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SUMS OF C-FRAMES, C-RIESZ BASES AND ORTHONORMAL

MAPPINGS

Morteza Rahmani1

In this paper we introduce and prove some new concepts and results on
c-frames for Hilbert spaces. We define c-Riesz bases for a Hilbert space H and
state some results to characterize them. Then, we give necessary and sufficient
conditions on c-Bessel mappings f and g and operators L1, L2 on H so that L1f+
L2g is a c-frame for H. This allows us to construct a large number of new c-
frames by existing c-frames. Also, we define orthonormal mappings for H and
we specify a necessary and sufficient condition to represent a c-frame as a linear
combination of two orthonormal mappings. Moreover, we show that every c-frame
can be written as a (multiple of a) sum of two Parseval c-frames; it can also be
written as a (multiple of a) sum of an orthonormal mapping and a c-Riesz basis.
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1. Introduction

The concept of frames (discrete frames) in Hilbert spaces has been introduced
by Duffin and Schaeffer [8] in 1952 to study some deep problems in nonharmonic
Fourier series. After the fundamental paper [6] by Daubechies, Grossmann and
Meyer, frame theory popularized greatly.

Generally, frames have been used in signal processing, image processing, data
compression and sampling theory. A discrete frame is a countable family of elements
in a separable Hilbert space which allows for a stable, not necessarily unique, de-
composition of an arbitrary element into an expansion of the frame elements. Later,
motivated by the theory of coherent states, this concept was generalized by Antoine
et al. to families indexed by some locally compact space endowed with a Radon
measure. Their approach leads to the notion of continuous frames [1, 2, 13, 18].
Prominent examples are connected to the continuous wavelet transform [1, 16] and
the short time Fourier transform [14]. In mathematical physics, these frames are
referred to as coherent states [1, 15]. Some results about continues frames were
discussed in [3, 9, 10, 11, 12, 20].

In this paper we generalize some results in [19] and [4] from frame theory to
c-frames.

The paper is organized as follows. In Section 2, we introduce the concept of
c-Riesz bases for Hilbert spaces and discuss about their characteristics and their

1PhD, Young Researchers and Elite Club, Ilkhchi Branch, Islamic Azad University, Ilkhchi,
Iran, e-mail: m

¯
rahmani26@yahoo.com

3



4 Morteza Rahmani

relations by continuous frames. Our aim in Section 3 is producing new continuous
frames by old ones and some operators, especially their associated frame operators.
Indeed, we construct new continuous frames by sum of some existing continuous
frames or local adding. Section 4 is devoted to introducing of orthonormal mappings
for a Hilbert space. Via these mappings, we describe every continuous frame as a
multiple of a sum of two Parseval continuous frames. We conclude the section by
showing that every continuous frame can be written as a linear combination of an
orthonormal mapping and a c-Riesz basis.

Throughout this paper, H will be a separable Hilbert space.
We first recall the definition of continuous frame [20].

Definition 1.1. ([20]) Suppose that (Ω, µ) is a measure space with positive measure
µ. A mapping f : Ω −→ H is called a continuous frame, or simply c-frame, with
respect to (Ω, µ) for H, if:
(i) For each h ∈ H, ω 7−→ ⟨h, f(ω)⟩ is a measurable function,
(ii) there exist positive constants A and B such that

A∥h∥2 ≤
∫
Ω
|⟨h, f(ω)⟩|2dµ(ω) ≤ B∥h∥2, h ∈ H. (1)

The constants A,B are called c-frame bounds. If A,B can be chosen such that
A = B, then f is called a tight c-frame and if A = B = 1, it is called a Parseval
c-frame. A mapping f is called c-Bessel mapping if the second inequality in (1)
holds. In this case, B is called the Bessel constant.

We can define some operators associated to a c-Bessel mapping. The following
proposition is a useful tool in the rest of our discussion.

Proposition 1.1. ([20]) Let (Ω, µ) be a measure space and f : Ω −→ H be a c-Bessel
mapping for H. Then the operator Tf : L2(Ω, µ) −→ H, weakly defined by

⟨Tfφ, h⟩ =
∫
Ω
φ(ω)⟨f(ω), h⟩dµ(ω), h ∈ H (2)

is well defined, linear, bounded, and its adjoint is given by

T ∗
f : H −→ L2(Ω, µ), T ∗

f h(ω) = ⟨h, f(ω)⟩, ω ∈ Ω. (3)

The operator Tf is called synthesis operator and T ∗
f is called analysis operator

of f .
If f is a c-Bessel mapping with respect to (Ω, µ) for H, then the operator

Sf : H −→ H defined by Sf = TfT
∗
f , is called frame operator of f . Thus

⟨Sfh, k⟩ =
∫
Ω
⟨h, f(ω)⟩⟨f(ω), k⟩dµ(ω), h, k ∈ H.

If f is a c-frame for H, then S is invertible.
The converse of Proposition 1.1 holds when in the measure space (Ω, µ), µ is

σ-finite.

Proposition 1.2. ([20]) Let (Ω, µ) be a measure space where µ is σ-finite. Let
f : Ω −→ H be a mapping such that for each h ∈ H, ω 7−→ ⟨h, f(ω)⟩ is measurable.
If the mapping Tf : L2(Ω, µ) −→ H defined by (2), is a bounded operator, then f is
a c-Bessel mapping.
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The next theorem gives an equivalent characterization of a continuous frame.

Theorem 1.1. ([20]) Suppose that (Ω, µ) is a measure space where µ is σ-finite. Let
f : Ω −→ H be a mapping such that for each h ∈ H, ω 7−→ ⟨h, f(ω)⟩ is measurable.
The mapping f is a c-frame with respect to (Ω, µ) for H if and only if the operator
Tf : L2(Ω, µ) −→ H defined by (2), is a bounded and onto operator.

Now, we state a known result that will be employed to prove some results.

Proposition 1.3. ([4]) Let K : H −→ H be a bounded linear operator. Then the
following hold.
(i) K = α(U1 + U2 + U3), where each Uj , j = 1, 2, 3, is a unitary operator and α is
a constant.
(ii) If K is onto, then it can be written as a linear combination of two unitary
operators if and only if K is invertible.

The following Lemma shows that if an operator has closed range, there exists
a right-inverse operator in the following sense:

Lemma 1.1. ([5]) Let H and K be Hilbert spaces, and suppose that U : K −→ H
is a bounded operator with closed range RU . Then there exists a bounded operator
U † : H −→ K for which

UU †h = h, h ∈ RU .

The operator U † is called the pseudo-inverse of U .

2. c-Riesz bases

In this section, we define c-Riesz bases which are generalization of (discrete)
Riesz bases. Then we characterize c-Riesz bases and verify relations between c-Riesz
bases and c-frames.

Now, we define c-Riesz bases as follows:

Definition 2.1. Let (Ω, µ) be a measure space. A mapping f : Ω −→ H is called a
c-Riesz basis with respect to (Ω, µ) for H, if:
(i)

{
h : ⟨h, f(ω)⟩ = 0, a.e. [µ]

}
= {0},

(ii) for each h ∈ H, ω 7−→ ⟨h, f(ω)⟩ is measurable and the operator Tf : L2(Ω, µ) −→
H defined by (2), is well-defined and there are positive constants A and B such that

A∥φ∥2 ≤ ∥Tfφ∥ ≤ B∥φ∥2, φ ∈ L2(Ω, µ).

If in the definition of c-Riesz basis, the measure space Ω = N and µ is the
counting measure, then our c-Riesz basis will be a (discrete) Riesz basis and so we
expect that some properties of Riesz bases can be satisfied in c-Riesz bases.

The following proposition shows that, under some conditions, a c-Riesz basis
is a special case of a c-frame.

Proposition 2.1. Suppose that (Ω, µ) is a measure space where µ is σ-finite and
consider the mapping f : Ω −→ H.
(i) Assume that for each h ∈ H, ω 7−→ ⟨h, f(ω)⟩ is measurable. Then f is a c-Riesz
basis with respect to (Ω, µ) for H if and only if Tf defined by (2) is a well defined,
bounded and invertible operator from L2(Ω, µ) onto H.
(ii) If f is a c-Riesz basis with respect to (Ω, µ) for H, then f is a c-frame with
respect to (Ω, µ) for H.
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Proof. (i) By Proposition 1.2 and Proposition 1.1 and Theorem 4.12 in [21], it is
clear.
(ii) By assumption and (i), the operator Tf defined by (2) is an invertible bounded
operator. So by Theorem 1.1, f is a c-frame with respect to (Ω, µ) for H. �

We will now present some equivalent conditions for a c-frame being a c-Riesz
basis.

Theorem 2.1. Suppose (Ω, µ) is a measure space where µ is σ-finite. Let f be a
c-frame with respect to (Ω, µ) for H with synthesis operator Tf . Then the following
statements are equivalent:
(i) f is a c-Riesz basis with respect to (Ω, µ) for H.
(ii) Tf is one-to-one.
(iii) RT ∗

f
= L2(Ω, µ).

Proof. (i) → (ii): It is obvious.
(ii) → (i): By Theorem 1.1, the operator Tf defined by (2) is bounded and onto. By

(ii), Tf is also one-to-one. Therefore Tf has a bounded inverse T−1
f : H −→ L2(Ω, µ)

and hence f is a c-Riesz basis with respect to (Ω, µ) for H by Proposition 2.1.
(i) → (iii): By Proposition 2.1, Tf has a bounded inverse on RTf

= H. Conse-

quently, RT ∗
f
= L2(Ω, µ).

(iii) → (i): Since the operator T ∗
f is invertible, so is Tf . �

3. Sums of c-frames

We want to verify some situations to produce new c-frames by adding some
known existing c-frames. Also, we use some operators, especially frame operators of
assumed c-frames, to construct new c-frames.

Proposition 3.1. Let f be a c-frame with respect to (Ω, µ) for H with frame operator
S and frame bounds A,B and let L : H −→ H be a bounded operator. Then Lf is
a c-frame for H if and only if L is onto. Moreover, in this case the frame operator
of Lf is LSL∗ and its bounds are ∥L†∥−2A and ∥L∥2B, where L† is pseudo-inverse
of L.

Proof. If L is onto, then by Lemma 1.1, the operator L† is well defined and bounded.
For each h ∈ H ∫

Ω
|⟨h,Lf(ω)⟩|2dµ(ω) =

∫
Ω
|⟨L∗h, f(ω)⟩|2dµ(ω)

≥A∥L∗h∥2 ≥ (∥L†∥−2A)∥h∥2,

also ∫
Ω
|⟨h,Lf(ω)⟩|2dµ(ω) =

∫
Ω
|⟨L∗h, f(ω)⟩|2dµ(ω)

≤B∥L∗h∥2 ≤ (∥L∥2B)∥h∥2.

Hence Lf is a c-frame with respect to (Ω, µ) for H with frame bounds ∥L†∥−2A and
∥L∥2B.
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Conversly, let Lf be a c-frame with respect to (Ω, µ) for H. Then for each φ ∈
L2(Ω, µ) and h ∈ H

⟨TLfφ, h⟩ =
∫
Ω
φ(ω)⟨Lf(ω), h⟩dµ(ω)

=

∫
Ω
φ(ω)⟨f(ω), L∗h⟩dµ(ω)

=⟨LTfφ, h⟩.
So TLf = LTf . Since Lf is a c-frame, so TLf is onto and therefore L is onto.
Furthermore, for each h, k ∈ H∫

Ω
⟨h, Lf(ω)⟩⟨Lf(ω), k⟩dµ(ω)

=

∫
Ω
⟨L∗h, f(ω)⟩⟨f(ω), L∗k⟩dµ(ω)

=⟨SL∗h,L∗k⟩ = ⟨LSL∗h, k⟩.
Thus the frame operator of Lf is LSL∗. �

The following corollary states that when we can construct a c-frame by adding
a c-frame f to Lf , where L is a bounded operator on H.

Corollary 3.1. If f is a c-frame with respect to (Ω, µ) for H and L : H −→ H is
a bounded operator, then f + Lf is a c-frame for H if and only if I + L is onto. In
this case, the frame operator of f + Lf is (I + L)S(I + L∗) and the frame bounds
are

∥(I + L)†∥−2A and ∥I + L∥2B.
In particular, if L is a positive operator (or just I + L ≥ ϵ, for some ϵ > 0) then
f + Lf is a c-frame with frame operator

S + LS + SL∗ + LSL∗.

Proof. By Proposition 3.1, it is obvious. �
The above corollary can be used for the orthogonal projections.

Corollary 3.2. If f is a c-frame with respect to (Ω, µ) for H and P is an orthogonal
projection on H, then for all a ̸= −1, f + aPf is a c-frame for H.

Proof. Let L = aP in Corollary 3.1. �
Now, we give some necessary and sufficient conditions on c-Bessel mappings

f and g and operators L1, L2 on H such that L1f + L2g is a c-frame.

Proposition 3.2. Let (Ω, µ) be a measure space where µ is σ-finite. Let f and g
be c-Bessel mappings with respect to (Ω, µ) for H with synthesis operators Tf , Tg
and frame operators Sf , Sg, respectively. For the given bounded operators L1, L2 :
H −→ H, the following are equivalent:
(i) L1f + L2g is a c-frame for H.
(ii) T ∗

fL
∗
1 + T ∗

gL
∗
2 is a bounded operator on H, which is bounded below.

(iii) S = L1SfL
∗
1+L2SgL

∗
2+L1TfT

∗
gL

∗
2+L2TgT

∗
fL

∗
1 ≥ ϵ, for some ϵ > 0. Moreover,

in this case, S is the frame operator for L1f + L2g.
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Proof. (i) ↔ (ii) L1f + L2g is a c-frame if and only its analysis operator T ∗ is a
bounded and bounded below operator; in this case for each ω ∈ Ω

T ∗h(ω) =⟨h,L1f(ω) + L2g(ω)⟩
=⟨L∗

1h, f(ω)⟩+ ⟨L∗
2h, g(ω)⟩

=T ∗
fL

∗
1h(ω) + T ∗

gL
∗
2h(ω).

(ii) ↔ (iii) Let T be the synthesis operator of c-Bessel mapping L1f + L2g. The
frame operator of L1f + L2g is

S = TT ∗ = (T ∗
fL

∗
1 + T ∗

gL
∗
2)

∗(T ∗
fL

∗
1 + T ∗

gL
∗
2)

= L1SfL
∗
1 + L2SgL

∗
2 + L1TfT

∗
gL

∗
2 + L2TgT

∗
fL

∗
1.

So T ∗ is bounded below if and only if S ≥ ϵ, for some ϵ > 0. �

The following theorem gives us a c-frame by sum of a c-frame and a c-Bessel
mapping.

Theorem 3.1. Let f be a c-frame with respect to (Ω, µ) for H with synthesis operator
Tf and frame operator Sf and g be a c-Bessel mapping with respect to (Ω, µ) for
H with synthesis operator Tg and frame operator Sg. Suppose that range(T ∗

g ) ⊆
range(T ∗

f ). If the operator R = TfT
∗
g is a positive operator, then f + g is a c-frame

for H with frame operator Sf +R+R∗ + Sg.

Proof. Let L1 = I = L2 and S = Sf + R + R∗ + Sg. Then S ≥ A, where A is a
below frame bound of f . By Proposition 3.2, f + g is a c-frame for H with frame
operator Sf +R+R∗ + Sg. �

If L is a normal operator on the Hilbert space H, then for a ψ ∈ C(σ(L)),
ψ(L) is defined by ψ(L) = Γ−1ψ, where Γ is the Gelfand map. So if L is a positive
operator, then for all a ∈ R, La is well defined. For more details, refer to the
definition of functional calculus in [7, p.93].

Now, as an application of above theorem we have:

Corollary 3.3. If f is a c-frame with respect to (Ω, µ) for H with frame operator
S and g is a c-Bessel mapping with respect to (Ω, µ) for H such that

⟨h, k⟩ =
∫
Ω
⟨h, f(ω)⟩⟨g(ω), k⟩dµ(ω), h, k ∈ H,

then for all real numbers a and b, Saf + Sbg is a c-frame for H.

Proof. For each h, k ∈ H,

⟨Sa+bh, k⟩ =⟨Sah, Sbk⟩ =
∫
Ω
⟨Sah, f(ω)⟩⟨g(ω), Sbk⟩dµ(ω)

=

∫
Ω
⟨h, Saf(ω)⟩⟨Sbg(ω), k⟩dµ(ω) = ⟨T̃1

∗
h, T̃2

∗
k⟩,

where T̃1 and T̃2 are the synthesis operators of c-frames Saf and Sbg, respectively.

So Sa+b = T̃1T̃2
∗
= R. Therefore Saf + Sbg is a c-frame by Theorem 3.1. �

Especially, if g is a dual c-frame of f , then we have the same result.
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Corollary 3.4. If f is a c-frame with respect to (Ω, µ) for H with frame operator
S and g is a dual c-frame of f , then for all real numbers a and b, Saf + Sbg is a
c-frame for H.

Proof. By definition of a dual c-frame and previous corollary, the conclusion follows.
�

Moreover, we can produce new c-frames by local addition on an existing c-
frame.

Proposition 3.3. Let f be a c-frame with respect to (Ω, µ) for H with frame operator
S and frame bounds A,B. Let {Ω1,Ω2} be a partition of Ω such that Ω1 and Ω2 are
measurable. Assume that Sj be the frame operator of c-Bessel mapping fj : Ωj −→
H, j = 1, 2. Then for all real numbers a and b, the mapping g : Ω −→ H defined by

g(ω) =

{
f1(ω) + Sa

1f1(ω), ω ∈ Ω1

f2(ω) + Sb
2f2(ω), ω ∈ Ω2

,

is a c-frame for H.

Proof. Let a, b ∈ R, then for each h ∈ H,

(

∫
Ω1

|⟨h, (f1 + Sa
1f1)(ω)⟩|2dµ(ω))

1
2

≤(

∫
Ω1

|⟨h, f1(ω)⟩|2dµ(ω))
1
2 + (

∫
Ω1

|⟨h, Sa
1f1(ω)⟩|2dµ(ω))

1
2

≤
√
B∥h∥+

√
B∥Sa

1h∥ ≤
√
B(1 + ∥Sa

1∥)∥h∥,

similarly,

(

∫
Ω2

|⟨h, (f2h+ Sb
2f2)⟩|2dµ(ω))

1
2 ≤

√
B(1 + ∥Sb

2∥)∥h∥.

Thus g is a c-Bessel mapping with respect to (Ω, µ).

If S̃1 is the frame operator of f1 + Sa
1f1, then for each h, k ∈ H,

⟨S̃1h1, k⟩ =
∫
Ω1

⟨h, (f1 + Sa
1f1)(ω)⟩⟨(f1 + Sa

1f1)(ω), k⟩dµ(ω)

= ⟨(S1 + 2S1+a
1 + S1+2a

1 )h, k⟩.

Hence S̃1 = S1 + 2S1+a
1 + S1+2a

1 ≥ S1. Similarly, for S̃2, the frame operator of

f2 + Sb
2f2, we have S̃2 ≥ S2. Hence, S̃, the frame operator of g satisfies

S̃ ≥ S1 + S2 = S.

Therefore, g is a c-frame for H. �

4. Orthonormal mappings

We want to define some kind of mappings that in discrete case are orthonormal
bases. Actually, our purpose here is to define a mapping f : Ω −→ H that has the
similar properties to an orthonormal basis of H.
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Definition 4.1. Suppose that (Ω, µ) is a measure space. A mapping f : Ω −→ H is
called an orthonormal mapping with respect to (Ω, µ) for H, if:
(i) For each h ∈ H, ω 7−→ ⟨h, f(ω)⟩ is measurable,
(ii) for almost all ν ∈ Ω,∫

Ω
φ(ω)⟨f(ω), f(ν)⟩dµ(ω) = φ(ν), φ ∈ L2(Ω, µ),

(ii) for each h ∈ H,
∫
Ω |⟨h, f(ω)⟩|2dµ(ω) = ∥h∥2.

Example 4.1. Let H be a separable Hilbert space and {ei}i∈I be an orthonormal
basis for H. Let Ω = I and µ be a counting measure on Ω. Then f : I −→ H defined
by f(i) = ei, i ∈ I, is an orthonormal mapping with respect to (Ω, µ) for H.

Example 4.2. Let Ω = {a, b, c}, Σ = {∅, {a, b}, {c},Ω} and µ : Σ −→ [0,∞] be a
measure such that µ(∅) = 0, µ({a, b}) = 1, µ({c}) = 1 and µ(Ω) = 2. Assume that
H is a 2 dimensional Hilbert space with an orthonormal basis {e1, e2}. Now, define

f : Ω −→ H

f(a) = e1, f(b) = e1, f(c) = e2,

or, equivalently, f = e1χ{a,b} + e2χ{c}. For each h ∈ H,

⟨f, h⟩ = ⟨e1, h⟩χ{a,b} + ⟨e2, h⟩χ{c},

so ω 7−→ ⟨h, f(ω)⟩ is measurable. For each ω ∈ Ω, we have ⟨f(ω), f(a)⟩ = χ{a,b}(ω).
Now, suppose

S =
3∑

i=1

αiχAi

is a simple function where A1 = {a, b}, A2 = {c} and A3 = Ω. So∫
Ω
S(ω)⟨f(ω), f(a)⟩dµ(ω) = S(a).

Similarly, for ν = b, c, we have∫
Ω
S(ω)⟨f(ω), f(ν)⟩dµ(ω) = S(ν).

Therefore, for each ν ∈ Ω and φ ∈ L2(Ω, µ),∫
Ω
φ(ω)⟨f(ω), f(ν)⟩dµ(ω) = φ(ν).

It is easy to show that
∫
Ω |⟨h, f(ω)⟩|2dµ(ω) = ∥h∥2. Hence f is an orthonormal

mapping with respect to (Ω, µ) for H.

It is clear that every orthonormal mapping is a c-Riesz basis.
The following proposition shows that a c-frame g can be characterized as

g = V f , where f is an orthonormal mapping and V is a bounded and onto operator
on H.

Proposition 4.1. Let f be an orthonormal mapping with respect to (Ω, µ) for H
and g be a c-frame with respect to (Ω, µ) for H. Then there exists a bounded and
onto operator V : H −→ H such that g = V f . Moreover, V is invertible if g is a
c-Riesz basis for H and V is unitary if g is an orthonormal mapping for H.
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Proof. Let V : H −→ H be weakly defined by

⟨V h, k⟩ =
∫
Ω
⟨h, f(ω)⟩⟨g(ω), k⟩dµ(ω), h, k ∈ H.

We have

∥V h∥ = sup
∥k∥=1

|⟨V h, k⟩|

≤ sup
∥k∥=1

(

∫
Ω
|⟨h, f(ω)⟩|2dµ(ω))

1
2 (

∫
Ω
|⟨g(ω), k⟩|2dµ(ω))

1
2

≤
√
B∥h∥,

where B is an upper frame bound of c-frame g. So V is a well defined and bounded
operator. Now, we show that V is onto. Let Tf and Tg be the synthesis operators
of c-frames f and g, respectively. For each ν ∈ Ω,

⟨V f(ν), k⟩ =
∫
Ω
⟨f(ν), f(ω)⟩⟨g(ω), k⟩dµ(ω)

=

∫
Ω
⟨k, g(ω)⟩⟨f(ω), f(ν)⟩dµ(ω)

=⟨k, g(ν)⟩ = ⟨g(ν), k⟩, k ∈ H,

so V f = g. Let h ∈ H. Then there exists a φ ∈ L2(Ω, µ) such that Tgφ = h. Letting
k′ = Tfφ, for each k ∈ H, we have

⟨V k′, k⟩ =⟨Tfφ, V ∗k⟩ =
∫
Ω
φ(ω)⟨f(ω), V ∗k⟩dµ(ω)

=

∫
Ω
φ(ω)⟨V f(ω), k⟩dµ(ω) =

∫
Ω
φ(ω)⟨g(ω), k⟩dµ(ω)

=⟨h, k⟩.

Hence, V k′ = h and consequetly V is onto.
Let g be a c-Riesz basis for H and V k = 0. We have

⟨V k, h⟩ =
∫
Ω
⟨k, f(ω)⟩⟨g(ω), h⟩dµ(ω) = ⟨T ∗

f k, T
∗
g h⟩, h ∈ H,

so V k = TgT
∗
f k = 0, then by Theorem 2.1, k = 0 and it implies that V is one-to-one.

Hence V is invertible.
If g is an orthonormal mapping for H, for each h ∈ H, we have

∥h∥2 =
∫
Ω
|⟨h, g(ω)⟩|2dµ(ω) = ∥V ∗h∥2,

therefore V V ∗ = I, and since V is invertible so it is unitary. �

Now, we show that every c-frame can be written as a sum of three orthonormal
mappings.

Proposition 4.2. If g is a c-frame with respect to (Ω, µ) for H and if f is an
orthonormal mapping with respect to (Ω, µ) for H, then there exist orthonormal
mappings ψ, γ, ϕ and a constant α such that g = α(ψ + γ + ϕ).
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Proof. By Proposition 4.1, there is a bounded and onto operator V : H −→ H
such that g = V f , and by Proposition 1.3, we have V = α(U1 + U2 + U3), where
each Uj , j = 1, 2, 3, is a unitary operator and α is a constant. So g = V f =
α(U1f + U2f + U3f). For each φ ∈ L2(Ω, µ), ν ∈ Ω and j = 1, 2, 3, we have∫

Ω
φ(ω)⟨Ujf(ω), Ujf(ν)⟩dµ(ω) =

∫
Ω
φ(ω)⟨f(ω), f(ν)⟩dµ(ω).

Also ∫
Ω
|⟨h,Ujf(ω)⟩|2dµ(ω) = ∥U∗

j h∥2 = ∥h∥2.

Thus each Ujf, j = 1, 2, 3, is an orthonormal mapping. Putting ψ = U1f , γ = U2f ,
ϕ = U3f , the proof is complete. �

We can give some conditions that a c-frame can be written as a sum of two
orthonormal mappings instead of three. The following proposition states the neces-
sary and sufficient conditions on a c-frame to write it as a linear combination of two
orthonormal mappings.

Proposition 4.3. Let f be an orthonormal mapping and g be a c-frame for H.
Then g can be written as a linear combination of two orthonormal mappings for H
if and only if g is a c-Riesz basis for H.

Proof. If g is a c-Riesz basis for H, by Proposition 4.1, there is an invertible operator
V : H −→ H such that g = V f and by Proposition 1.3, V = aU1 + bU2, for some
constants a and b and unitary operators U1 and U2. So g = V f = aU1f + bU2f . By
a similar way in the proof of Proposition 4.2, we can prove that U1f and U2f are
orthonormal mappings.
Conversely, suppose that there are orthonormal mappings ψ and γ and constants
a and b such that g = aψ + bγ. By Proposition 4.1, there is an onto operator V
and there are unitary operators K and R such that g = V f , ψ = Kf and γ = Rf .
Since g = aψ + bγ and f is an orthonormal mapping, we have V = aK + bR. So by
Proposition 1.3, V is an invertible operator. If Tgφ = 0, then for each h ∈ H

0 =⟨Tgφ, h⟩ =
∫
Ω
φ(ω)⟨g(ω), h⟩dµ(ω)

=

∫
Ω
φ(ω)⟨V f(ω), h⟩dµ(ω)

=

∫
Ω
φ(ω)⟨f(ω), V ∗h⟩dµ(ω)

=⟨V Tfφ, h⟩.

So V Tfφ = 0 and by Proposition 2.1, φ = 0. Hence, by Proposition 2.1, g is a
c-Riesz basis for H. �

By an orthonormal mapping we can get a Parseval c-frame as follows:

Proposition 4.4. If V is a co-isometry on H and f is an orthonormal mapping
for H, then V f is a Parseval c-frame for H.
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Proof. By assumption, V ∗ is an isometry, so for all h ∈ H,∫
Ω
|⟨h, V f(ω)⟩|2dµ(ω) = ∥V ∗h∥2 = ∥h∥2.

�

Every bounded operator L on H has a representation in the form L = UP
(called the polar decomposition of L), where U is a partial isometry, P is a positive
operator and kerL = kerU . Also, every positive operator P on H with ∥P∥ < 1 can

be written in the form P = 1
2(W +W ∗), where W = P + i

√
1− P 2 is unitary.

Via an orthonormal mapping it is possible to describe a c-frame as a multiple
of a sum of two Parseval c-frames.

Theorem 4.1. If f is an orthonormal mapping for H, then every c-frame g for H
is as a linear combination of two Parseval c-frames for H.

Proof. By Proposition 4.1, there is a bounded and onto operator V : H −→ H such

that g = V f . We have V = ∥V ∥
2 Z(W + W ∗), where W is a unitary and Z is a

partial isometry, which is a co-isometry. So ZW and ZW ∗ are co-isometry. We

obtain g = V f = ∥V ∥
2 (ZW + ZW ∗)f and by Proposition 4.4, (ZW )f and (ZW ∗)f

are Parseval c-frames for H. �

Following the above theory, one shows that a c-frame can be represented as a
linear combination of an orthonormal mapping and a c-Riesz basis.

Theorem 4.2. If f is an orthonormal mapping for H, then every c-frame g for H
is a sum of an orthonormal mapping for H and a c-Riesz basis for H.

Proof. If g is a c-frame for H, then by Proposition 4.1, there is a bounded and onto
operator V : H −→ H such that g = V f . For each 0 < ϵ < 1, define operator
L : H −→ H by L = 5

6I+
1
6(1−ε)

V
∥V ∥ . Then ∥I−L∥ < 1, so L is invertible. We now

write the polar decomposition of L as L = UP , where U is a partial isometry, P is
a positive operator and kerL = kerU . Since L is invertible, U is a unitary operator
(Since a necessary and sufficient condition that U be an isometry is that L be 1-1,
and a necessary and sufficient condition that U be a co-isometry is that L has dense
range [17]). Also, ∥L∥ ≤ 1 implies that ∥P∥ ≤ 1, and hence P = 1

2(W +W ∗), where
W is a unitary operator. Now we have,

L =
1

2
(UW + UW ∗),

where UW,UW ∗ are unitary. Now, we have

V =
6∥V ∥
(1− ϵ)

[
1

2
(UW + UW ∗)− 5

6
I] =

3∥V ∥
(1− ϵ)

[UW +R],

where R = UW ∗ − 5
3I. Since UW is unitary, UWf is an orthonormal mapping.

Since

∥I − −1

2
R∥ = ∥1

6
I +

1

2
UW ∗∥ < 1,

thus −1
2 R is an invertible operator and consequently R is invertible. Therefore, Rf

is a c-frame for H and by Proposition 2.1, Rf is a c-Riesz basis for H. �
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