U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 1, 2013 ISSN 1454-234x

AUTOMATED CODE GENERATION SYSTEM FOR THE
SYNTACTIC PHASE OF A COMPILER

Irina RANCEA!, Valentin SGARCIU?

Contextul informatic curent implica aplicatii usor extensibile capabile de a
rezolva probleme complexe prin efort minim al dezvoltatorilor. Astfel a aparut
conceptul de generare de cod automat permitind astfel utilizatorilor sa-si
concentreze eforturile in directia dezvoltarii de noi concepte §i arhitecturi si sa
foloseasca module care pot fi generate in mod automat. Lucrarea propune o
abordare automatd a generarii regulilor pentru faza analizei sintactice a unui
compilator pornind de la documente de intrare semi-structurate ce reprezintd
manuale de referinta ale limbajului de programare in cauza.

The current information context involves various applications that are easily
extensible, and can solve complex problems with minimal developers' effort. Thus
the automated code generator concept appeared as a manner of saving developers'
time and allowing them to design new concepts and architectures. Our paper
proposes an automatic approach for the syntactic analysis phase of a compiler. The
input for our system is represented by semi-structured documents describing
programming languages references.

Keywords: code generator, syntactic analyzers
1. Introduction

In the software area there are various modules and applications that can be
automatically generated, saving developers' time. Anything which is repetitive can
be automated. This is an approach that is already gathering speed in the agile
community. [1] Given the correct conditions, a lot of source code can be
automatically generated and then the programmer is free to “fill in the gaps”.

For code to be generated, the following three areas must be predictable
and understood: [2]

» design patterns — the template to which the code will be generated

» domain meta-data — the topology that will be modeled in the generated code;
sometimes it receives extra-information from the developers

» domain rules — the expected behavior of the application

! Eng., Faculty of Automatic Control and Computers, University of POLITEHNICA Bucharest,
Romania, e-mail: irina.rancea@gmail.com

% Prof., Eng, Faculty of Automatic Control and Computers, University of POLITEHNICA
Bucharest, Romania, e-mail: vsgarciu@aii.pub.ro

48 Irina Rancea, Valentin Sgarciu

Some of the advantages of automatically generated code are: it is very
consistent, being much cleaner and simpler than the programmers code; it is stable
and customizable; the developers have more time to focus on designing new
architectures.

The major disadvantages of an automatically generated code are related to
the fact that it works only on a specific set of conditions and there will always be
some code that will need user adapting.

The entry point of this paper was the research direction of Aho [3] about
automatically generating code for the compilers back-end phases starting from
declarative specifications that map the intermediate representations tree in
machine code (instruction select, code emission — as stated below in the
Theoretical background chapter). Different contributions in this area can be found
in[4] [3] [6].

The innovation of our work consists of a code generator system that will
automatically generate other stage from a compiler architecture than Aho and
Proebsting proposed [3] — the syntactic and lexical analysis included in the front-
end phase (described below in the Theoretical background chapter). The system
has as input the references manuals for the language programming in cause,
parsed by an information extraction system. The paper presents the system
architecture for the code generator, the algorithm behind the system, and a testing
platform for the proposed case study.

2. Theoretical background

A compiler is a program that translates a source program written in some
high level programming language into machine code for some computer
architecture. For having portability an intermediate representation (IR) is used that
makes the compiler as a two phase system — the first one, called front-end maps
the source code to an intermediate representation, and the second one, called
back-end maps the IR representation to machine code. In conclusions, the front-
end can be written just once and the back-end has to adapt to each needed
architecture. [7] Each phase has a stages subset. [8]

The front-end phase consists of the following processes:

> scanning: the characters are grouped in atomic units called tokens (Fig. 1)

> parsing. an analyzer recognizes tokens sequences complying with the
grammar rule and generated the Abstract Syntax Tree

> symbol table: a data structure consisting of one record for each identifier
containing its attributes. Some examples of such stored attributes are: type,
scope (program location where the identifier is valid)

> semantic analysis: performs data types analysis and translates the AST tree
to the intermediate representation IR

Automated code generation system for the syntactic phase of a compiler 49

optimization: optimizes the intermediate representation of the source code
The back-end phase consists of the following processes:

instruction select: maps the intermediate representation IR to assembly
code

code optimization: optimizes the assembly code using different techniques
such as data flow analysis, registers allocation

code emission: generates the machine code

YV V V Yy

Source code
token

iy Scanner o
‘—

Parser

next token

Symbol Table

Fig. 1. Scanner-Parser Interaction

The lexical scanner is also responsible with the following issues at the user
interface level: [8]

» eliminate comments and spaces (blanks, tabs, newline characters) from the
source code

» correlating error messages from the compiler to the source code (the scanner
stores a map with tokens and their corresponding lines in the source code)

» in some compilers the scanner creates a copy of the source code and the
corresponding error messages

» if the parsed language allows preprocessing macros they are solved at the
scanner level

One of the most popular parser generator tool is ANTLR - it is a
recursive-descent parser generator that accepts a large class of grammars called
LL(*) that can be augmented with semantic and syntactic predicates [9] to solve
the grammar ambiguities.

ANTLR has a consistent syntax for specifying scanners, parsers and tree
parser; it uses EBNF grammars (Extended Backus-Naur) [10] that can handle
optionals and repetitive elements. BNF grammars [7] need a more flexible syntax
in order to allow such structures. EBNF grammars also allow sub-rules. Our code
generator is using ANTLR language for grammar development.

50 Irina Rancea, Valentin Sgarciu

3. System Architecture

The syntactic analyzer involves generating lexical and syntactic rules that
must comply with the language programming grammar. The syntactic rules can be
divided in two classes: rules that can and must be present in every parser and
specific rules for the the language structures.

The common rules describe whitespace handler, strings and identifiers
handlers. The specific rules refers to special characters that can be present in a
language programming syntax, by example operators. The syntactic rules are
specific to each language programming, following its hierarchical structure.

Our code generator system has been tested on the Draft Standard for the
Functional Verification Language e [11] [12] [13] document. The tree grammar is
generated according to the ANTLR language. [14]

—

Locate Lexical and
Syntactical Information

Common lexical
- ~ -7 | rules description
Lexical Analyzer -
Description s

" Generate lexical rules
using IE results]

Syntactic Analyzer | ______. Generate syntactic |
Description rules using IE results |

Testing and Validation]

Fig. 2. Entities Diagram

As one can see in the diagram above (Fig. 2), our system involves two
entities. The first one is the user that can ask the application to generate syntactic
rules for the given class of structures. The second entity is represented by the
results given by an information extraction system that stores in specific data files
information about structures syntax. [15]

Automated code generation system for the syntactic phase of a compiler 51

The wrapper system is able to extract information from semi-structured
input documents that represents tutorial for different language programming,
storing them in a suggestive manner.

4. Experimental results

Our algorithm for automatically generating grammar rules consists in the
following stages:

Syntactic Analyzer - Code Generator Algorithm
Step 1.Generate headers
Step 2.Generate syntactic rules
- generate specific options
- load data files containing the syntactic structures coding
- process loaded files and generate rules according to the parser
rules
Step 3. Generate lexical rules
- generate specific options
- generate common lexical rules
- load data files from the IE system containing keywords, operators
and comments
- generates operators rules with their precedence
- generate keywords rules
- generate comments rules

The syntactic rules are automatically generated after processing data files
grouped on categories; these files are compiled by an information extraction
system that reads a tutorial of the programming language and extract the relevant
information about the structures syntax. [15]

Each programming language has a predefined hierarchy for its
instructions that specifies the compiler's actions. These instructions can be
grouped in a limited set of basic concepts. Our data files are classified according
to the major concepts of the programming language. For the “e” programming
language, the hierarchy for its data structures is presented in Fig. 3. Each data file
of our system contains one structure per line as shown below:

'struct’ ID LBRACKET 'like' ID RBRACKET LBRACE LBRACKET ID DOT ID
'extend' LBRACKET ID RBRACKET ID LBRACE LBRACKET ID DOT ID
'unit' ID LBRACKET 'like' ID RBRACKET LBRACE LBRACKET ID DOT ID

52 Irina Rancea, Valentin Sgarciu

| Statements |

- Struct members |

—| Actions]

I— EXpressions |

Fig. 3. Basic concepts of the 'e' language programming

The syntactic rules are grouped according to the above concepts and
follow the next constraints:
» LBRACKET/ RBRACKET tokens are treated as optional arguments
» For the case of interior blocks our system will generate the rule to starting
interior block marker — RBRACE — and then will complete the rule with the
inside rule name, as in the following example:

'struct' ID LBRACKET 'like' ID RBRACKET LBRACE
LBRACKET ID DOT ID

will became:

struct' ID LBRACKET 'like' ID RBRACKET LBRACE
'struct_members' RBRACE

» For the case of syntactic structures that contain the call of other syntactic
structures the system will generate the sub-rule as (sub_rule)*, meaning that

the sub-rule can appear for zero or as many times, allowing to compile
without syntactic errors source code as in the following example:

struct my_struct {
a:int;
b: bool;
}

The token analysis (Fig. 4) consists in discovering that a token is a
possible identifier or an operator. For each possible identifier our system checks

Automated code generation system for the syntactic phase of a compiler

that the token is found among the reserved keywords of the programming
language or is a data type. If none of these conditions is met, then the token is an

identifier. Each operator will be converted to a specific code, as in Table 1.

Operator

[

N = A~ N

\Y

Operators Codes

Coding format
LBRACKET
RBRACKET

LPAREN
RPAREN
LBRACE
RBRACE
LT
GT
COLON
SEMICOLON
DOT
TILDA
QUES
NOT_LOGIC
PERCENT
EQ
BIT_AND
BIT_OR
BIT_XOR
STAR
SLASH
PLUS
MINUS
AT

Table 1

54 Irina Rancea, Valentin Sgarciu

Token - Analysis

T T
A

Keywords my
'\..__‘_‘_‘___'___/

~
-
Possible
T T Identifiers Operators
\"k_._____,_,-/ -

Data -

L

-

Operators
Coding

Types

h 4

| Language Element |

Fig. 4. Token Analysis

One of the principal issues for a grammar are the ambiguities. An
ambiguous language is a language where the same sentence can be interpreted in
various ways. A syntactic analyzer is non-deterministic if there is at least one
decision point where it cannot solve the route. [16]

There are a few methods to solve grammar ambiguities — left factoring and
syntactic predicates [17]. Using left-factoring, the following rule that is
ambiguous because ANTLR cannot decide which alternative is the proper one can
be rewritten as: [18]

a:L+K a:L+ (K| M)
| L+ M

Our code generator for the grammar rule is able to correctly generate
different alternatives, but it cannot handle ambiguities such as left-factoring. This
aspect is purpose for future developments. At this moment the grammar
ambiguities are manually handled. An example of grammar ambiguity for our
grammar can be observed below:

statement

Automated code generation system for the syntactic phase of a compiler

55

"struct” ID ("like" ID)? LBRACE (struct_members)* RBRACE
|"extend" (ID)? ID LBRACE (struct_members)* RBRACE
["unit" ID ("like" ID)? LBRACE (struct_members)* RBRACE

and the solution for avoiding it is presented below:

statement
: "struct" ID ("like" ID)? LBRACE (struct_members)* RBRACE
["extend" (ID) + LBRACE (struct_members)* RBRACE
["unit" ID ("like" ID)? LBRACE (struct_members)* RBRACE

5. Testing Framework

Validation for a syntactic analyzer involves testing each grammar rule. All
the rules are tested against a set of positive and negative tests. The positive tests
are the ones that represent valid source code that must be accepted by our
automatically generated grammar. The negative tests represent invalid source
code that must be rejected by our grammar. Our testing system consists in a set of
135 tests, distributed as in Table 2. Our testing platform is configured as in Fig. 5.

Load Running Process

Tests —»|Tests — »|Tests
Results

Fig. 5. Testing Platform

Table 2
Tests Classification
Syntactic Syntactic structure Tests
structures " .
category Positive Tests Negative Tests

Statement 'struct’ 2
'unit’ 2
'‘extend’ 2

56 Irina Rancea, Valentin Sgarciu

Struct member event' 3 7
"field' 8 10

'method' 10 10

Action var' 5 5
‘compute’ 5 5

'emit’ 2 3

'while' 5 5

‘for' 22 24

'break'’ 3 4

‘continue’ 3 4

The positive tests are considering the following issues: using of all options
for a syntactic structure in different combinations, mixing various syntactic
structures in order to perform a complicated source code closer to user needs.

The negative tests deal with introducing inexistent options, calling of
multiple options of which only ones are valid, declaring syntactic structures in
inappropriate contexts, omitting parentheses in functions declaration, omitting
braces for blocks of instructions, using keywords when expecting identifiers,
using data types for declarations that return no data type and many others.

6. Conclusions

Our paper presents an automated code generation system that can
complete grammar rules of a syntactic analyzer using ANTLR support. We apply
the proposed algorithm to a various set of syntactic structures and it has proven to
be stable, efficient and precise. We are also considering adding further features
such as automatically solve grammar ambiguities and incipient semantic checks.

Automated code generation system for the syntactic phase of a compiler 57

Acknowledgements

The work has been funded by the Sectoral Operational Programme Human
resources Development 2007-2013 of the Romanian Ministry of Labor, Family
and Social Protection Through the Financial Agreement POSDRU/6/1.5/S/16.

REFERENCES

[1] D.S. Kolovos, R.F. Paige, F.A.C. Polack, “An agile and extensible code generation
framework”, Proceedings of the 6™ International Conference on eXtreme Programming and
Agile Processes in Software Engineering, vol. 3556, ISBN 9783540262770, pp. 226-229,
Publisher: Springer, 2005

[2] K. Czarnecki, U. Eisenecker, Generative Programming Methods, Tools, and Applications,
ISBN-10: 0201309777, |ISBN-13: 978-0201309775, Publisher: Addison-Wesley
Professional, 2000

[3] 4.V. Aho, M. Ganapathi, S.W.K. Tjiang, “Code generation using tree matching and dynamic
programming ”, ACM Transactions on Programming Languages and Systems 11, 4,pp.
491 - 516, 1989

[4] T. Proebsting, “Optimizing an ANSI C Interpretor with Superoperators”, Proceedings of
Principles of Programming Languages POPL'95, pp. 280-287, San Francisco, California,
1995

[5] M. Ganapathi, Code Generation and Optimization using Attribute Grammars, PhD thesis,
University of Wisconsin, Madison, 1980

[6] I Bohm, Automatic Code Generation using Dynamic Programming Techniques, Master Work
Paper at Johannes Kepler Universitat Linz, 2007

[7] L. Fegaras, “Design and Construction of Compilers”, CSE 5317/4305, University of Texas at
Arlington, CSE http://lambda.uta.edu/cse5317/notes/notes.html

[8] A. Aho, R. Sethi, J. Ullman, Compilers Principles, Techniques, and Tools, Addison-Wesley
Publishing Company, 1986

[9] T. Parr, RW. Quong, “Adding Semantic and Syntactic Predicates to LL(k) — pred-LL(K)”,
Proceedings of the International Conference on Compiler Construction, Edinburgh,
Scotland, 1994

[10] **** L.M. Garshol, BNF and EBNF: What are they and how do they work?, 2008
http://www.garshol.priv.no/download/text/bnf.html

[11] **** Design Automation Standard Committee of the IEEE Computer Science, “|EEE
P1647™/D9 Draft Standard for the Functional Verification Language e”.
www.ieee1647.org/downloads/P1647 Draft 6 071214.pdf

[12] 1. Rancea, V. Sgarciu, “Functional Verification of Digital Circuits using a Software System”,
Automation, Quality and Testing, Robotics.2008.AQTR 2009. IEEE International
Conference, vol. 1, pp. 152-157, 22-25, Digital Object Identifier 10.1109/
AQTR.2008.4588725, Cluj-Napoca, 2008

[13] 1. Rancea, V. Sgarciu, “Principles of Functional Verification for Digital Circuits”, Annals of
DAAAM for 2007 & Proceedings of the 18" International DAAAM Symposium, ISBN 3-
901509-58-5, ISSN 1726-9679, vol. 18, pp. 637-638, Editor B. Katalinic, Published by
DAAAM International, Vienna, Austria, Location: Zadar, Croatia, 2007

[14] T. Parr, The Definitive ANTLR Reference: Building Domain Specific Language, ISSN: 978-
0-9787-3925-6, 2007 http://www.antlr.org/

58 Irina Rancea, Valentin Sgarciu

[15] 1. Rancea, Automated code generation system for a compiler syntactic analysis phase based
on free text processing, PhD Thesis, Politehnica University of Bucharest, 2011
[16] **** T. Parr, ANTLR - centric Language Glossary
http://www.antlr.org/doc/glossary.html
[17] **** W. Colaiuta, ANTLR Predicates, 2007 https://wincent.com/wiki/ANTLR_predicates
[18] **** J. Luber, How to remove global backtracking from your grammar, 2009
http://www.antlr.org/wiki/display/ANTL R3/How+to+remove+global+backtracking+from+your+g
rammar

