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FFT LIBRARIES PERFORMANCE BENCHMARKING ON
COMMONLY AVAILABLE MICROCONTROLLERS

Alexandru-Viorel Pălăcean 1, Dumitru-Cristian Trancă 2, Victor-Valentin Stoica 3,
Răzvan-Victor Rughinis, 4, Daniel Rosner 5

The Fast Fourier Transform (FFT) is a widely used method for sig-
nal analysis in smart devices, such as wearables, power meters, or vibration
monitoring systems, providing information about signal components, funda-
mental frequency, and harmonics amplitudes. With the emergence of con-
cepts like IoT, Smart City or Smart Metering, the rapid development of new
smart devices has accelerated, necessitating the constant optimization of sig-
nal analysis methods such as FFT. In this paper, we perform a benchmark
of the most popular FFT libraries available for commonly used microcon-
trollers (MCUs). These microcontrollers can be integrated into various IoT
devices, being responsible for the acquisition and processing of signals from
various sensors or transducers. The FFT analysis applied to these signals
provides relevant information about the signal components. We used multi-
ple FFT libraries on a wide range of microcontrollers, analyzing two sets of
electrical signal samples taken from a power meter. Based on the obtained
results, we classified the libraries according to several performance criteria.
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1. Introduction

The recent technological advancements have led to the development of
new technologies aimed at improving the quality of services and life. Inter-
net of Things (IoT), Smart City, or Industry 4.0 are part of this evolutionary
trend, relying on a series of interconnected smart devices capable of providing
information about the parameters of their operating environment. The pro-
cessing of the information gathered from the various sensors connected to these
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devices is carried out either in the cloud or locally, at the network edge. In
the latter case, the processing power of the devices must match the complexity
of the conducted operations. One of the most widely used techniques for sig-
nal analysis, which provides information on their frequency, components, and
corresponding amplitudes, is the Fast Fourier Transform (FFT).

Multiple implementations of this technique have been developed for var-
ious embedded system architectures, reflecting considerable research interest
in integrating and optimizing them within smart systems used in both indus-
trial and domestic environments. A. Buzachis et al. [1] proposed an IoT as a
Service (IoTaaS) smart metering solution for electrical grid signals harmonic
analysis using the FFT algorithm, running on a Raspberry Pi 3 computer.
The authors aimed to characterize the network’s non-linear loads in order to
prevent possible malfunctions. In [2] Qi-Lin Mao and Ming-Yue Zhai presented
a novel natural timestamp generation technique based on the grid frequency
estimation, using the fractional cepstrum domain transformation model.

The challenge of optimizing signal analysis algorithms for energy con-
strained devices has been approached by B. Mazzoni et al., who proposed in
[3] a parallel architecture for the Short Time Fourier Transform (STFT) and
Discrete Wavelet Transform (DWT) methods for ultra-low-power IoT devices.
In [4] the authors present a low-complexity Power Spectral Analysis (PSA)
algorithm based on the Fast Gaussian Gridding (FGG), designed for common
wearable devices equipped with low power processors. The results indicate a
92.99% performance increase compared to traditional methods and a 91.7%
energy consumption reduction, without affecting the analysis accuracy. G.
Fabregat et al. [5] developed an optimized Direction-Of-Arrival (DOA) algo-
rithm that runs on ESP32 microcontroller. This low cost system uses largely
available, off the shelf microphones and performs real-time localizations in
under 3.3ms.

The amount of memory utilized by signal analysis algorithms is often
substantial. Tsung-Ying Sun and Yu-Hsiang Yu [6] proposed a method to
optimize the memory usage of the Discrete Fourier Transform (DFT) by opti-
mizing the cache and reducing the size of the twiddle factors by almost 50%. J.
Mauzet et al. [7] proposed a Dynamic Partial Reconfiguration (DPR) system
for radar applications. A Discrete Fourier Transform (DFT) sum or a Fast
Fourier Transform can be selected for the analysis. The authors compared
the two methods, highlighted their advantages and proposed a self-adaptive
decision method.

In [8] Afzeri et al. developed an online control and monitoring solution
for industrial induction motors. The system monitors the temperature and
vibration using dedicated sensors and uses the FFT algorithm to analyze the
acquired signals parameters. Another solution for monitoring the vibrations
of mechanical elements has been proposed by N. Nistor et al. in [9]. A FFT
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algorithm was used on an ATmega microcontroller to analyze the signal ac-
quired from a broadband acoustic sensor. D. Pérez [10] outlined a solution
based on the FFT transform and an Arduino development board for a power
meter. The device was designed to measure the power quality of the residen-
tial voltage and to calculate the Total Harmonic Distortions (THD), including
up to the 25th harmonic in the analysis. The results are plotted through the
serial interface at a 2M baud rate.

Several benchmarks have been conducted on various implementations of
the FFT on multiple hardware platforms, indicating a strong interest in this
type of analysis. B.K. Vinay et al. [11] performed a performance analysis
of FFT algorithms running on ARM and DSP cores. In [12] A. Ayala et al.
performed parallel multi-dimensional FFT performance benchmarks on the
Exascale Computing Project (ECP) of the United States. P. Steinbach et
al. [13] presented gearshifft, an open-source FFT benchmarking system that
integrates various FFT implementations that can be run on different hardware
platforms.

As can be observed, the FFT transform is frequently used in various
low-power applications where energy consumption reduction and processing
optimizations are essential. In this paper, we aimed to determine the perfor-
mance of the most commonly used FFT libraries for commercially available
microcontrollers, our contributions being as follows:

• A comprehensive benchmark, evaluating the execution performance of
FFT libraries available for commonly used microcontrollers and compar-
ing the results with those obtained using dedicated Matlab functions,

• The classification of microcontrollers based on the execution performance
of the FFT analysis, relevant information for selecting a microcontroller
for a given application,

• A comparative presentation of the results in the form of detailed and easily
interpretable tables and charts.

2. Background

Among our areas of research interest is the field of smart metering, rep-
resented by intelligent IoT devices capable of measuring various electrical pa-
rameters of the grid. In another paper, currently under review, we presented a
power meter capable of measuring both standard and specialized electrical pa-
rameters, such as the Total Harmonic Distortion (THD) factors of the voltage
and current grid signals. During the development stage of the device we had
to choose a microcontroller responsible for the signal samples acquisition, pro-
cessing, measured values calculation and data transmission through multiple
IoT protocols.

Because we wanted to compute the THD factors of the signals, the mi-
crocontroller also had the task of performing the FFT analysis of the samples.
Both the voltage and current signals needed to be sampled over a period of



38 A.V. Pălăcean, D.C. Trancă, V.V. Stoica, R.V. Rughinis, , D. Rosner

one second, with the samples saved in the microcontroller’s memory and subse-
quently processed. Therefore, we had to choose a library capable of performing
the analysis in the shortest possible time, preferably under one second, con-
currently with the acquisition process of the next set of samples, ensuring that
we do not lose signal components due to processing delays.

Since we aimed to include the first 40 harmonics of the signal in the
THD factor calculation and because we set a sampling frequency of 8 kSPS
(kilo samples per second), we needed to identify a library that executes the
FFT analysis in the shortest possible time, with high accuracy in estimating
the fundamental frequency and the amplitudes of the signal harmonics, while
consuming minimal microcontroller memory. Since the execution speed of the
algorithm depends on the processing performance of the microcontroller, it
was necessary to test multiple largely available models to identify the one that
meets the imposed requirements.

Before testing and selecting the FFT libraries, we needed to sample the
input signals. To accomplish this task, we used our power meter’s microcon-
troller to acquire the samples from an ADC (Analog to Digital Converter)
module and then to save the samples’ values in a text file on a microSD card.
Based on these data, we can run the FFT algorithms and determine the signal
frequency and harmonic components amplitude, including the fundamental.
To verify the amplitude estimation accuracy of the libraries, we compare the
results with the RMS (Root Mean Square) value of the signal. Figure 1 presents
the sampling process and the components of a sinusoidal signal, which can be
calculated using (1).

Figure 1. Voltage/current signal sampling
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where:
Si represents a signal sample,
n is the total number of samples,
RMSvalue is the resulting RMS value of the signal,
Ts represents the period of time between two samples,
fs is the sampling frequency,
T is the signal period,
f represents the signal frequency.

To calculate the THD factor of a signal, first the signal harmonic spec-
trum must be determined and the harmonics amplitude extracted using a FFT
transform. The resolution of the THD analysis is determined by the maximum
number of harmonics examined (e.g., up to the 15th or 31st harmonic). Figure
2 presents the result of the FFT analysis applied on a 50Hz sinusoidal signal
with harmonic components and superimposed with white noise. The largest
peak corresponds to the fundamental component of the signal, with a frequency
of 50 Hz. However, significant peaks can also be observed for the harmonic
components at frequencies that are multiples of the fundamental frequency.
The THD value is determined using (2).

THD[%] =

√∑n
i=2H

2
iRMS

HfRMS

× 100% (2)

where:
n represents the maximum number of analyzed harmonics,
HfRMS represents the fundamental harmonic RMS amplitude,
HiRMS represents other harmonic components RMS amplitude.

Figure 2. FFT on 50Hz signal with harmonics
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The following section outlines the process of selecting the tested libraries
and microcontrollers, and describes how the testing procedures were conducted
and the criteria that were followed.

3. Benchmarking process description

The electrical power quality measurement device that we designed, men-
tioned in the previous section, needed to be equipped with both wired (RS485)
and wireless (WiFi) communication interfaces, to allow the integration of a mi-
croSD card slot for data logging, and to be provided with as many GPIO pins
as possible to enable the connection of various peripheral devices. Moreover, it
needed to be available on the market in large quantities and to have a minimal
cost. Following the analysis of available models from various manufacturers,
we selected the Raspberry Pi RP2040 microcontroller and several models of
ESP32 microcontrollers from Espressif Systems. Thus, we utilized a set of
development boards equipped with the selected microcontrollers and tested
several FFT libraries to evaluate their performance. The boards are presented
in Figure 3 and their specifications in Table 1:

Figure 3. Boards used for benchmarking

(1) Wemos S3 Pro [14], (2) Wemos S3 Mini [15], (3) Espressif
ESP32-DevKitC-VE [16], (4) Wemos S2 Mini [17], (5) ESP32-
C6-DevKitC-1 [18], (6) Wemos C3 Mini [19], (7) ESP32-H2-
DevKitM-1 [20], (8) Arduino Nano RP2040 Connect [21]
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Table 1
Selected microcontrollers specifications

Board MCU
CPU Memory

Type Frequency [MHz] ROM [KB] SRAM [KB] PSRAM [MB] FLASH [MB]

1 ESP32-S3-WROOM-1 Dual Core 240 384 512 8 16

2 ESP32-S3FH4R2 Dual Core 240 384 512 2 4

3 ESP32-WROVER-E Dual Core 240 448 520 8 8

4 ESP32-S2FN4R2 Single Core 240 128 320 2 4

5 ESP32-C6-WROOM-1 Single Core 160 320 512 N/A 8

6 ESP32-C3FH4 Single Core 160 384 400 N/A 4

7 ESP32-H2-MINI-1 Single Core 96 128 320 N/A 4

8 Raspberry Pi RP2040 Dual Core 133 18 264 N/A 16

Our goal was to test multiple FFT libraries on all these microcontrollers
in order to identify the one that performs this type of analysis fastest. To
provide the input data for the algorithm, in our case the voltage and current
signal samples from the grid, we connected microSD memory card modules to
the development boards, except for the first one, which already included this
interface. The modules are connected to one of the Serial Peripheral Interface
(SPI) of the microcontrollers.

The microcontrollers were programmed using the Microsoft Visual Stu-
dio Code and PlatformIO IDE. To select the libraries used in the test, we
analyzed all popular FFT libraries available for these microcontrollers within
the PlatformIO’s libraries manager. Among these, we highlight: fix fft [22],
KickFFT [23], FFT C [24], Adafruit Zero FFT Library [25], OsakanaFft [26],
DokuFFTPACK [27].

We examined the types of input and output data variables they utilize,
as well as their potential limitations regarding the maximum number of sam-
ples analyzed. Most of the libraries highlighted in their documentation as very
fast, utilize lookup tables and variables with reduced sizes (8 or 16 bits). Addi-
tionally, from our tests, many of these libraries can analyze a maximum of 512
samples, being primarily developed for audio signal analysis. The fix fft library
integrates functions for both direct and inverse FFT analysis and utilizes int8
data type buffers to store the sampled signal values in order to enhance pro-
cessing speed. KickFFT accepts any data type for the samples buffer but has
a limit of maximum 512 samples that can be analyzed. Similar constraints are
present for the FFC C library, which uses int buffers but limits the maximum
number of samples to 512. The Adafruit Zero FFT Library was designed to
run on ARM cortex M0 CPUs, accepts multiple data types for the input and
output buffers, but limits the maximum numbers of signal samples to 4096.

Other libraries, such as Audio [28], ESP32Sampler [29], Seeed Arduino
Mic [30], FrequencyDetector [31] or AudioTuner [32] have been developed par-
ticularly for audio applications, specifically for processing signals with a limited
number of samples, acquired from microphones with analog or digital inter-
faces.
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In our case, the datasets contain at least 8000 samples, each represented
using 24 bits. Therefore, it was necessary to select the libraries that work with
int, float, double, or complex type variables, and that do not have limitations
regarding the total number of samples. Following the analysis, we identified
another three libraries that meet the specified criteria: ESP32 FFT [33], Ar-
duinoFFT [34], and Fast4ier [35]. The first library uses float type variables,
the second one double type variables, and the third complex type variables.
None of these libraries have a limitation related to the maximum number of
samples, only requiring the number to be a power of 2. Therefore, during the
tests, we chose the number of samples in a dataset to be 8192 (213). Each
library was integrated into our benchmarking algorithm and uploaded to each
tested development board.

In the initialization step of the program, we allocate memory for the
buffers used to store the signal samples and the buffers used by the FFT li-
braries. We initialize the SD card module and an UART (Universal Asynchro-
nous Receiver-Transmitter) interface which will be used to display the tests
results. Then, a set of 8192 voltage and current signal samples are read from
a text file residing on the microSD card and stored in the buffers. In the next
stage, the integrated FFT analysis function from the used library is called for
execution. Once the results are available, a function that calculates the THD
factors is called. Finally, the results are printed using the serial communication
interface.

Before and after the execution of the FFT and THD functions, we record
the current timestamp returned by the millis() function in order to calculate
the total time required for each operation. Also, we recorded the available
microcontroller’s memory before and after the libraries buffers memory alloca-
tions using the esp get free heap size() function to determine the total memory
usage for each tested library. We applied the same steps for each set of signal
samples, with a total of 10 sets being analyzed during the tests. The opera-
tions total time and the libraries memory usage information is also transmitted
through the serial interface. RealTerm was used as a terminal program due
to its message capturing function and ability to save them in a text file. This
functionality allowed us to process and compare the results more easily.

The function that calculates the THD factor uses the results of the FFT
analysis, identifying the largest peaks among the signal harmonic amplitudes,
located at frequencies that are multiples of the fundamental frequency. Both
voltage and current THD factors are calculated.

As a reference in our comparisons, we used the results from the Matlab
FFT and THD functions, which are dedicated to these types of analyses. The
program implemented in Matlab applies the same steps as the microcontroller
algorithm, described earlier. The signals samples are read from a copy of the
text file available on the microSD card used for the microcontrollers, the file
being stored on the computer used to run the program. The execution time of
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the FFT and THD procedures is measured using the tic and toc functions. We
also implemented the same THD function as in the microcontroller algorithm,
to compare the THD results generated using the FFT libraries output with the
THD value based on the Matlab’s FFT function. It also provided us with the
capability to generate comparative graphs of the FFT analysis results executed
by the different libraries.

4. Results and discussion

The results obtained by running each FFT library on each of the pre-
viously mentioned microcontrollers were compared with one another, as well
as with the results generated by the algorithm developed in Matlab. Table
2 presents the output of the test algorithm run on the Raspberry Pi RP2040
microcontroller, using the ESP32 FFT library. Each line represents the results
for a 8192 samples set. The second column contains the estimated signal fre-
quency and in the third one we can find the estimated fundamental harmonic
amplitude RMS value. The next column contains the measured signal RMS
value, calculated using equation (1). The THD factor value is displayed in the
next column, followed by the total execution time required by the FFT and
THD functions. The last line presents the average values of interest for the
dataset. The same information was generated for all the libraries and micro-
controllers tested. Based on this data, we calculated the library estimation
error using:

Err[%] =
|V alN − V alest|

V alN
× 100 (3)

where:
V alest is the estimated value (algorithm result),
V alref represents the reference value (50Hz for the frequency error, the

measured signal RMS value for the amplitude estimation error).

Table 3 presents the estimation errors for the ESP32 FFT library, for
both voltage and current samples. As one can see, the error values remain
approximately constant for all the samples of the same signal. Furthermore,
we can observe that the error in estimating the amplitude of the fundamental
harmonic is greater than that in estimating the signal frequency.
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Table 2
ESP32 FFT library results for the voltage samples on
the Raspberry Pi RP2040 microcontroller

Set f [Hz] ERMS [V] MRMS [V] THD
[%]

FFTt

[ms]
THDt

[ms]

1 49.805 216.874 232.495 2.282 375.0 68

2 49.805 217.469 233.014 2.476 371.0 68

3 49.805 216.899 232.584 2.227 374.0 68

4 49.805 217.688 233.171 2.268 375.0 68

5 49.805 216.886 232.555 2.455 375.0 68

6 49.805 217.618 233.055 2.320 374.0 68

7 49.805 217.620 232.968 2.565 371.0 68

8 49.805 217.595 232.504 2.258 374.0 68

9 49.805 218.833 233.000 2.282 375.0 68

10 49.805 218.300 232.491 2.427 374.0 68

Avg 49.805 217.578 232.784 2.356 373.8 68

Table 3
ESP32 FFT library signal frequency and amplitude es-
timation error

Set

Estimation error [%]

f Hf

Voltage
samples

Current samples Voltage
samples

Current samples

1 0.391 0.391 6.719 8.066

2 0.391 0.391 6.671 8.021

3 0.391 0.391 6.744 8.006

4 0.391 0.391 6.640 7.846

5 0.391 0.391 6.738 8.020

6 0.391 0.391 6.624 7.974

7 0.391 0.391 6.588 7.940

8 0.391 0.391 6.412 7.683

9 0.391 0.391 6.081 7.308

10 0.391 0.391 6.104 7.386

Avg 0.391 0.391 6.532 7.825

The same operations were performed for the other libraries as well as
for the algorithm developed in Matlab. Figure ?? presents the FFT analysis
results for all the libraries and Matlab algorithm for both voltage and current
samples. The last chart of each signal contains overlapping curves of the
results. Even though there is a significant difference in the RMS values of the
two analyzed signals, 232V for voltage and 0.18A for current, we can observe
that the curves of the library results and Matlab overlap almost perfectly in
both cases.
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The comparative estimation errors are presented in Table 4. We can
observe that both frequency and fundamental harmonic amplitude estimation
errors are similar across all three libraries. In contrast, the estimation errors of
the Matlab algorithm are significantly smaller. This indicates that the Matlab
FFT function may apply additional corrections to the input signal, such as
filters and windowing functions that can reduce the effect of spectral leakage
and increase the estimations accuracy.

Table 4
FFT libraries signal frequency and amplitude estimation
error

Library

Estimation error [%]

f Hf

Voltage
samples

Current
samples

Voltage
samples

Current
samples

ESP32
FFT

0.391 0.391 6.532 7.825

Arduino
FFT

0.327 0.327 6.532 7.594

Fast4ier 0.327 0.329 6.532 7.594

Matlab 0.007 0.007 0.102 1.435

(a) Voltage samples (b) Current samples

Figure 4. Libraries FFT analysis results for voltage and cur-
rent samples
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Table 5
FFT analysis execution time on different boards/micro-
controllers using the ESP32 FFT library

Set

Board/Microcontroller FFT execution time [ms]

ESP32
S3 Pro

ESP32
S3
Mini

ESP32
Wrover-

E

ESP32
S2
mini

ESP32
C6-

Wroom-1

ESP32
C3
Mini

ESP32
H2
Mini

RPi
RP2040

1 40 48 53 115 136.5 219.5 374 386.5

2 39.5 48.5 52.5 114.5 136.5 219 372.5 383

3 40 48 52.5 115 136.5 219 372.5 385.5

4 39 48.5 53 114.5 136 219 372 385.5

5 39.5 48.5 52.5 114.5 136 219 372.5 387

6 39 48 53 115 136 219 373.5 385.5

7 40 48.5 52.5 114.5 136 219 373 383

8 39.5 48 52.5 115 136 218.5 373 385.5

9 40 48 52.5 115 136.5 219 372.5 385.5

10 39 49 52.5 115 136 219 372.5 386

Figure 5. ESP32 FFT library average execution time on dif-
ferent boards/microcontrollers (lower is better)
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Table 6
FFT and THD analysis execution time on different
boards/microcontrollers for all libraries

Board / Mi-
crocontroller

Library

FFT time [ms] THD time [ms]

ESP32
FFT

Arduino
FFT

Fast4ier ESP32
FFT

Arduino
FFT

Fast4ier

ESP32 S3 Pro 39.55 385.55 155.8 16.55 5.45 4.6

ESP32 S3
Mini

48.3 520.3 256.3 16.9 5.5 4.7

ESP32
Wrover-E

52.65 703.8 321.3 17.95 5.9 4.95

ESP32 S2
mini

114.8 526 377.2 22.3 8.1 7.85

ESP32
C6-Wroom-1

136.2 436.7 390.55 27.2 5.3 5.35

ESP32 C3
Mini

219 719.35 724.65 34.5 8.75 8.05

ESP32 H2
Mini

372.8 1224.7 1235.15 55.65 13.95 12.5

Raspberry Pi
RP2040

385.3 1282 1142.9 66.15 19.2 15.9

Table 5 displays the FFT analysis execution time of the ESP32 FFT
library on the microcontrollers. It can be observed that the execution time
varies significantly across different microcontroller models, indicating that their
performances are not similar. In Figure 5, we have graphically represented the
average execution time on the studied microcontrollers, calculated based on
the datasets in Table 5.

Using the total execution time of the FFT and THD functions imple-
mented using all the tested libraries, we sorted the microcontrollers based on
their performance, information presented in Table 6.

The best performance was achieved with the ESP32 S3 microcontrollers,
followed by the ESP32 Wrover-E. Next in line are the other ESP32 models,
while the longest execution time, indicating the weakest performance, was
obtained by the Raspberry Pi RP2040 microcontroller. This result was ex-
pected, as the RP2040 integrates a low-power Cortex M0+ processor, while
the ESP32 utilizes more advanced Xtensa processors. Additionally, it can be
observed that the shortest execution time was achieved with the ESP32 FFT
library. The second-best performance was achieved by the Fast4ier library,
which obtained shorter execution times than ArduinoFFT across most of the
tested microcontrollers.
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Table 7
Libraries memory usage

Library No. bytes

ESP32 FFT 196716

ArduinoFFT 131104

Fast4ier 65552

From the perspective of the libraries memory usage, the comparative re-
sults are presented in the Table 7. The ESP32 FFT library has the highest
memory usage, while Fast4ier is the most efficient, using the least amount
of memory. This behavior can be explained by the number, size and data
type of the buffers used by the libraries. Using all the performance indica-
tors calculated for the three libraries (estimation errors, memory usage, and
total execution time), we created a ranking chart, presented in Figure 6. To
highlight the differences between the libraries, the values were calculated after
running the algorithms on the same development board: ESP32 S3 Pro. The
fundamental harmonic amplitude and harmonic frequency estimation errors
were calculated as the average of the estimation error values for the voltage
and current samples for each library, extracted from Table 4. The execution
time of each FFT analysis algorithm was taken from the first row of Table
6 (for the ESP S3 Pro board), while the total memory usage was extracted
from Table 7. We selected the maximum value of each indicator and used it
as a reference to normalize the remaining values accordingly. For example, the
memory usage indicator was calculated using equation (4).

Figure 6. FFT libraries benchmark
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LibXMem[%] =
LibXMem[bytes]

MAX(LibXMem, LibYMem, LibZMem)[bytes]
× 100 (4)

The results indicate that the ESP32 FFT library is the most efficient
in terms of execution time, while the Fast4ier library is the most recom-
mended when constraints related to memory usage are most important. The
ArduinoFFT library shows average performance across all analyzed aspects.

The THD factor errors, based on the FFT analysis results provided by
the three libraries, were computed using (3), with the Matlab dedicated THD
function’s output value used as the reference. The results are displays in the
last three columns of Table 8. The second column presents the error of the
same THD function from the microcontroller algorithm, implemented by us
in Matlab. From the last row of the table, which presents the average error
across the 10 tested sample sets, we can observe that the THD factor obtained
based on the FFT results of the three libraries is similar, with the ESP32 FFT
and ArduinoFFT libraries yielding the same result, while Fast4ier shows a
slightly higher error. Additionally, the error obtained using our implemented
THD function in Matlab, based on the results of the dedicated FFT function,
is larger compared to using the FFT libraries running on microcontrollers.
This could be due to the larger errors in estimating the harmonic amplitudes
generated by the tested libraries, which may bring the THD factor value closer
to the one generated by the Matlab’s THD function.

Table 8
THD error for the different libraries compared to Mat-
lab’s standard THD function

Set

THD error [%]

Matlab custom
THD

ESP32 FFT
library

ArduinoFFT
library

Fast4ier
library

1 2.107 2.082 2.082 3.514

2 6.865 6.354 6.354 7.414

3 6.448 5.404 5.404 6.604

4 5.280 5.225 5.225 1.398

5 2.929 1.972 1.972 5.674

6 3.804 2.784 2.784 9.941

7 10.172 9.731 9.731 1.447

8 5.454 5.386 5.386 0.750

9 0.329 0.595 0.595 1.984

10 7.522 6.012 6.012 9.866

Avg 5.091 4.555 4.555 4.859
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5. Conclusion

In this paper, we analyzed the performance of several FFT libraries on
commonly available microcontrollers. We compared the memory usage and the
accuracy of the fundamental frequency and fundamental harmonic amplitude
estimation. Based on the execution time of the analysis, we classified the
microcontrollers in terms of performance.

The source signals used during the tests were acquired from the local grid
network using a power meter designed by us and presented in another paper.
The amplitudes of the grid and current signals harmonics resulting from the
FFT analysis were used to calculate the Total Hamonic Distortion (THD)
factors. The results were compared with the output of Matlab’s dedicated
FFT and THD functions, and based on this, the THD estimation error was
determined.

The results obtained indicate significant differences in the performance
of the microcontrollers, including execution time and memory usage by the
tested libraries. However, the accuracy of the FFT analysis is similar to that
provided by Matlab dedicated function. Compared to the results provided
by Matlab, the calculation error of THD factors is similar across all tested
libraries. This outcome suggests that the difference is caused by the accuracy
in identifying signal harmonics and the error in estimating their amplitudes.

This benchmark provides an overview of the execution performance of ad-
vanced signal processing procedures across various models of microcontrollers
available on the market. It can serve as a starting point in selecting a suitable
FFT library or microcontroller during the design stage of an IoT device.
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