
U.P.B. Sci. Bull., Series D, Vol. 85, Iss. 2, 2023                                                     ISSN 1454-2358 

FRACTIONAL ORDER OF TEAGER KAISER ENERGY 
OPERATOR FOR FAULT DIAGNOSIS OF ROTATING 

MACHINES 

Kaddour GHERFI1, Hocine BENDJAMA1,  Zoheir MENTOURI1, Yazid LAIB 
DIT LEKSIR2 

In recent-day, rotating machinery play a vital role in industries for their 
direct influence on the finished products. Therefore, minimizing their malfunctions 
and failures is important to achieve the required product quality and production 
rates. Indeed, many studies have focused on the diagnosis of rotating machinery, 
and the monitoring systems have, as a main task, the detection of precise defaults of 
machines. For this aim, several methods are used, such as spectral analysis, 
cepstral analysis, envelope analysis, time-frequency analysis and so on. This work 
presents a modified method based on the Teager Kaiser Energy Operator (TKEO) 
technique. It makes a use of the notion of fractional calculations in derivatives part 
of TKEO. The obtained results show the efficiency of the fractional calculus in 
monitoring rotating machinery domain.  
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1. Introduction 

Rotating machines occupy an important part in industry, especially in 
movement transmission systems [1-5]. In these machines, many defects are 
caused by rolling bearings. Hence, the extraction of their characteristics and the 
detection of their defects is the main issue in the fault diagnosis domain [6, 7].  

For instance, the monitoring of the measured vibration on rotating 
machines is even more important in maintenance planning. The vibration analysis 
has been proved the important approach to increase the convenience of machines. 
It allows controlling the real state of rotating machines to avoid unplanned stops 
due to breakdowns. Indeed, bearings, which are one of the most important 
components in rotating machines, are considered as the major cause of damage [8-
12]. Such bearing faults are then detected using this powerful tool, which is the 
vibration analysis [13]. Whereas, many other studies routinely monitor and track 

 
1 Research Center in Industrial Technologies (CRTI), BP 64 Cheraga, Algiers 16000, Algeria,       
e-mail: kaddour.gherfi@gmail.com  
2 Larbi Ben M’hidi University Oum El-Bouaghi, Algeria. 
3 National Center of Studies and Integrated Research of Building, CNERIB, Cité Nouvelle El-
Mokrani, Souidania, 16097, Algeria. 
 



242         Kaddour Gherfi, Hocine Bendjama, Zoheir Mentouri, Yazid Laib Dit Leksir 

the condition of this component and use various methods [14-16]. Xiange et al., in 
[17] propose the detection of bearing fault based on bispectrum of modulated, that 
allows deleting two types of noise (the static random noise and the discrete 
aperiodic noise). Huang et al., in [18], analyzed the defects of several rotors using 
the modulated signal bispectrum and the performance of the conventional 
bispectrum methods. They demonstrated that the first method performs better than 
the second one. As for some other studies, Guo et al., in [19], applied bispectral 
analysis to find segmental features of diesel cylinder piston rings, and then found 
default information through artificial neural networks, Shaeboub et al., in [20], 
dealt with the effectiveness of routine diagnostic features in processing current 
and voltage signals, and Chasalevris et al., in [21], used the bispectral analysis to 
detect bearing defects. 

The most efficient method for diagnosis is vibration analysis, in this area, 
the Teager Kaiser energy operator TKEO is a popular technique [22, 23], in 1990 
Kaiser use this operator for tracking and analysis the signal energy, the Teager 
Kaiser energy operator TKEO [23] of which the signal, is based on two 
parameters, amplitude and frequency. This technique has been used for the first 
time in signal speech analysis [24], and the TKEO operator has been applied 
successfully to detect and diagnose bearing faults [25-28]. 

In the time domain, the continuous form TKEO of a signal )(tx  is 
formulated as follows: 
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And the discrete form TKEO is defined as: 

( ) )1()1()]([)( 2 −+−= nxnxnxnxdψ . 

Where )(nx  is the amplitude on discrete time “n”, the x(n – 1) and x(n + 1) 
are the preceding and succeeding samples. TKEO can estimate both the amplitude 
and frequency of the signal. For a signal )cos(*)( jtAtx += ω , the instantaneous 
energy is ( ) 22)( ωAtxTKEO = . 

The vibration signal produced by a defective bearing produces a different 
signal than that produced by a healthy bearing. The peaks present in the periodic 
signal correspond to a defect, at multiple frequencies of the rotational frequency. 
In this study, we introduced fractional calculus in the Teager-Kaiser energy 
operator to make us more precise in fault detection. We used the Grünwald-
Letnikov method [29] to obtain the fractional linear differential equation of 
TKEO. The purpose of this study is to investigate a new method FTKEO based on 
fractional derivatives instead of classical derivatives. 
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2. Representation of fractional linear differential equation 

A fractional linear system is a system described by a fractional differential 
equation of the form [29]: 
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where e(t) and y(t) are, respectively, the input and the output of the 

fractional linear system, the derived orders )ni(0α i ≤≤  and m)j(0β i ≤≤ are real 
numbers such as 01-nn α...αα >>> , 01-mm β...ββ >>>  et mn βα > and the 
coefficients n)...,1,0,(ia i = and m)...,1,0,(jbi = are real numbers. When the 
derived orders )ni(0α i ≤≤  and n)j(0β i ≤≤ are all multiple of the same real 
number )1α(0α << , therefore we have n)i(0i.αα i ≤≤=  and 

m)j(0j.αβ j ≤≤=  and nm ≤ ; the fractional linear system is known as 
commensurable fractional linear system. Then, the fractional differential equation 
of equation (1) becomes: 
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3. Resolution method of the fractional linear differential equations 

The solution of the fractional differential equation (1) is obtained by 
Gründwald-Leitnikov technique, this solution is represented by the following 
form: 
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calculation horizon. While being based on the relation of the equation (3), the 
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solution of the fractional linear differential equation using MATLAB is given by 
the function code in [29]: 

3.1. Case 1 

In this first case, we have a fractional linear differential equation as 
following: 

e(t)y(t)
dt

y(t)d
m

m

=+                                            (4) 

Using Matlab code for an input e(t) the level unit, the solution of the 
fractional linear differential equation is given by the following program: 

h = 0.001; t=0:h:20; e=ones(size(t)); 
b=[1]; nb=[0]; a=[1 , 1]; na=[α , 0];  
y=fode_sol(a,na,b,nb,e,t); 
plot(t,y) 
The step response of the fractional system represented by the fractional linear 

differential equation for different values of the parameter m is given in the figure 
1. 

 

Fig. 1. Step responses of the equation (4) for different values of m parameter 

From figure 1, we can easily see that the step response behavior of the 
general fractional linear differential equation has several forms for different 
values of the parameters m. 

3.2. Case 2 

In this second case we have a fractional linear differential equation as 
follows: 
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Using the Matlab code for an input e(t) the level unit, the solution of the 
fractional linear differential equation is given by the following program: 

     h = 0.001; t=0:h:20; e=ones(size(t)); 
     b=[1,2,1]; nb=[1.72,0.54,0]; a=[1,3,4,2]; 
     na=[2.53,1.47,0.29,0];  
     y=fode_sol(a,na,b,nb,e,t); 
     plot(t,y) 
The step response of the fractional system represented by the fractional 

linear differential equation is given in the figure 2. 
 

 

Fig. 2. Step responses of the equation (5) 

4. Results and discussion 

In the application, the TKEO method are applied to detect the defects in 
rotating machines. We focus this study of the bearing’s part because it is the more 
exposed to the defects.  

The frequencies of defectives bearing are fB=140Hz (B: Ball fault), fIR= 
164 Hz (IR: Inner Race fault), fOR= 107 Hz (OR: Outer Race fault). 

A continuous approximation form of the energy operator can be 
represented as in [23]. 
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A continuous approximation of our proposed method FTKEO can be 
represented as follows: 
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A with ( 2110 <<<< βα and ). 
Measurements of healthy and defective bearings are available on the 

website of the “Bearing Data Center” of the University of Western Reserve [30]. 
Figure 3 shows the temporal vibration signals of bearing without defects, 

i.e. the healthy state. 

 

Fig. 3. Temporal signal without defect 

The spectral study made it possible to better define the signals in order to 
appreciate their quality in different free-defect and defective situations using the 
classical method and the proposed approach. 

In practice, in the spectrum of a free-defect bearing, the signal does not 
show any characteristic frequency of defects. Only two peaks of low amplitude 
are detected and correspond to the rotation frequency and its harmonic (30 and 60 
Hz). As for the spectrum of the defective bearing signal, it clearly shows 
characteristic frequencies of the different defects and their harmonics. 

The different frequencies present on the spectra are: 
- fr, 2*fr,… (fr: rotational frequency) 
- fr, fr+fb,… (fb: ball frequency) 
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- fr, fir-fr, fir,fir+fr,… (fir: inner ring frequency) 
- fr, for, 2*for,… (for: outer ring frequency) 
The bearing fault frequencies are regrouped in the following table: 

 
Table 1 

Bearing fault frequencies 

Faults Inner ring (IR) Outer ring (OR) Ball 

Frequencies (Hz) 164 107 140 
 

 

 
Fig. 4. Spectra of temporal signal without defect  
using TKEO (red) and FTKEO (blue) methods 

 
Figure 4 shows the spectra of temporal signal without defect using TKEO 

an FTKEO methods. It has been noted that the peaks in spectra based on the 
FTKEO method have a higher amplitude than the peaks in spectra based on the 
TKEO method. 

fr 2*fr 
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Fig. 5. Spectra of temporal signal with ball defect 
using TKEO (red) and FTKEO (blue) methods. 

 
The figure 5, above, shows the spectra of temporal signal with ball defect 

using TKEO and FTKEO methods. 
From this figure, we note that the peaks in spectra based on the FTKEO 

method have a higher amplitude than the peaks in spectra based on the TKEO 
method. 

 
Fig. 6. Spectra of temporal signal with inner race defect 

using TKEO (red) and FTKEO (blue) methods. 
 
Figure 6 shows the spectra of temporal signal with inner race defect using 

TKEO an FTKEO methods. 

fr+fb fb fr 

fir-fr fr fir 
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From this figure, we note that the peaks in spectra based on the FTKEO 
method have a higher amplitude than the peaks in spectra based on the TKEO 
method.  

 
 

Fig. 7. Spectra of temporal signal with outer race defect 
using TKEO (red) and FTKEO (blue) methods. 

Figure 7 shows the spectra of temporal signal with outer race defect using 
TKEO an FTKEO methods. 

From this figure, we note that the peaks of the frequency signal based on 
the FTKEO method have a higher amplitude than the frequency signal based on 
the TKEO. 

From these figures, we note that obtained spectrum signals of bearing 
without defect and the ones with defective bearing presents the higher peaks in the 
FTKEO case than in the TKEO one. We notice that the peaks of the FTKEO 
method are higher than the peaks of the TKEO method. This allows a good 
visualization of the peaks of defects. 

The fractional orders α  and β  were obtained by their variations in the 
Matlab code by choosing the values which give the good results with comparison 
between FTKEO and TKEO methods. 

The obtained values of fractional derivative orders α  and β  are as 
follows: 

83.1,73.0 == βα  for figures (4,5) 
8.1,6.0 == βα  for figure (6) 
75.1,3.0 == βα  for figure (7) 

 
 

2*for 

for fr 



250         Kaddour Gherfi, Hocine Bendjama, Zoheir Mentouri, Yazid Laib Dit Leksir 

5. Conclusions 

The aim of the proposed method is to validate the efficiency of fractional 
calculation in the defect detection domain of the rolling bearings. It is based on 
Teager Kaiser Energy Operator approach (TKEO), in which a fractional order 
derivative has been introduced. The proposed method consists of replacing the 
two integer; first and second derivatives, by two fractional order derivatives α and 
β with 10 <<α  and 21 << β  respectively. The variation ranges of the fractional 
orders α and β make it possible to choose the values which give good results by 
comparison between FTKEO and TKEO methods. Through the obtained 
fractional derivative orders ( ) and the values of the detected peaks, the 
diagnosis results show that our proposed method FTKEO outperforms the 
classical TKEO. 
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