (Pb(x1, x2)) +G(γ(Ms(x0, x1))),

which implies G(γ(Ms(x0, x1))) ≥ 0 and by (∆6) we get γ(Ms(x0, x1)) ≥ 1. This is a
contradiction to definition of γ. Thus, M(x0, x1) ≤ Pb(x0, x1). By (5), we get

F (sPb(x1, x2)) ≤ F (Pb(x0, x1)) +G(γ(Ms(x0, x1))).

Similarly, there exists x3 ∈ T (x2) such that

F (sPb(x2, x3)) ≤ F (Pb(x1, x2)) +G(γ(Ms(x1, x2))).

Continuing this process, we construct a sequence {xn} in X such that xn+1 ∈ T (xn), for all
n ∈ N, α(xn)β(xn+1) ≥ 1, and

F (sPb(xn, xn+1)) ≤ F (Pb(xn−1, xn)) +G(γ(Ms(xn−1, xn))). (6)

By (6) and axiom (∆4), we have

F (snPb(xn, xn+1)) ≤ F (sn−1Pb(xn−1, xn)) +G(γ(Ms(xn−1, xn)))),

for all n ∈ N. which further implies,

F (snPb(xn, xn+1)) ≤ F (sn−2Pb(xn−2, xn−1)) +G(γ(Ms(xn−2, xn−1)))

+G(γ(Ms(xn−1, xn))).

Thus,

F (snPb(xn, xn+1)) ≤ F (Pb(x0, x1)) +

n∑
i=1

G(γ(Ms(xi−1, xi))). (7)

Taking the limit as n→∞, we get

lim
n→∞

snF (Pb(xn, xn+1)) = −∞.

By (∆2), we get

lim
n→∞

snPb(xn, xn+1) = 0.

By (∆3), there exists k ∈ (0, 1) such that

lim
n→∞

(snPb(xn, xn+1))kF (snPb(xn, xn+1)) = 0.
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By (7), for all n ∈ N, we obtain

(snPb(xn, xn+1))kF (snPb(xn, xn+1))− (snPb(xn, xn+1))kF (Pb(x0, x1))

≤ (snPb(xn, xn+1))k
n∑
i=1

G(γ(Ms(xi−1, xi))) ≤ 0.

On taking Limit n→∞ in above inequality, we have

lim
n→∞

(

n∑
i=1

G(γ(Ms(xi−1, xi)))(s
nPb(xn, xn+1))k) = 0.

This implies that there exists n1 ∈ N such that

n∑
i=1

G(γ(Ms(xi−1, xi)))(s
nPb(xn, xn+1))k ≤ 1 for all n ≥ n1, or

snPb(xn, xn+1) ≤ 1

A
1/k
n

, for all n ≥ n1, where, An =

n∑
i=1

G(γ(Ms(xi−1, xi))). (8)

To prove {xn} is a Cauchy sequence, we use (8) and for m ≥ n ≥ n1, we consider,

Pb(xn, xm) ≤
m−1∑
i=n

siPb(xi, xi+1)−
m−1∑
i=n+1

si−(n+1)Pb(xi, xi)

≤
m−1∑
i=n

sipb(xi, xi+1) ≤
∞∑
i=n

siPb(xi, xi+1) ≤
∞∑
i=n

1

Ai
1/k

.

The convergence of the series
∑∞
i=n

1
Ai1/k

entails limn,m→∞ Pb(xn, xm) = 0. Therefore {xn}
is a Cauchy sequence in (X,Pb), so, there exists x ∈ X such that

Pb(x, x) = lim
n→∞

Pb(xn, x) = lim
n,m→∞

Pb(xn, xm) = 0.

By multivlued Pb-continuity of T we get,

lim
n→∞

pb(xn+1, T (x)) ≤ lim
n→∞

HPb(T (xn), T (x)) = HPb(T (x), T (x)). (9)

Using the triangular inequality, we have

Pb(x, T (x)) ≤ s[Pb(x, xn+1) + Pb(xn+1, T (x))]− Pb(xn+1, xn+1)

≤ s[Pb(x, xn+1) + Pb(xn+1, T (x))]

Letting n→∞ and using (9),

Pb(x, T (x)) ≤ lim
n→∞

sPb(x, xn+1) + lim
n→∞

sPb(xn+1, T (x))]

≤ sHPb(T (x), T (x)).

So we have Pb(x, T (x)) ≤ sHPb(T (x), T (x)). We will show that x ∈ Tx. Suppose that
x /∈ Tx. By Lemma 1.2, we obtain that Pb(x, Tx) 6= 0, which implies that

F (sHPb(T (x), T (x))) ≤ F (α(x)β(x)sHPb(T (x), T (x)))

≤ F (Ms(x, x)) +G(γ(Ms(x, x))),

where

Ms(x, x) = max

{
Pb(x, x), Pb(x, T (x)), Pb(x, T (x)),

Pb(x, T (x)) + Pb(x, T (x))

2s

}
= Pb(x, T (x)).
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We get

F (HPb(T (x), T (x))) ≤ F (Pb(x, T (x))) +G(γ(Pb(x, T (x))))

≤ F (sHPb(T (x), T (x))) +G(γ(sHPb(T (x), T (x)))).

Since G(γ(sHPb(T (x), T (x)))) ≥ 0, which yields that γ(sHPb(T (x), T (x))) ≥ 1, a contradic-
tion. Therefore, x ∈ Tx and hence T has a fixed point in X. �

Example 2.1. Let X = {0, 1, 2, 3} endowed with the partial b-metric Pb : X ×X → [0,∞)
defined by

Pb(x, y) = |x− y|2 + max {x, y}2 , for all x, y ∈ X.
Clearly, (X,Pb) is a complete partial b-metric space with coefficient s = 4, but
it is not a partial metric space since Pb(0, 3) = 18 > 14 = Pb(0, 1) + Pb(1, 3) − Pb(1, 1).
Define mappings T : X → CBPb(X) and γ : [0,∞)→ [0, 1), by

T (0) = T (1) = {1, 2}, T (2) = T (3) = {1} and γ(t) =
9

10
.

Define mappings α, β : X → [0,∞) by

α(x) =

{
x+4
4 if x ∈ {2, 3} ,
0 otherwise.

β(x) =

{
x+5
5 if x ∈ {2, 3} ,
0 otherwise.

For, x ∈ {2, 3}, we have

α(x) ≥ 1⇒ β∗(Tx) = β∗({1}) =
1 + 5

5
≥ 1,

and

β(x) ≥ 1⇒ α∗(Tx) = α∗({1}) =
1 + 4

4
≥ 1.

Hence, T is cyclic (α∗, β∗)-admissible mapping. Now, assume that x, y ∈ X are such that
α(x)β(y) ≥ 1, then we have x, y ∈ {2, 3} and HPb(Tx, Ty) > 0 imply

F (α(x)β(y)sHPb(Tx, Ty)) = F (α(x)β(y)sHPb(T (1), T (1)))

= F (α(x)β(y)sPb(1, 1))

≤ F (Pb(x, y)) +G(γ(Pb(x, y)))

≤ F (Ms(x, y)) +G(γ(Ms(x, y))).

Thus, all conditions of Theorem 2.1 are satisfied with F (t) = G(t) = ln(t), t > 0, and T has
a fixed point.

Following Corollary provides a generalization of the results in [6], [25] in the set up of a
partial b-metric space.

Corollary 2.1. Let (X,Pb) be a complete partial b-metric space with coefficient s ≥ 1,
α, β : X → [0,∞) and T : X → CBPb(X) be a multivalued mapping satisfying following
conditions:

(1) there exists x0 ∈ X such that α(x0) ≥ 1 or there exists y0 ∈ X such that β(y0) ≥ 1;
(2) T is multivalued Pb-continuous;
(3) there exist τ > 0, for all x, y ∈ X; α(x)β(y) ≥ 1 and HPb(T (x), T (y)) > 0 such that

⇒ τ + F (α(x)β(y)sHPb(T (x), T (y))) ≤ F (Ms(x, y)),

(4) T is cyclic (α∗, β∗)-admissible.

Then T has a fixed point.

Proof. Set γ(t) = k,G(t) = ln(t), where k ∈ (0, 1) and τ = − ln(k) in the Theorem 2.1. �
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Corollary 2.2. Let (X,Pb) be a complete partial b-metric space with coefficient s ≥ 1,
α, β : X → [0,∞) and T : X → CBPb(X) be a multivalued mapping satisfying following
conditions:

(1) there exists x0 ∈ X such that α(x0) ≥ 1 or there exists y0 ∈ X such that β(y0) ≥ 1;
(2) T is multivalued Pb-continuous;
(3) for all x, y ∈ X with α(x)β(y) = 1, we have

sHPb(T (x), T (y)) ≤ γ(Ms(x, y)))Ms(x, y)),

(4) T is cyclic (α∗, β∗)-admissible.

Then T has a fixed point.

Proof. Set F (t) = G(t) = ln(t) in Theorem 2.1. �

Definition 2.4. Let (X,Pb) be a partial b-metric space with coefficient s ≥ 1, T : X → X
be a self-mapping. Then T is called γ-FG-contraction, if there exist F ∈ ∆F , (G, γ) ∈ ∆G,γ

such that
F (sPb(T (x), T (y))) ≤ F (Ms(x, y)) +G(γ(Ms(x, y))),

for all x, y ∈ X, Pb(T (x), T (y)) > 0, where

Ms(x, y) = max

{
Pb(x, y), Pb(y, T (y)), Pb(x, T (x)),

Pb(x, T (y)) + Pb(y, T (x))

2s

}
.

Corollary 2.3. Let (X,Pb) be a complete partial b-metric space with coefficient s ≥ 1 and
T : X → X be a γ-FG-contraction. If T is multivalued Pb-continuous, then T has a fixed
point.

Proof. Consider Picard iterative sequence {xn : xn = T (xn−1)}n∈N in the proof of Theorem
2.1. This proof contains similar steps as in the proof of Theorem 2.1, so, we omit details. �

Corollary 2.4. Let (X,Pb) be a complete partial b-metric space with coefficient s ≥ 1 and
T : X → CBPb(X) be a multivalued mapping, such that

sHPb(T (x), T (y)) ≤ rMs(x, y), (10)

for some r ∈ [0, 1) and for all x, y ∈ X. Then T has a fixed point.

Proof. Set F (t) = t, G(t) = (1 − k)t, γ(t) = k, k ∈ (0, 1) and α(x) = β(y) = 1 in Theorem
2.1. �

Corollary 2.5. Let (X, pb) be a complete partial b-metric space with coefficient s ≥ 1 and
T : X → CBPb(X) be a multivalued mapping, such that

HPb(T (x), T (y)) ≤ rMs(x, y), (11)

for some r ∈ [0, 1) and for all x, y ∈ X. Then T has a fixed point.

Proof. Set F (t) = t, G(t) = (r − 1)t, γ(t) = r, r ∈ [0,∞), k = 1 aand α(x) = β(y) = 1 in
Theorem 2.1. �

3. Some fixed point results of multivalued cyclic mappings

Definition 3.1. Let A and B be a nonempty subsets of a set X. T : A ∪ B → CBPb(A) ∪
CBPb(B) is called a multivalued cyclic if T (A) ⊆ CBPb(B) and T (B) ⊆ CBPb(A).

Definition 3.2. Let (X,Pb) be a partial b-metric space with coefficient s ≥ 1. We sat that
T : A ∪ B → CBPb(A) ∪ CBPb(B) is a multivalued (A,B) − γ − FG- contraction, if there
exist F ∈ ∆F , (G, γ) ∈ ∆G,γ such that, for all x ∈ A and y ∈ B,

A(x)B(y) ≥ 1, HPb(T (x), T (y)) > 0

⇒ F (A(x)B(y)sHPb(T (x), T (y))) ≤ F (Ms(x, y)) +G(γ(Ms(x, y))), (12)
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where

Ms(x, y) = max

{
Pb(x, y), Pb(y, T (y)), Pb(x, T (x)),

Pb(x, T (y)) + Pb(y, T (x))

2s

}
.

Theorem 3.1. Let A and B be two nonempty subsets of the partial b-metric space (X,Pb)
with coefficient s ≥ 1 and T : A∪B → CBPb(A)∪CBPb(B) is a multivalued (A,B)−γ−FG-
contraction, Then T has a fixed point in CBPb(A) ∩ CBPb(B).

Proof. Define mappings α, β :→ [0,∞) by

α(x) =

{
1 if x ∈ A,
0 otherwise.

β(x) =

{
1 if x ∈ B,
0 otherwise.

For x, y ∈ A ∪B such that α(x)β(y) ≥ 1, we get x ∈ A and y ∈ B. Then
A(x)B(y) ≥ 1, HPb(T (x), T (y)) > 0

⇒ F (A(x)B(y)sHPb(T (x), T (y))) ≤ F (Ms(x, y)) +G(γ(Ms(x, y))),

and thus contractive condition (12) holds. Therefore, T is a multivalued (A,B)− γ − FG-
contractive mapping. It is easy to see that T is a cyclic (α∗, β∗)-admissible mapping. Since
A and B are nonempty closed bounded subsets, there exists x0 ∈ A such that α(x0) ≥ 1
and there exists y0 ∈ B such that β(y0) ≥ 1. Now, all conditions of Theorem 3.1 hold, so T
has a fixed point in A ∪ B, say z. If z ∈ A, then z = T (z) ∈ CBPb(B). Similarly, if z ∈ B
then z ∈ CBPb(A). Hence z ∈ CBPb(A) ∩ CBPb(B). �

We can obtain the following corollaries.

Corollary 3.1. Let A and B be two nonempty subsets of the partial b-metric space (X,Pb)
with coefficient s ≥ 1 and T : A∪B → CBPb(A)∪CBPb(B) be a multivalued mapping such
that,
A(x)B(y) ≥ 1, HPb(T (x), T (y)) > 0

⇒ F (A(x)B(y)sHPb(T (x), T (y))) ≤ F (Pb(x, y)) +G(γ(Pb(x, y))).

Then T has a fixed point in CBPb(A) ∩ CBPb(B).

Corollary 3.2. Let A and B be two nonempty subsets of the partial b-metric space (X,Pb)
with coefficient s ≥ 1 and T : A∪B → CBPb(A)∪CBPb(B) be a multivalued mapping such
that,

sHPb(T (x), T (y)) ≤Ms(x, y)γ(Ms(x, y)), (13)

for all x ∈ A and y ∈ B. Then T has a fixed point in CBPb(A) ∩ CBPb(B).

Proof. Taking F (t) = G(t) = ln(t) and A(x)B(y) = 1 in Theorem 3.1, we obtain this
proof. �

4. Application

We consider the following nonlinear integral equation:

x(t) = g(t) + λ

∫ 1

0

κ(t, θ)f(θ, x(θ))dθ, t, θ ∈ I = [0, 1], λ ≥ 0. (14)

Let X = C(I) represents the space of all real valued mappings defined on I. Assume the
following conditions:

(a) g : I → R is a continuous mapping;
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(b) f : I × X → R is a continuous mapping and there exists a constant δ ∈ [0, 1) such
that for all x, y ∈ X;

|f(t, x(t))− f(t, y(t))| ≤ δ
√

ln
(
Ms(x(t), y(t))eG(γ(Ms(x(t),y(t))))

)
;

(c) κ : I × I → R is continuous at t ∈ I for every θ ∈ I and measurable at θ ∈ I for all
t ∈ I such that

sup
t∈I

∫ 1

0

κ(t, θ)dθ ≤ K;

(d) λKδ ≤ 1;
(e) ln(sPb(T (x), T (y))) ≤ supt∈I |T (x(t))− T (y(t))|2.

Let X = C(I) be the space of all continuous real valued mappings defined on I. Define
mapping Pb : X ×X → [0,∞) by

Pb(x, y) =

(
sup
t∈I
|x(t)− y(t)|+ η

)2

for all x, y ∈ X and η > 0. (15)

Then (X,Pb) is a complete partial b-metric space with s = 2 > 1. Also, define

Ms(x, y) = max

{
Pb(x, y), Pb(y, T (y)), Pb(x, T (x)),

Pb(x, T (y)) + Pb(y, T (x))

2s

}
.

Lemma 4.1. Let X = C(I). Define mapping Pb : X ×X → [0,∞) as in (15). Then

Ms(x, y) = sup
t∈I

Ms(x(t), y(t)).

Ms(x(t), y(t)) =



(supt∈I |x(t)− y(t)|+ η)
2
, (supt∈I |y(t)− T (y(t))|+ η)

2
,

(supt∈I |x(t)− T (x(t))|+ η)
2
,

(supt∈I |x(t)− T (y(t))|+ η)
2

+ (supt∈I |y(t)− T (x(t))|+ η)
2

2s


.

Proof. Since,

Pb(x, y) =

(
sup
t∈I
|x(t)− y(t)|+ η

)2

for all x, y ∈ X and η > 0.

Result follows. �

Theorem 4.1. Let X = C(I). Define the mapping T : X → X by

Tx(t) = g(t) + λ

∫ 1

0

κ(t, θ)f(θ, x(θ))dθ, t ∈ I = [0, 1], λ ≥ 0. (16)

If the assumptions (a)-(e) hold, then the nonlinear integral equation (14) has a unique so-
lution in X.

Proof. We note that x∗(·) ∈ X is a solution of (14) if and only if x∗(·) ∈ X is a fixed point
of the mapping T defined in (16).
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By assumption (b), we have

|Tx(t)− Ty(t)|2 =

∣∣∣∣λ ∫ 1

0

κ(t, θ)f(θ, x(θ))dθ − λ
∫ 1

0

κ(t, θ)f(θ, y(θ))dθ

∣∣∣∣2
≤ λ2

(∫ 1

0

κ(t, θ) |f(θ, x(θ))− f(θ, y(θ))| dθ
)2

≤ λ2
(∫ 1

0

κ(t, θ)δ
√

ln
(
Ms(x(θ), y(θ))eG(γ(Ms(x(θ),y(θ))))

)
dθ

)2

≤ λ2δ2 ln

(
sup
θ∈I

Ms(x(θ), y(θ))eG(γ(supθ∈I Ms(x(θ),y(θ))))

)
(∫ 1

0

κ(t, θ)dθ

)2

.

By assumption (c) and (d), we have

sup
t∈I
|Tx(t)− Ty(t)|2 ≤ λ2δ2K2 ln

(
sup
θ∈I

Ms(x(θ), y(θ))eG(γ(supθ∈I Ms(x(θ),y(θ))))

)
≤
(

sup
θ∈I

Ms(x(θ), y(θ))eG(γ(supθ∈I Ms(x(θ),y(θ))))

)
.

By assumption (e) and Lemma 4.1, we have

ln(sPb(T (x), T (y))) ≤ ln
(
Ms(x, y)eG(γ(Ms(x,y)))

)
≤ ln(Ms(x, y)) +G(γ(Ms(x, y))).

Now F (r) = ln(r) satisfies all the hypotheses of Corollary 2.3 and so the integral equations
given by (14) has a solution. �

5. Conclusions

In this paper, we obtained fixed point theorem for cyclic (α∗, β∗)-type-γ-FG-contraction
type for multivalued mappings in partial b-metric spaces. Our results are extensions of re-
cent fixed point theorems of Wardowski [6], Padhan et al. [25] and some other results in
the literature. Moreover, We also applied our main results to study existence of a solu-
tion for a nonlinear integral equation. The new concepts lead to further investigations and
applications.
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