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In the presented paper we utilize the concept of almost b-metric to construct

and prove fixed point results of Khan and Ćirić contraction types. Our findings extended
and modified many existing results in the literature. Moreover, our results present a

positive answer of some open questions proposed by N. Mlaiki et al. in [N. Mlaiki , K.
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Point Results, Axioms 2019, 8, 70; doi:10.3390/axioms8020070]
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1. Introduction

The b-metric space in the sense of Bakhtin [3] is one of the most important spaces in
the field of applied sciences. For some more works in this interesting space, we may suggest
the readers to see the following articles: [2], [6], [7] and [13]-[15]. Many generalizations of
b-metric spaces are still being developed and the fixed points theorems in such spaces are
examined, see, for example, [1] and [12].

Recently, the concept of almost rectangular b-metric spaces was introduced in [10]
and authors proved a theorem of Reich type contraction for that kind of space. Motivated
by that approach, in [11] N. Mlaiki et al. proposed the replacement of symmetry condition
in b-metric spaces by one or both of following postulates (bM2l) and (bM2r). It turns out
that many contraction principles remain valid even without classical symmetry condition in
b-metric spaces. Some examples showing that quasi b-metric, almost b-metric and classical
b-metric spaces are different classes of spaces may also be seen in [11].

Contraction principles with some symmetry in contraction condition, such as Reich or
Hardy-Rogers type contractions, are very easily obtained in almost b-metric spaces. For some
other principles, for example those having maximum of some set in contraction condition or
having contractive condition of rational type, the situation is a bit more delicate. In [11] we

proved one such principle and left some questions concerning Ćirić type contractions open.
In this article we give answers on two of those three open questions. Also, we investigate
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two contraction principles with conditions of rational type in almost b-metric space, such as
Khan type contraction.

2. Preliminaries

First, we briefly remind on the definition of almost b-metric spaces from [11].

Definition 2.1. Let X be a nonempty set and s ≥ 1 be a given real number. Let dab :
X ×X → [0,+∞) be a mapping and x, y, z, xn ∈ X,n ∈ N:

(bM1): dab(x, y) = 0 if and only if x = y,
(bM2l): dab(xn, x)→ 0, n→∞ implies dab(x, xn)→ 0, n→∞ in standard metric,
(bM2r): dab(x, xn)→ 0, n→∞ implies dab(xn, x)→ 0, n→∞ in standard metric,
(bM3): dab(x, y) ≤ s(dab(x, z) + dab(z, y)).

Then:

(1) (X, dab, s) is called l-almost b-metric space if (bM1), (bM2l) and (bM3) hold;
(2) (X, dab, s) is called r-almost b-metric space if (bM1), (bM2r) and (bM3) hold;
(3) (X, dab, s) is called almost b-metric space if (bM1), (bM2l), (bM2r) and (bM3) hold.

The almost b-metric spaces represent a subclass of quasi b-metric spaces. From quasi
b-metric dq, we can construct b-metric db such as

db(x, y) =
dq(x, y) + dq(y, x)

2
and this method proved to be an elegant way to validate some contraction principles, such
as Reich or Hardy-Rogers, in quasi b, and so in almost b-metric spaces. For some other
principles, we need to apply (bM2r) or (bM2l) and in those cases we use terms left-Cauchy
and right-Cauchy sequence, so we recall on the next definition:

Definition 2.2. [11] Let (X, dab, s) be an almost b-metric space. A sequence {xn} in X is
said to be

left-Cauchy: if and only if for each ε > 0 there is an n0 ∈ N such that dab(xn, xm) < ε
for all n ≥ m > n0, which can be written as lim

n≥m→∞
dab(xn, xm) = 0

right-Cauchy: if and only if for each ε > 0 there is n0 ∈ N so that dab(xn, xm) < ε for
all m ≥ n > n0, which can be written as lim

m≥n→∞
d(xn, xm) = 0

Cauchy: if and only if for each ε > 0, there is n0 ∈ N so that dab(xn, xm) < ε for all
n,m > n0.

Further, notions of left or right complete quasi or almost b-metric spaces are common,
and more on that can be seen in [11].

3. Main results

In [10] for almost rectangular b-metric and later in [11] for almost b-metric spaces,
some contraction principles, such as Reich and Hardy-Rogers have been proved by construct-
ing the appropriate symmetric b-metric from almost b-metric. Such a method of proving
can be applied to a certain number of symmetric contractions, but not to all. In [11] we
have shown that it is not possible to prove the contractions in which the conditions refer to
the maximum by that simple methodology. Here we present some additional principles and
prove they are valid in almost b-metric spaces.

Before we proceed, we refer to an important result from theory of b-metric spaces
that sequence {xn} which satisfies d(xn+1, xn) ≤ λd(xn, xn−1) for some λ ∈ (0, 1) and for
any n ∈ N is Cauchy. That result facilitates many proofs of contraction principles in b-
metric spaces and it is a relatively new result obtained in 2017 and presented in [16] and [8],
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later also in [9] and [17] in which authors separately present an elegant and shorter proof of
mentioned result. Since this result is also valid in the quasi-b-metric spaces, here we modify
the proofs from [9] and [17] for right and left Cauchy sequence in those spaces.

Lemma 3.1. Let {xn} be a sequence in quasi-b-metric space (X, dq, s ≥ 1) such that

dq(xn, xn+1) ≤ λ · dq(xn−1, xn) (3.1)

for some λ ∈ [0, 1) and each n ∈ N . Then, {xn} is right-Cauchy sequence.

Proof. In [11] we proved the lemma for λ ∈ [0, 1
s ). That part of the proof is quite straight-

forward, based on the inequality

dq(xn, xn+1) ≤ λndq(x0, x1)

and

dq(xn, xm) ≤

(
sλn

1− sλ
+

(sλ)
m−1

sn

)
dq (x0, x1)→ 0, m > n→∞.

Here we extend it to the case λ ∈ [ 1
s , 1). This can be proved by slightly modifying the proof

from [9] or from [17]. Now we present briefly the modification of the approach from [9]. The
following inequality is straightforward:

dq(xn, xn+j) ≤ sj (dq(xn, xn+1) + dq(xn+1, xn+2) + ...+ dq(xn+j−1, xn+j)) . (3.2)

If λ ∈ [ 1
s , 1) one can find n0 ∈ N such that λn0 < 1

s , namely n0 > − log s
log λ . Then:

(1) {xnn0} is right-Cauchy sequence. The proof of this claim is completely analogous to
the proof from [9].

dq(xnn0
, x(n+1)n0

) ≤ sn0
(
dq(xnn0

, xnn0+1) + ...+ dq(x(n+1)n0−1, x(n+1)n0
)
)

≤ sn0λnn0
dq(x0, x1)

1− λ
=
sn0 · dq(x0, x1)

1− λ
· (λn0)n

Since λn0 < 1
s , as a consequence of proved case for λ ∈ [0, 1

s ), we conclude that {xnn0}
is right-Cauchy sequence.

(2) Since without assumption of symmetry we must keep in mind the index order in
dq(xn, xm), recall first some basic characteristics of the integral part we use in proof.
If by [A] we denote the maximal integer not exceeding A then [A] ≤ A < [A] + 1 and

so
[
n
n0

]
≤ n

n0
<
[
n
n0

]
+ 1 and therefore n0

[
n
n0

]
≤ n < n0

[
n
n0

]
+ n0 for n, n0 ∈ N.

Then, from (3.2) we have:

dq

(
x
n0

[
n
n0

], xn
)

≤ sn−n0

[
n
n0

] (
dq(xn0[ n

n0
], xn0[ n

n0
]+1) + dq(xn0[ n

n0
]+1, xn0[ n

n0
]+2) + ...+ dq(xn−1, xn)

)
≤ sn−n0

[
n
n0

](
λ
n0

[
n
n0

]
+ λ

n0

[
n
n0

]
+1

+ ...+ λn−1

)
d(x0, x1)

≤ sn0λ
n0

[
n
n0

] (
1 + λ+ λ2 + ...

)
d(x0, x1)

≤ sn0λ
n0

[
n
n0

]
d(x0, x1)

1− λ
→ 0, n→∞.
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Similarly,

dq

(
xn, xn0(1+[ n

n0
])

)
≤ sn0(1+[ n

n0
])−n

(
dq(xn, xn+1) + ...+ dq(xn0(1+[ n

n0
])−1, xn0(1+[ n

n0
]))
)

≤ sn0(1+[ n
n0

])−n
(
λn + λn+1 + ...+ λn0(1+[ n

n0
])−1

)
d(x0, x1)

≤ sn0λn
(
1 + λ+ λ2 + ...

)
d(x0, x1)

≤ sn0λn0λ
n0

[
n
n0

]
d(x0, x1)

1− λ
→ 0, n→∞.

(3) {xn} is right-Cauchy sequence. Let m > n:

dq(xn, xm) ≤ s2(dq(xn, xn0(1+[ n
n0

])) + dq(xn0(1+[ n
n0

]), xn0[ m
n0

])

+ dq(xn0[ m
n0

], xm))→ 0,m > n, n→∞.

�

Analogously we obtain the following Lemma for left-Cauchy sequence in quasi b-metric
spaces.

Lemma 3.2. Let {xn} be a sequence in quasi-b-metric space (X, dq, s ≥ 1) such that

dq(xn+1, xn) ≤ λ · dq(xn, xn−1) (3.3)

for some λ ∈ [0, 1) and each n ∈ N . Then, {xn} is left-Cauchy sequence.

Proof. Here we only present the main steps that are different for cases of the left and the
right-Cauchy sequence. Starting from (3.3) we obtain dq(xn+1, xn) ≤ λndq(x1, x0). Instead
of (3.2), we obtain:

dq(xn+j , xn) ≤ sj (dq(xn+j , xn+j−1) + dq(xn+j−1, xn+j−2) + ...+ dq(xn+1, xn)) . (3.4)

(1) {xnn0} is a left-Cauchy sequence:

dq(x(n+1)n0
, xnn0

) ≤ sn0
(
dq(x(n+1)n0

, x(n+1)n0−1) + ...+ dq(xnn0+1, xnn0
)
)

≤ sn0λnn0
dq(x1, x0)

1− λ
= const · (λn0)n

(2) Similarly to the case of the right-Cauchy sequence, we get that dq

(
xn, xn0

[
n
n0

]) →
0, n→∞ and dq

(
xn0(1+[ n

n0
]), xn

)
→ 0, n→∞. Briefly:

dq

(
xn, xn0

[
n
n0

]) ≤ sn−n0

[
n
n0

] (
dq(xn, xn−1) + ...+ dq(xn0[ n

n0
]+1, xn0[ n

n0
])
)

≤ sn0λ
n0

[
n
n0

] (
1 + λ+ λ2 + ...

)
d(x1, x0) ≤ sn0λ

n0

[
n
n0

]
d(x1, x0)

1− λ
→ 0, n→∞.

(3) {xn} is left-Cauchy sequence. Let n > m:

dq(xn, xm) ≤ s2(dq(xn, xn0[ n
n0

]) + dq(xn0[ n
n0

], xn0([ m
n0

]+1))

+ dq(xn0([ m
n0

]+1), xm))→ 0, n > m, m→∞.

�
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Previous Lemmas are, of course, also valid in almost b-metric spaces and we will
use them in the rest of the paper. Now, we proceed with the modified version of Khan’s
Theorem, [5]. Before that, we briefly recall that almost-b-metric space (X, dab, s) is right-
complete if and only if each right-Cauchy sequence {xn} in X satisfies lim

n→∞
dab(x, xn) = 0,

similarly for left-completeness and complete if and only if each Cauchy sequence in X is
convergent.

Theorem 3.1. Let (X, dab, s) be a right-complete r-almost b-metric space with coefficient
s > 1 and T : X → X be a mapping satisfying

dab(Tx, Ty) ≤ a1 · dab(x, y) + a2
dab(x, Tx) · dab(x, Ty) + dab(y, Ty) · dab(y, Tx)

dab(x, Ty) + dab(y, Tx)
(3.5)

for all x, y ∈ X, dab(x, Ty) + dab(y, Tx) 6= 0 where a1, a2 are non-negative constants such
that a1 + a2 < 1. Then T has a unique fixed point.

Proof. At the beginning of the proof, let’s consider the uniqueness of a possible fixed point.
To prove that a fixed point is unique, if it exists, suppose that T has two distinct fixed
points x∗, y∗ ∈ X. Then we get

dab(x
∗, y∗) = dab(Tx

∗, T y∗) ≤ a1 · dab(x∗, y∗)

+ a2
dab(x

∗, Tx∗) · dab(x∗, T y∗) + dab(y
∗, T y∗) · dab(y∗, Tx∗)

dab(x∗, T y∗) + dab(y∗, Tx∗)

≤ a1dab(x
∗, y∗) < dab(x

∗, y∗)

so we conclude that if T has a fixed point, then it is a unique fixed point of T .
For arbitrary x0 ∈ X, consider the sequence xn = Txn−1 = Tnx0, n ∈ N. If xn = xn+1 for
some n ∈ N then xn is the unique fixed point of T. Hence, we suppose that dab(xn, xn+1) > 0
for all n ∈ N. We start from (3.5) for dab(xn, xn+1). Then for any n ∈ N we get:

dab(xn, xn+1) = dab(Txn−1, Txn) ≤ a1dab(xn−1, xn)

+ a2
dab(xn−1, xn) · dab(xn−1, xn+1) + dab(xn, xn+1) · dab(xn, xn)

dab(xn−1, xn+1) + dab(xn, xn)

≤ (a1 + a2)dab(xn−1, xn).

Now, since a1 + a2 < 1, from Lemma 3.1 we conclude that {xn} is right-Cauchy sequence.
Since (X, dab, s > 1) is a right-complete r-almost b-metric space, we get that the sequence
{xn} right converges to the point x∗ ∈ X, ie. dab(x

∗, xn)→ 0, n→∞ which, from (bM2r),
implies dab(xn, x

∗)→ 0, n→∞. Hence, applying (3.5) on (xn, x
∗), we get:

dab(Txn, Tx
∗) ≤ a1dab(xn, x

∗)

+ a2
dab(xn, Txn) · dab(xn, Tx∗) + dab(x

∗, Tx∗) · dab(x∗, Txn)

dab(xn, Tx∗) + dab(x∗, Txn)

Since dab(xn, Txn) → 0, dab(xn, x
∗) → 0 and dab(x

∗, Txn) → 0 when n → ∞, we conclude
that dab(Txn, Tx

∗)→ 0 when n→∞. Finally, from (bM3), we obtain

dab(x
∗, Tx∗) ≤ s (dab(x

∗, Txn) + dab(Txn, Tx
∗))→ 0, n→∞

so x∗ = Tx∗. �

Theorem 3.2. Let (X, dab, s) be a right-complete r-almost b-metric space with coefficient
s > 1 and T : X → X be a mapping satisfying

dab(Tx, Ty) ≤ a1 · dab(x, y) + a2
dab(y, Ty) · (1 + dab(x, Tx))

1 + dab(x, y)
+

+ a3
dab(y, Ty) + dab(y, Tx)

1 + dab(y, Ty) · dab(y, Tx)

(3.6)
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for all x, y ∈ X, where a1, a2, a3 are non-negative constants such that a1 + a2 + a3 < 1 and
a2 + a3 <

1
s . Then T has a unique fixed point.

Proof. Again, we start with the uniqueness of a possible fixed point. Suppose that T has
two distinct fixed points x∗, y∗ ∈ X. Then, from (3.6) for (Tx∗, T y∗) we get

dab(Tx
∗, T y∗) ≤ a1 · dab(x∗, y∗) + a2

dab(y
∗, Ty∗) · (1 + dab(x

∗, Tx∗))

1 + dab(x∗, y∗)
+

+ a3
dab(y

∗, Ty∗) + dab(y
∗, Tx∗)

1 + dab(y∗, T y∗) · dab(y∗, Tx∗)
and finally

dab(x
∗, y∗) ≤ a1dab(x

∗, y∗) + a3dab(y
∗, x∗). (3.7)

Similar, starting from (3.6) for (Ty∗, Tx∗), we obtain

dab(y
∗, x∗) ≤ a1dab(y

∗, x∗) + a3dab(x
∗, y∗). (3.8)

After summing (3.7) and (3.8), we get that

dab(x
∗, y∗) + dab(y

∗, x∗) ≤ (a1 + a3) (dab(x
∗, y∗) + dab(y

∗, x∗)) .

Since a1 + a3 < 1, we conclude that dab(x
∗, y∗) + dab(y

∗, x∗) = 0 and further from (bM1)
we get that d(x∗, y∗) = d(y∗, x∗) = 0, so the fixed point, if it exists, is unique.

For arbitrary x0 ∈ X, consider the sequence xn = Txn−1 = Tnx0, n ∈ N. If xn =
xn+1 for some n ∈ N then xn is the unique fixed point of T. Hence, we suppose that
dab(xn, xn+1) > 0 for all n ∈ N. We start from (3.6) for dab(xn, xn+1), hence for any n ∈ N
we get:

dab(xn, xn+1) = dab(Txn−1, Txn)

≤ a1dab(xn−1, xn) + a2
dab(xn, Txn) (1 + dab(xn−1, Txn−1))

1 + dab(xn−1, xn)

+ a3
dab(xn, Txn) + dab(xn, Txn−1)

1 + dab(xn, Txn) · d(xn, Txn−1)

= a1dab(xn−1, xn) + a2dab(xn, xn+1) + a3dab(xn, Txn).

(3.9)

From (3.9), we obtain

dab(xn, xn+1) ≤ a1

1− a2 − a3
dab(xn−1, xn).

Since a1
1−a2−a3 < 1, from Lemma 3.1 we conclude that {xn} is a right-Cauchy sequence.

Since (X, dab, s > 1) is a right-complete r-almost b-metric space, we get that the sequence
{xn} right converges to the point x∗ ∈ X, ie. dab(x

∗, xn) → 0, n → ∞ what, from (bM2r)
implies dab(xn, x

∗)→ 0, n→∞. Further, applying (3.6) on (xn, x
∗), we obtain:

dab(Txn, Tx
∗) ≤ a1dab(xn, x

∗) + a2
dab(x

∗, Tx∗) (1 + dab(xn, Txn))

1 + dab(xn, x∗)

+ a3
dab(x

∗, Tx∗) + dab(x
∗, Txn)

1 + dab(x∗, Tx∗)dab(x∗, Txn)

≤ (a2 + a3)dab(x
∗, Tx∗), when n→∞.

Finally, starting from (bM3), using previous inequality, we get:

dab(x
∗, Tx∗) ≤ s (dab(x

∗, Txn) + dab(Txn, Tx
∗))

≤ s(a2 + a3)dab(x
∗, Tx∗).

Since a2 + a3 <
1
s , from previous relation we can conclude that dab(x

∗, Tx∗) = 0, so x∗is
fixed point of T . �
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In [11] we left some open questions concerning Ćirić type contractions. In the sequel

we give answers on two of those three questions. First we prove the generalized Ćirić type
contraction of the first order.

Theorem 3.3. Let (X, dab, s ≥ 1) be a right-complete r-almost b-metric space and T : X →
X be a mapping satisfying

dab (Tx, Ty) ≤ k ·max

{
dab (x, y) ,

dab (x, Tx) + dab (y, Ty)

2s
,
dab (x, Ty) + dab (y, Tx)

2s

}
(3.10)

for all x, y ∈ X where 0 ≤ k < min{1, 2
s}. Then T has a unique fixed point.

Proof. At the beginning of the proof, let’s consider the uniqueness of a possible fixed point.
To prove that a fixed point is unique, if it exists, suppose that T has two distinct fixed
points x∗, y∗ ∈ X. Then, from (3.10) we get

dab(x
∗, y∗) = dab(Tx

∗, T y∗)

≤ k ·max{dab(x∗, y∗),
dab(x

∗, Tx∗) + dab(y
∗, T y∗)

2s
,
dab(x

∗, Ty∗) + dab(y
∗, Tx∗)

2s
}

= k ·max{dab(x∗, y∗),
dab(x

∗, y∗) + dab(y
∗, x∗)

2s
}.

The first case

max{dab(x∗, y∗),
dab(x

∗, y∗) + dab(y
∗, x∗)

2s
} = dab(x

∗, y∗)

immediately leads to the contradiction

dab(x
∗, y∗) ≤ k · dab(x∗, y∗) < dab(x

∗, y∗).

The other case

max{dab(x∗, y∗),
dab(x

∗, y∗) + dab(y
∗, x∗)

2s
} =

dab(x
∗, y∗) + dab(y

∗, x∗)

2s

is equivalent to dab(y
∗, x∗) ≥ (2s− 1)dab(x

∗, y∗) and further in this case we obtain that

dab(y
∗, x∗) ≥ dab(x

∗, y∗) + dab(y
∗, x∗)

2s
≥ dab(x∗, y∗). (3.11)

Starting from condition (3.10) applied to dab(Ty
∗, Tx∗) and keeping in mind (3.11), we

again come to the contradiction:

dab(y
∗, x∗) = dab(Ty

∗, Tx∗)

≤ k ·max{dab(y∗, x∗),
dab(y

∗, T y∗) + dab(x
∗, Tx∗)

2s
,
dab(y

∗, Tx∗) + dab(x
∗, Ty∗)

2s
}

= k ·max{dab(y∗, x∗),
dab(y

∗, x∗) + dab(x
∗, y∗)

2s
}

= k · dab(y∗, x∗) < dab(y
∗, x∗).

Finally, we conclude that the fixed point, if it exists, is unique.
For arbitrary x0 ∈ X, consider the sequence xn = Txn−1 = Tnx0, n ∈ N. If xn = xn+1 for
some n ∈ N then xn is the unique fixed point of T. Hence, we suppose that dab(xn, xn+1) > 0
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for all n ∈ N. We start from (3.10) for dab(xn, xn+1). Then for any n ∈ N we get:

dab(xn, xn+1) = dab(Txn−1, Txn)

≤ k ·max{dab(xn−1, xn),
dab(xn−1, Txn−1) + dab(xn, Txn)

2s
,

dab(xn−1, Txn) + dab(xn, Txn−1)

2s
}

= k ·max{dab(xn−1, xn),
dab(xn−1, xn) + dab(xn, xn+1)

2s
,

dab(xn−1, xn+1) + dab(xn, xn)

2s
}

≤ k ·max{dab(xn−1, xn),
dab(xn−1, xn) + dab(xn, xn+1)

2s
,

s(dab(xn−1, xn) + dab(xn, xn+1)

2s
}

= k ·max{dab(xn−1, xn),
dab(xn−1, xn) + dab(xn, xn+1)

2
}.

(3.12)

If we suppose that dab(xn−1, xn) < dab(xn, xn+1), from (3.12) we get the contradiction

dab(xn, xn+1) ≤ k · dab(xn, xn+1) < dab(xn, xn+1),

so it must be dab(xn, xn+1) ≤ dab(xn−1, xn). Then, from (3.12) we obtain:

dab(xn, xn+1) ≤ k · dab(xn−1, xn)

and from Lemma 3.1 we conclude that {xn} is a right Cauchy sequence. Since (X, dab, s > 1)
is a right-complete r-almost b-metric space, we get that the sequence {xn} right converges
to some x∗ ∈ X, i.e., dab(x

∗, xn) → 0, n → ∞ what, from (bM2r) implies dab(xn, x
∗) →

0, n→∞.
Further, from (3.10) applied to (xn, x

∗), we obtain:

dab(Txn, Tx
∗) ≤ k ·max{dab(xn, x∗),

dab(xn, Txn) + dab(x
∗, Tx∗)

2s
,

dab(xn, Tx
∗) + dab(x

∗, Txn)

2s
}

≤ k ·max{dab(xn, x∗),
dab(xn, Txn) + dab(x

∗, Tx∗)

2s
,

dab(xn, Tx
∗) + dab(x

∗, Txn)

2s
}

≤ k ·max{dab(xn, x∗),
dab(xn, Txn) + dab(x

∗, Tx∗)

2s
,

s(dab(xn, x
∗) + dab(x

∗, Tx∗)) + dab(x
∗, Txn)

2s
}.

(3.13)

Apart from the transformations shown on the right, in order to estimate dab(x
∗, Tx∗) we

have to write the left side in a more convenient form and then to use (3.13):

1

s
dab(x

∗, Tx∗) ≤ dab(x∗, Txn) + dab(Txn, Tx
∗)

≤ dab(x∗, Txn) + k ·max{dab(xn, x∗),
dab(xn, Txn) + dab(x

∗, Tx∗)

2s
,

s(dab(xn, x
∗) + dab(x

∗, Tx∗)) + dab(x
∗, Txn)

2s
}.



Khan and Ćirić contraction principles in almost b-metric spaces 141

Previous inequality with n→∞ becomes

1

s
dab(x

∗, Tx∗) ≤ k · dab(x
∗, Tx∗)

2

and finally we obtain the inequality

dab(x
∗, Tx∗) ≤ k · s

2
dab(x

∗, Tx∗)

that can be satisfied only with dab(x
∗, Tx∗) = 0, which means that x∗ is fixed point of T . �

We proceed with Ćirić type contractions and we consider Ćirić type contraction of
second order in r-almost b-metric space.

Theorem 3.4. Let (X, dab, s ≥ 1) be a right-complete r-almost b-metric space and T : X →
X be a mapping satisfying

dab (Tx, Ty) ≤ k ·max

{
dab (x, y) , dab (x, Tx) , dab (y, Ty) ,

dab (x, Ty) + dab (y, Tx)

2s

}
(3.14)

for all x, y ∈ X where k is non-negative constant such that k < 1
s . Then T has a unique

fixed point.

Proof. We start with the proof that a fixed point is unique, if it exists, which is almost the
same as in the previous Theorem, so here we only state the part that differs. Suppose that
T has two distinct fixed points x∗, y∗ ∈ X. Then, from (3.14) we get

dab(x
∗, y∗) = dab(Tx

∗, T y∗)

≤ k ·max{dab(x∗, y∗), dab(x∗, Tx∗), dab(y∗, T y∗),
dab(x

∗, T y∗) + dab(y
∗, Tx∗)

2s
}

≤ k ·max{dab(x∗, y∗),
dab(x

∗, y∗) + dab(y
∗, x∗)

2s
}.

The rest of the proof for uniqueness is the same as in Theorem 3.3.
For arbitrary x0 ∈ X, consider the sequence xn = Txn−1 = Tnx0, n ∈ N. If xn = xn+1 for
some n ∈ N then xn is the unique fixed point of T. Hence, we suppose that dab(xn, xn+1) > 0
for all n ∈ N. We start from (3.14) for dab(xn, xn+1). Then for any n ∈ N we get:

dab(xn, xn+1) =dab(Txn−1, Txn)

≤ k ·max{dab(xn−1, xn), dab(xn−1, Txn−1), dab(xn, Txn),

dab(xn−1, Txn) + dab(xn, Txn−1)

2s
}

≤ k ·max{dab(xn−1, xn), dab(xn−1, xn), dab(xn, xn+1),

dab(xn−1, xn+1) + dab(xn, xn)

2s
}

≤ k ·max{dab(xn−1, xn), dab(xn−1, xn), dab(xn, xn+1),

s(dab(xn−1, xn) + dab(xn, xn+1))

2s
}

≤ k ·max{dab(xn−1, xn), dab(xn, xn+1),

dab(xn−1, xn) + dab(xn, xn+1)

2
}.

(3.15)

If dab(xn−1, xn) < dab(xn, xn+1), then from (3.15) we get the contradiction

dab(xn, xn+1) < k · dab(xn, xn+1).
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Finally, we conclude that must be satisfied dab(xn−1, xn) ≥ dab(xn, xn+1), so from (3.15) we
get

dab(xn, xn+1) ≤ k · dab(xn−1, xn).

The same reasoning as in Theorem 3.3 gives us the conclusion that the sequence {xn}
right converges to some x∗ ∈ X, ie. dab(x

∗, xn) → 0, n → ∞ which, from (bM2r) implies
dab(xn, x

∗)→ 0, n→∞.
Again, similarly as in Theorem 3.3 from (3.14), we obtain:

1

s
dab(x

∗, Tx∗) ≤ dab(x∗, Txn) + dab(Txn, Tx
∗)

≤ dab(x∗, Txn) + k ·max{dab(xn, x∗), dab(xn, Txn), dab(x
∗, Tx∗),

dab(xn, Tx
∗) + dab(x

∗, Txn)

2s
}

≤ dab(x∗, Txn) + k ·max{dab(xn, x∗), dab(xn, Txn), dab(x
∗, Tx∗),

s(dab(xn, x
∗) + dab(x

∗, Tx∗)) + dab(x
∗, Txn)

2s
}

And when n→∞, finally we get

dab(x
∗, Tx∗) ≤ s · k · dab(x∗, Tx∗)

so we conclude that x∗ is the fixed point of T . �

Note here that ”left variants” of the preceding theorems can be proved analogously.

Remark 3.1. It might looks like the Theorem 3.3 is a consequence of Theorem 3.4, but the
condition for contraction in Theorem 3.3 is 0 ≤ k < min{1, 2

s}, unlike in the Theorem 3.4

where we demand 0 ≤ k < 1
s . If in the Theorem 3.3 we demanded 0 ≤ k < 1

s then it would
be the consequence of the Theorem 3.4 since

dab(x, Tx) + dab(y, Ty)

2s
≤ 1

s
·max{dab(x, Tx), dab(y, Ty)}

≤ max{dab(x, Tx), dab(y, Ty)}.

Under stated conditions, it is not the case and we find this result interesting and not observed
in the case of b-metric spaces, as far as we know.

Remark 3.2. Bannach, Kannan, Chaterjea and Reich type contraction principles are direct
consequences of Theorems 3.3 and 3.4.

At the end, we leave one open problem:

Problem (Quasicontraction of Ćirić type) Let (X, dab, s ≥ 1) be a right-complete
r-almost b-metric space and T : X → X be such that

dab (Tx, Ty) ≤ kmax {dab (x, y) , dab (x, Tx) , dab (y, Ty) , dab (x, Ty) , dab (y, Tx)}

for all x, y ∈ X where 0 ≤ k < 1
s . Then T has a unique fixed point.

4. Conclusions

We studied contraction principles in almost b-metric spaces and obtained that many
principles are valid even without symmetry condition for b-metric. In almost b-metric spaces
we replaced symmetry with weaker conditions (bM2l) and (bM2r). As a sequel of paper [11],
here we expanded the set of contraction principles valid in almost b-metric space.
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All results obtained in the paper, may further generalize results obtained in [4] for
metric type spaces. For example, we formulate Theorem 3.1 in this manner, and emphasize
that the same can be done for all other results in this paper:
Let (X, dab, s) be right-complete r-almost b-metric space with coefficient s > 1 and T, S :
X → X be two mappings such that TX ∈ SX and one of these subsets of X is right-
complete. Suppose that

dab(Tx, Ty) ≤ a1 · dab(Sx, Sy)

+ a2
dab(Sx, Tx) · dab(Sx, Ty) + dab(Sy, Ty) · dab(Sy, Tx)

dab(Sx, Ty) + dab(Sy, Tx)

(4.1)

for all x, y ∈ X, dab(Sx, Ty)+dab(Sy, Tx) 6= 0 where a1, a2 are non-negative constants such
that a1 + a2 < 1. Then T and S have a unique point of coincidence. If moreover, the pair
(T, S) is weakly compatible, then T and S have a unique common fixed point.

All of the above, together with the examples given in the paper [11], confirms that
it is useful to consider the almost b-metric spaces, as well as that there are still many open
questions and topics for further research.

Acknowledgments: The research of the first author was partially supported by the
Serbian Ministry of Science and Technological Development, Project TR36002. The second
author would like to thank Prince Sultan University for funding this work through research
group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-
DES-2017-01-17.

R E F E R E N C E S

[1] M.U. Ali, Fahimudin and M. Postolache, Generalized Prešić type mappings in order-b-metric spaces,
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[9] Z. D. Mitrović, A note on the result of Suzuki, Miculescu and Mihail, J. Fixed Point Theory Appl.

(2019) 21: 24, https://doi.org/10.1007/s11784-019-0663-5.
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