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ACCURACY OF THE ANALYTICAL AND FINITE ELEMENT
MODELS FOR CIRCULAR BENDING PLATES

Alice MARINESCU!'2, Stefan SOROHAN?2, Traian CICONE?3'®

The present work had two main purposes. The first one consisted in assessing
the limits of applicability of analytical models for thin circular bending plates of
constant thickness under two boundary conditions (simply supported and clamped),
subjected to constant pressure on a single face. The analytical results were compared
with more accurate results, obtained using adequate finite element models for a large
range of input parameters. Small and large displacement options were considered
within the analyses. The second objective was computing the errors between the
analytical and finite element models — useful when deciding which model to use for a
particular analysis.
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1. Introduction

Since its earliest applications in the 1940s, the finite element method (FEM)
has gained over the past couple of decades a great notoriety, especially for problems
requiring intricate structural analyses, such as those related to the engineering
design of structures. Normally, the problem-solving process by the means of FEs
requires complicated mathematical models, but due to the evolution of dedicated
software with user-friendly interfaces, the usage of FEM has been made accessible
on a larger scale.

In a recently published paper [1], focused on analysing the behaviour of a
compliant hydrostatic thrust bearing, the authors proposed a simplified analytical
model, based on the thin circular plate model, also known as the Kirchhoff — Love
model. The model assumes that a mid-surface plane can be used to represent a three-
dimensional plate in a two-dimensional form. The following assumptions are
considered within this theory [2]:

e in-plane deformations are null at small displacements;
e the straight lines normal to the mid-surface remain normal to the mid-surface
after deformation,;
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o the normal stresses in the direction transverse to the plate are neglected.

Under these assumptions, the stresses and deformations of thin, plane,
circular plates can be computed analytically for various constraints and loading
cases [3].

These simplifying hypotheses are valid only for large values of the
thickness-to-radius ratio, t= R/t. However, for very thin plates and/or at high loads,
the deflections of the thin plate are significant, the limits of applicability of the
linear analytical model become questionable and a nonlinear (large deformations)
approach should be considered. These limits, as well as the resulting errors, in terms
of deflections and stresses, are further presented in this paper.

2. General aspects

Even though the subject is not novel, an extended bibliographical research
suggested the lack of unanimous opinions regarding the limits of applicability of
the thin plate model. Moreover, there could not be found any values of the relative
errors produced when using this model.

According to literature, there is a lower limit of the relative thickness of the
plate, expressed by the plate thickness-to-radius ratio, £, which varies between
different bibliographic sources. Moreover, between the thin plate and thick plate
models, transition zones were defined using terms such as “moderately thick” or
“moderately thin”, as presented below. Within these intervals, the thin plate model
can still be used, with acceptable errors. However, the magnitude of these errors
cannot be found in literature.

For instance, according to Steele et al. [4], plates could be classified as:

e very thin, when t >50 ;

e moderately thin, when 10< £< 50;
e thick, when 1.5< < 10;

e very thick, when t< 1.5.

According to Szilard [5], the accuracy of the thin plate theory is proportional
to the square of the plate thickness. The thin plate model is valid as long as the
smaller lateral dimension of the plate is at least 10 times larger than the thickness
of the plate ¢, which gives for circular plates £ > 5. For larger values of the plate
thickness (moderately thick plates), the plate thickness-to-radius ratio is considered
still acceptable, as long as it takes values in the interval: 2.5 <t < 5. If the deflections
are small, they are underestimated with respect to the Kirchhoff-Love theory.

As stated in Ventsel et al. [6], plates can be divided into three categories:

e thick plates, when £< 8...10;
e membranes, when t > 80...100;
e thin plates, when 8...10< t < 80...100.
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Reddy et al. [7] give a very minimalistic description in regard to the thin
plates limitations, stating that the thin plate model is valid for plates having the
thickness-to-side (radius) ratio t > 15.

A second limitation of the thin plate model is given by the maximum
deflection-to-plate thickness ratio, 8,5, = Opmax/t, Which will be further referred
to as dimensionless deflection. This limitation is related to whether the model is
linear (small deflections) or nonlinear (large deflections). Even in this case, there
is no clear information on the percentual differences between the two models —
linear and nonlinear.

As stated in Szilard [5], in order to apply the small deflection theory, the
dimensionless deformation should be 8,,,,< 0.1. On the other hand, Striz [8] has
shown that this limit can be extended up to 0.3 for clamped plates or 0.5 for simply
supported plates.

According to [4], the Kirchhoff linear plate theory yields sufficiently
accurate results for maximum stresses if O,.4< 0.2. Obviously, this limitation
depends on the applied load, thus it is of interest to express it in terms of a
dimensionless load. Hence a load parameter K, function of the pressure p, Young
Modulus E, and radius-to-plate thickness ratio t , was introduced:

K=5() =5 (n

Striz et al. [8] give limits for this load parameter, as well as comparisons
with nonlinear models, but without any given indications for the accuracy in terms
of relative errors.

The inexistence of analytical solutions for the exact problem of both linear
and nonlinear elasticity introduces a supplementary burden in the problem of
defining a reference for evaluating the errors of the thin plate model.

Due to the time period when the first such analyses have been performed,
characterized by the lack of powerful computational machines and usage of
rudimental finite elements, the references considered reliable within these analyses
can no longer be considered “exact” with respect to today’s standards, due to the
emergence of new and more performant types of finite elements.

The current paper targets to find the validity limits and the accuracy of the
analytical thin plate models in comparison with FE simulations, when the plates are
subjected to a uniformly distributed pressure.

3. Analytical models

For both the analytical and finite element models, the analyses were
performed for thin, circular plates, made of a homogeneous and isotropic material,
subjected to uniform transverse pressure. Since the plates were loaded with
uniformly distributed pressures, this led to an axi-symmetric problem. The analyses
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were focused on two different geometrical constraints of the plates: simply
supported on the outer diameter (fig. 1a) and clamped (fig. 1b), respectively.
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Fig. 1 Thin circular plate: (a) Simply supported; (b) Clamped

Furthermore, for each of the two boundary conditions, the corresponding
analytical models were compared with finite element models (considering both
linear and nonlinear approaches), depending on the ratio between the maximum
dimensionless deflection, 8,4,

3.1. Linear analytical solutions

The current analysis is restrained to the linear thin plate model, which has
closed-form analytical solutions. The plates were assumed to be perfectly flat and
maintaining a uniform and constant thickness prior to and after bending occurred.
The analytical solutions for deformations and stresses, produced by a uniformly
distributed pressure, could be found, for instance, in [3].

Dimensionless parameters, function of the input data (i.e. Young modulus,
Poisson ratio, pressure, yield stress, plate thickness, plate radius), have been used
in order to reduce the number of variables and cover a larger interval of values.
Subsequently, for the sake of a better understanding, the equations of the classical
analytical models, which are briefly presented herein, were chiselled and rewritten
using particular notations.

The maximum deflection, written in dimensionless form for the simply
supported circular plate, is:

_ 3
as_max = KE(]- -v)(5+v) (2)

and for the clamped case:
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_ 3
ac_max = KE(]- - Uz) (3)

s 1) R\?
Where 65 may = % and K = E(—) .

t
The relative bending stresses in the centre of the plate, in radial and

circumferential directions, which ought to be theoretically equal, were computed
using equation (4) for the simply supported case:

3

6, =K5B+v) (4)
and equation (5) for the clamped case:
3

5b_c=K§(1 +v) (5)

where &, is the dimensionless bending stress, whose "s" and "c" subscripts stand
for simply supported and clamped, respectively.

3.2. Non-linear analytical solutions

The nonlinear analysis of thin plates is more complex and includes a
supplementary assumption for the boundary conditions, which could be either
movable or immovable [2]; the corresponding results for stresses and deformations
are quite different. In the present paper, the analysis was limited to considering
immovable edges.

However, the analytical solutions for nonlinear models for thin plates are
approximate, since they are based on restrictive hypotheses. Timoshenko et al. [2]
give in their book approximate solutions for thin, clamped plates, loaded with
uniform pressures that produce large deflections (nonlinear model). According to
their solutions, the maximum deflection is reduced with respect to the linear model,
with a factor depending on the square relative deflection:

1

_ 3 2
5max_EK(1_v)m% ‘o

where the correction factor on the right-hand side represents the effect of the
middle-surface stretching on the deflection. This effect corroborates the increase of
rigidity with the increase in deflection, due to the fact that the latter is no longer
proportional with the bending load intensity. From eq. (6), it results that for
Smax=0.5, the value of the load parameter K will increase by 11% for the non-linear
case. However, this equation is valid only for a transitional zone between linear and
nonlinear loading conditions.
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A more general implicit formulation of stresses and deformations was
obtaine by a series method proposed by K. Federhofer and H. Egger and can be
found in Timoshenko et al. [2]. According to their solution, the bending stresses
and deformations can be calculated with the following equations:

Opan + A5 = BK (7)

max

Trmax = BOrmax (8)

where 4, B and S are constants given in table 1

Table 1
A B Vi
Simply supported immovable edges 1.852 0.696 1.778
Clamped immovable edges 0.471 0.171 2.86

Normally, the radial and circumferential stresses are expressed as a sum of
bending and membrane stresses, but since the current analytical approach gives an
approximate solution, only the bending stress component shall be further taken into
account for the sake of simplicity.

4. Finite element models

The finite element model was implemented by running the Mechanical
APDL module of the ANSYS® [9] software package, in order to compute the
deflections and bending stresses in the centre of the plates, through both linear and
nonlinear analyses.

L ®

Fig. 2 PLANE183 finite element

PLANEI183 2D axi-symmetric quad elements (fig. 2), defined by 8 nodes,
each node having two degrees of freedom — translations in the radial and axial
directions — were used for setting the limits of applicability of the classical,
analytical model.
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In the first instance, the analysis was performed using the previously
mentioned finite element in a static linear hypothesis, followed by a nonlinear
analysis for the same finite element. A maximum allowable stress o= 400MPa in
the centre of the plates was chosen as reference for further computations. The
PLANEI183 element in nonlinear analysis was used as a reference when computing
errors both for the linear finite elements and for the analytical models.

The boundary conditions applied for the simply supported plate implied
constraining the plate in radial direction along the axis of symmetry, and in axial
direction, on the plate edge. A rigid region was implemented along the line where
the plate has been constrained in axial direction, in order to emulate the analytical
boundary conditions (fig 3a). However, there exists a simpler alternative to the
latter boundary condition, that implies constraining the plate in axial direction only
in a point situated in the mid-plane (fig. 3b).
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Fig. 3 Boundary conditions for the simply supported plate
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Fig. 5 Circumferential stress distributions:
(a) thin plate; (b) thin plate with rigid region (a) thin plate; (b) thin plate with rigid region
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Tests were performed for two plates having the same radius and different
thicknesses (i.e. a thin and a thick plate), in order to verify whether the manner of
applying the second BC for the simply supported case affects the results when
subjecting the plate to bending. When comparing the results, one noticed that there
were no significant changes in the radial (fig.4) and circumferential (fig.5) stress
distributions, regardless of the manner of applying the boundary conditions, as long
as the size of the finite elements is approximately #/8. However, if a very fine mesh
is used, the simplified second BC placed according to fig. 3b can be used, especially
for non-linear analyses.

Fig. 6 Shear stress distributions: (a) thin plate; (b) thin plate with rigid region
(c) thick plate; (d) thick plate with rigid region

The shear stress distributions (fig. 6) presented sensible differences when
applying the boundary conditions differently. The shear stress distribution is used
when computing the deflection of thick plates. However, the current analysis did
not count for a thorough analysis of shear stresses, these having been neglected.

For the clamped plate, the boundary conditions were applied as follows: in
radial direction, along the axis of symmetry, and at the edge of the plate, on both
translations (fig. 7).
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Fig. 7 Boundary conditions for the clamped plate.
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Just as in the previous examples, tests were performed for two clamped
plates, having the same radius and different thicknesses. When analysing fig. 8 and
fig. 9, once could conclude that the radial and circumferential stress distributions
are overlapping almost perfectly, even though slight singularities are present, since
the maximum stress for clamped plates appears within the constraint areas. Grey
areas can be noticed at the corners of both fig. 8a and fig. 8b; these are due to the
fact that the imposed allowable stress of 400MPa in the centre of the plate was
exceeded. Moreover, in the case of fig. 8b, these areas appear in the middle of the
plate as well, which means that the analytically estimated load was more suitable
for the thin plate model.
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Fig. 8 Radial stress distributions: (a) thin Fig. 9 Circumferential stress distributions:
plate (b) thick plate (a) thin plate (b) thick plate

Fig.10 Shear stress distributions: (a) thin clamped plate; (b) thick clamped plate

The shearing effect (fig. 10) was observed to be milder than in the case of
simply supported plates.

(b)
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3. Results and discussions
3.1 Mesh accuracy

In previous approaches from literature employing a finite element analysis
of circular plates [10], there has been established a clear correlation between the
size of the mesh and the accuracy of the model, that is, the convergence of FEM
with the analytical solution. As expected, a higher accuracy requires a compelling
compromise - the smaller the mesh size, the longer the computational time required.

The accuracy analysis implied using PLANEI183 finite elements,
implemented linearly and non-linearly for both clamped and simply supported
plates. The analysis comprised two stages.

Thus, the first stage consisted in a successive refinement of the mesh
elements after each new program run. This refinement consisted in doubling the
number of elements both across the thickness and along the radius of the 2D model.
Meshes having aspect ratios (AR) of 1 and 5 were implemented for a value of the
relative plate thickness t = 50, situated at the extreme boundary of the thin plate
model range (t € (2 ...50)).

The relative errors were computed with the following formula:

Arer — 4

9)

E =

QAre f

where a,.r represents the value obtained for the finest mesh with respect to a certain
aspect ratio, and a; takes successively the values corresponding to the subsequent,
coarser meshes.
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Fig. 11 Relative error of maximum deflection function of the number of elements along the
thickness direction
(a) Simply supported plate; (b) Clamped plate
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Figure 11 displays the errors for deflections (&s) with respect to the number
of elements n, across the thickness of the plate. An overlapping of the curves for
the two aspect ratios (fig. 11a) can be observed for the case of the simply supported
plates.

For the clamped plate (fig. 11b), the curves do not overlap, and the errors
are slightly higher than for the simply supported case; even so, since the errors are
in a reasonable range, the previous statement remains valid.

The deviations from linearity from fig. 11b are produced by local
singularities.

By comparing these results, one arrived to the conclusion that the factor
which influenced the accuracy of the results was the number of elements across the
thickness of the plate, regardless of the aspect ratio of the finite elements employed,
or the number of elements along the radius.

Thus, one could conclude that reasonable errors (under 10) could be
obtained for a number of at least 8 elements per plate thickness for both the simply
supported and clamped plates.

For the sake of using less computational time, one could opt for a higher
aspect ratio, corresponding to less elements along the radius, while considering
using a reasonable number of elements along the plate thickness, as stated
previously.

3.2 Comparison between the analytical and FE models

The limitations of the analytical models were emphasised by an analysis
relying on the dimensionless parameters £, § and K. The simulations were made for
two levels of pressure loading selected to produce maximum bending stresses
around 100MPa and 400MPa, respectively, for values of the Young modulus
E= 210GPa and Poisson ratio v= 0.3. As expected, the values computed with
respect to the two loading cases overlapped while being represented in
dimensionless form. Therefore, the following graphical representations were traced
only with respect to the stress of 400 MPa.

The graphs shown in fig. 12 represents synthetically the most important
result of this work: the maximum deformation and the maximum normal stress
function of the load (in dimensionless form) predicted by linear and non-linear FE
analyses, compared with the analytical solution.

When putting in contrast the analytical and the FE models, one could note
that, under the small deflections assumption, there are different limitations for
deflections and stresses for the same constraint.

Thus, at a close inspection of the graphs from fig. 12, one could conclude
that, for deflections (fig. 12a), the limits where the targeted models overlap are
around the values § = 0.5 (K= 0.75) for the simply supported case, and § = 0.3
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(K= 2) for the clamped case. For the stresses (fig. 12b), the limits are situated
approximately at 6 =1 (K=0.85), for the simply supported plate and ¢ = 1.6
(K=3.5), for the clamped plate.
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Fig. 12 Comparisons between the linear and nonlinear FE and the analytical model for clamped
and simply supported plates for: (a) deflections; (b) stresses

The graphs from figure 13 depict the errors computed for deflections and
stresses, for the analytical model — fig. 13 (a), (¢) — and for the linear finite element
model — fig. 13 (b), (d). The non-linear finite element model was used as a reference
model when computing the errors. The increase in the errors situated on the
extremity of left-hand sides, both for the case of deflections — fig. 13 (a), (b) — and
for stresses — fig. 13 (c), (d) — are due to the fact that the values obtained exceed the
assumptions of the small plate model. On the right-hand sides of the two graphs,
the errors are increasing due to the fact that the plate falls in the large deflection
model. Therefore, one could conclude that the transition zone between the linear
and nonlinear models is in the zones where the curves come closer together or
intersect.
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Fig. 13 Errors for: (a), (b) deflections; (c), (d) stresses
4. Conclusions

For optimization problems, an analytical approach involving simplified
analytical relations could be more beneficial than using a more complex, numerical
approach. Using an analytical approach could help reducing considerably the
working time and the level of dificulty of the problem-solving algorithm. Therefore,
in order to have reasonable errors of the analytical model with respect to its FEM
equivalent, it is of paramount importance knowing the limits of the input values.

The current paper managed settling the limits of applicability for thin plates,
both from a relative thickness and a deflection point of view (i.e. whether the plate
is in the small deflections or large deflections range), as well as assessing the
accuracy limits of the approximate analytical model with respect to the more
precise, finite element model. Moreover, the paper provides errors for the maximum
deflections and the stresses in the centre of the plates, which are extremely useful
when establishing the transition zones of plates with respect to the radius-to-plate
thickness ratio.
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The limits of accuracy of the thin plate model are broader when computing
stresses, in comparison to the case when deflections are targeted.

It was observed that the analytical model for the simply supported plate
gives errors for the deflections less than 1% with respect to the nonlinear FE model
for values of K within the interval 0.15-+-0.33. The analytical model for the camped
plate has higher values of these errors, which exceed 1% regardless of the values of
the load parameter K. If one was to extend the limit of these errors up to a typical
engineering error of 3%, the clamped plate model could be used for values of K
within the interval 0.4 <1.75, while the reliable interval for the simply supported
model would be extended to a K between 0.054--0.53.

If keeping in mind the same 3% error limitation as in the previous case when
analysing the accuracy of the analytical model for the simply supported plate for
stresses, the parameter K ought to take values in the interval 0.01...0.75. For the
clamped plate, the parameter K should be situated between 0.036...0.98.
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