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FRACTIONAL ORDER OF TEAGER KAISER ENERGY
OPERATOR FOR FAULT DIAGNOSIS OF ROTATING
MACHINES

Kaddour GHERFI', Hocine BENDJAMA', Zoheir MENTOURI', Yazid LAIB
DIT LEKSIR?

In recent-day, rotating machinery play a vital role in industries for their
direct influence on the finished products. Therefore, minimizing their malfunctions
and failures is important to achieve the required product quality and production
rates. Indeed, many studies have focused on the diagnosis of rotating machinery,
and the monitoring systems have, as a main task, the detection of precise defaults of
machines. For this aim, several methods are used, such as spectral analysis,
cepstral analysis, envelope analysis, time-frequency analysis and so on. This work
presents a modified method based on the Teager Kaiser Energy Operator (TKEO)
technique. It makes a use of the notion of fractional calculations in derivatives part
of TKEO. The obtained results show the efficiency of the fractional calculus in
monitoring rotating machinery domain.
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1. Introduction

Rotating machines occupy an important part in industry, especially in
movement transmission systems [1-5]. In these machines, many defects are
caused by rolling bearings. Hence, the extraction of their characteristics and the
detection of their defects is the main issue in the fault diagnosis domain [6, 7].

For instance, the monitoring of the measured vibration on rotating
machines is even more important in maintenance planning. The vibration analysis
has been proved the important approach to increase the convenience of machines.
It allows controlling the real state of rotating machines to avoid unplanned stops
due to breakdowns. Indeed, bearings, which are one of the most important
components in rotating machines, are considered as the major cause of damage [8-
12]. Such bearing faults are then detected using this powerful tool, which is the
vibration analysis [13]. Whereas, many other studies routinely monitor and track
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the condition of this component and use various methods [14-16]. Xiange et al., in
[17] propose the detection of bearing fault based on bispectrum of modulated, that
allows deleting two types of noise (the static random noise and the discrete
aperiodic noise). Huang et al., in [18], analyzed the defects of several rotors using
the modulated signal bispectrum and the performance of the conventional
bispectrum methods. They demonstrated that the first method performs better than
the second one. As for some other studies, Guo et al., in [19], applied bispectral
analysis to find segmental features of diesel cylinder piston rings, and then found
default information through artificial neural networks, Shaeboub et al., in [20],
dealt with the effectiveness of routine diagnostic features in processing current
and voltage signals, and Chasalevris et al., in [21], used the bispectral analysis to
detect bearing defects.

The most efficient method for diagnosis is vibration analysis, in this area,
the Teager Kaiser energy operator TKEO is a popular technique [22, 23], in 1990
Kaiser use this operator for tracking and analysis the signal energy, the Teager
Kaiser energy operator TKEO [23] of which the signal, is based on two
parameters, amplitude and frequency. This technique has been used for the first
time in signal speech analysis [24], and the TKEO operator has been applied
successfully to detect and diagnose bearing faults [25-28].

In the time domain, the continuous form TKEO of a signal x(¢z) is

formulated as follows:
v (x(0) = [x()F ~ x(1) x(2)

d(x(1))
dt
And the discrete form TKEOQO is defined as:

v, (x(m))=[x(m)]* = x(n+Dx(n-1).

Where x(n) is the amplitude on discrete time “n”, the x(n — 1) and x(n + 1)

are the preceding and succeeding samples. TKEO can estimate both the amplitude
and frequency of the signal. For a signal x(z) = 4*cos(wt + j), the instantaneous
energy is TKEO(x(1))= A*w* .

The vibration signal produced by a defective bearing produces a different
signal than that produced by a healthy bearing. The peaks present in the periodic
signal correspond to a defect, at multiple frequencies of the rotational frequency.
In this study, we introduced fractional calculus in the Teager-Kaiser energy
operator to make us more precise in fault detection. We used the Griinwald-
Letnikov method [29] to obtain the fractional linear differential equation of
TKEO. The purpose of this study is to investigate a new method FTKEO based on
fractional derivatives instead of classical derivatives.

With : x(¢) =% and x(1) =
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2. Representation of fractional linear differential equation

A fractional linear system is a system described by a fractional differential
equation of the form [29]:

a, D"y(t)+a, D™'y(t)+...+a,D"y(t)

p p p (1)
=b,_D"e(t)+b, D" 'e(t)+...+ b,D™e(t)

where e(t) and y(t) are, respectively, the input and the output of the
fractional linear system, the derived orders a.(0 <i<n) and B,(0 < j<m)are real

numbers such aso, >a , >..>a,, PB,>P,, >..>P, et a, >P, and the
coefficients a,(i=0,1, .., n)and b,(j=0,1, ..., m)are real numbers. When the
derived orders a,(0<1<n) and B,(0<j<n)are all multiple of the same real
numbera (0 <a<1),  therefore @ we  have a, =1a (0<1<n) and
B;=ja(0<j<m) and m<n; the fractional linear system is known as

commensurable fractional linear system. Then, the fractional differential equation
of equation (1) becomes:

iaiD“"y(t) = ibij“e(t) (2)

3. Resolution method of the fractional linear differential equations

The solution of the fractional differential equation (1) is obtained by
Griindwald-Leitnikov technique, this solution is represented by the following
form:

y()=— {io[h,; jzw et jh) - Z( jgw;"ya—jh)} 3)

>

i=1

m+1

With wg' =land w7 [1—
J

] w?, h is the sampling period (the

calculation step) supposed very small and N = left integer (%] where to is the

h
calculation horizon. While being based on the relation of the equation (3), the
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solution of the fractional linear differential equation using MATLAB is given by
the function code in [29]:

3.1. Case 1

In this first case, we have a fractional linear differential equation as
following:

01 ym=e 4)
Using Matlab code for an input e(t) the level unit, the solution of the
fractional linear differential equation is given by the following program:
h = 0.001; t=0:h:20; e=ones(size(t));
b=[1]; np=[0]; a=[1, 1]; na=[a, 0];
y=fode_sol(a,na,b,np,e,t);
plot(t,y)
The step response of the fractional system represented by the fractional linear
differential equation for different values of the parameter m is given in the figure

1.

T
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| ——— m=1.8 ||
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Fig. 1. Step responses of the equation (4) for different values of m parameter

From figure 1, we can easily see that the step response behavior of the
general fractional linear differential equation has several forms for different
values of the parameters m.

3.2. Case 2

In this second case we have a fractional linear differential equation as
follows:
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d2.53y(t) N 3 d1.47 y(t) . 4 d0.29y(t)

FTEEE T FTCEE +2y(t)
(5)
4t 4% e(t
= dt”g ) +2 dto.sz(t ) +e(t)

Using the Matlab code for an input e(t) the level unit, the solution of the
fractional linear differential equation is given by the following program:
h = 0.001; t=0:h:20; e=ones(size(t));
b=[1,2,1]; np=[1.72,0.54,0]; a=[1,3,4,2];
n.=[2.53,1.47,0.29,0];
y=fode_sol(a,na,b,np,e,t);
plot(t,y)
The step response of the fractional system represented by the fractional
linear differential equation is given in the figure 2.
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Fig. 2. Step responses of the equation (5)

4. Results and discussion

In the application, the TKEO method are applied to detect the defects in
rotating machines. We focus this study of the bearing’s part because it is the more
exposed to the defects.

The frequencies of defectives bearing are fs=140Hz (B: Ball fault), fiz=
164 Hz (IR: Inner Race fault), for= 107 Hz (OR: Outer Race fault).

A continuous approximation form of the energy operator can be
represented as in [23].
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w(x(0)) = [d’;(f)j -+ ©)

A continuous approximation of our proposed method FTKEO can be
represented as follows:

a 2 B
w(x(t))z(d x(”j — x(n L0 )

dt dt?

Awith (O<a<land 1< f<2).

Measurements of healthy and defective bearings are available on the
website of the “Bearing Data Center” of the University of Western Reserve [30].

Figure 3 shows the temporal vibration signals of bearing without defects,
1.e. the healthy state.
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Fig. 3. Temporal signal without defect

The spectral study made it possible to better define the signals in order to
appreciate their quality in different free-defect and defective situations using the
classical method and the proposed approach.

In practice, in the spectrum of a free-defect bearing, the signal does not
show any characteristic frequency of defects. Only two peaks of low amplitude
are detected and correspond to the rotation frequency and its harmonic (30 and 60
Hz). As for the spectrum of the defective bearing signal, it clearly shows
characteristic frequencies of the different defects and their harmonics.

The different frequencies present on the spectra are:

- fr, 2%fr,... (fr: rotational frequency)

- fr, fr+fb,... (fb: ball frequency)
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- fr, fir-fr, fir.firtfr,... (fir: inner ring frequency)
- fr, for, 2*for,... (for: outer ring frequency)
The bearing fault frequencies are regrouped in the following table:

Table 1
Bearing fault frequencies
Faults Inner ring (IR) | Outer ring (OR) Ball
Frequencies (Hz) 164 107 140
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Fig. 4. Spectra of temporal signal without defect

using TKEO (red) and FTKEO (blue) methods

Figure 4 shows the spectra of temporal signal without defect using TKEO
an FTKEO methods. It has been noted that the peaks in spectra based on the
FTKEO method have a higher amplitude than the peaks in spectra based on the
TKEO method.
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Fig. 5. Spectra of temporal signal with ball defect
using TKEO (red) and FTKEO (blue) methods.
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The figure 5, above, shows the spectra of temporal signal with ball defect
using TKEO and FTKEO methods.

From this figure, we note that the peaks in spectra based on the FTKEO
method have a higher amplitude than the peaks in spectra based on the TKEO
method.
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Fig. 6. Spectra of temporal signal with inner race defect
using TKEO (red) and FTKEO (blue) methods.
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Figure 6 shows the spectra of temporal signal with inner race defect using
TKEO an FTKEO methods.
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From this figure, we note that the peaks in spectra based on the FTKEO
method have a higher amplitude than the peaks in spectra based on the TKEO
method.
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Fig. 7. Spectra of temporal signal with outer race defect
using TKEO (red) and FTKEO (blue) methods.

Figure 7 shows the spectra of temporal signal with outer race defect using
TKEO an FTKEO methods.

From this figure, we note that the peaks of the frequency signal based on
the FTKEO method have a higher amplitude than the frequency signal based on
the TKEO.

From these figures, we note that obtained spectrum signals of bearing
without defect and the ones with defective bearing presents the higher peaks in the
FTKEO case than in the TKEO one. We notice that the peaks of the FTKEO
method are higher than the peaks of the TKEO method. This allows a good
visualization of the peaks of defects.

The fractional orders o and £ were obtained by their variations in the

Matlab code by choosing the values which give the good results with comparison
between FTKEO and TKEO methods.
The obtained values of fractional derivative orders & and [ are as

follows:
a =0.73, p=1.83 for figures (4,5)

a =0.6, f=1.8 for figure (6)
a=0.3, f=1.75 for figure (7)
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5. Conclusions

The aim of the proposed method is to validate the efficiency of fractional
calculation in the defect detection domain of the rolling bearings. It is based on
Teager Kaiser Energy Operator approach (TKEO), in which a fractional order
derivative has been introduced. The proposed method consists of replacing the
two integer; first and second derivatives, by two fractional order derivatives « and
L with 0<a <1 and 1< S <2 respectively. The variation ranges of the fractional

orders o and £ make it possible to choose the values which give good results by
comparison between FTKEO and TKEO methods. Through the obtained
fractional derivative orders (e, [3) and the values of the detected peaks, the
diagnosis results show that our proposed method FTKEO outperforms the
classical TKEO.
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