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NEW FUZZY h-IDEALS IN HEMIRINGS

Xueling Ma1, Jianming Zhan2

The concepts of (∈γ ,∈γ ∨ qδ)-fuzzy h-ideals and (∈γ ,∈γ ∨ qδ)-fuzzy h-
interior ideals in hemirings are introduced. Some new characterization theorems
of these kinds of fuzzy h-ideals are also given. In particular, we investigate prime
and strong prime (∈γ ,∈γ ∨ qδ)-fuzzy h-ideals in hemirings. Finally, we show that
the h-hemiregular and h-semisimple hemirings can be described by using these
kinds of fuzzy h-ideals.
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1. Introduction

Multi-valued logic has been considered by model phenomena because both
uncertainty and vagueness are involved. In applications, the non-classical logic in-
cluding multi-valued logic and fuzzy logic takes the advantage of the classical logic
so that they can be used to handle information with various facets of uncertainty
(see [23, 24]) such as fuzziness, randomness and so on. It is noted that non-classical
logic has nowadays become the formal and useful tools in computer science because
they deal with fuzzy information as well as uncertain information. One of the most
general class of multi-valued logic is the BL-logic which is defined as the logic of con-
tinuous t-norms. Since BL-logic can be described as a commutative lattice-ordered
semiring, the  Lukasiewicz logic, Gödel logic and the Product logic are therefore spe-
cial BL-logic, and as a consequence, they can be regarded as some special semirings.

Semirings, regarded as a generalization of rings, have been recently found
particularly useful in solving problems in different disciplines of applied mathemat-
ics and information sciences because semiring provides an algebraic framework for
modeling [9]. A special semiring with a zero and endowed with the commutative
addition is said to be a hemiring . In applications, hemirings are useful in automata
and formal languages (see [12]). It is well known that the set of regular languages
forms the so-called “star , semirings”. According to Kleene (see [20]), the languages
or the sets of words can be recognized as the finite-state automata which are pre-
cisely those that are obtained from the letters of input alphabets by applying the
operations such as the “sum ”(union), “the product”, and the “⋆ ”, that is, the so
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called “Kleene closure” . If a language is represented as a formal series with coeffi-
cients in a Boolean semiring, then the ideas of Kleene can be described by the well
known Schützenberger Representation theorem. Moreover, if the set of coefficients
of a semiring forms a field, then its corresponding syntactic algebra of the series has
a finite rank if and only if the series are rational.

We note that the ideals of semirings play a crucial role in the structure theory,
however, according to Henriksen [10], ideals in semirings do not in general coin-
cide with the ideals of a ring . For this reason, the usage of ideals in semirings is
somewhat limited. The general properties of fuzzy k-ideals of semirings were first
described in [14]. In 2004, Jun [15] considered the fuzzy h-ideals of hemirings. The
h-hemiregular hemirings were described by Zhan et al by using the fuzzy h-ideals
[25]. Furthermore, Yin et al introduced the concepts of fuzzy h-bi-ideals and fuzzy h-
quasi-ideals of hemirings in [22]. By using these fuzzy ideals, a number of characteri-
zation theorems of h-hemiregular and h-intra-hemiregular hemirings were obtained.
As a continuation of these investigations, Ma et al. [18] introduced the concepts
of (∈, ∈∨ q)-fuzzy h-bi-ideals (resp., h-quasi-ideals) of a hemiring and investigated
some of their properties. In particular, they showed that the h-hemiregular hemir-
ings and h-intra-hemiregular hemirings can be described by some of their generalized
fuzzy h-ideals. Finally, the implication-based fuzzy h-bi-ideals (resp., h-quasi-ideals)
of a hemiring were considered. The other important results related with fuzzy k-
ideals and h-ideals of a hemiring were given in [3, 4, 5, 6, 7, 8, 13, 19, 21].

After the concept of fuzzy sets introduced by Zadeh [23], there have been a
number of generalizations of this fundamental concept. A new type of fuzzy sub-
group, that is, the (∈,∈ ∨ q)-fuzzy subgroup, was introduced by Bhakat and Das
in [1] by using the combined notions of “belongingness” and “quasi-coincidence”
of fuzzy points and fuzzy sets. In fact, the (∈,∈∨ q)-fuzzy subgroup is an impor-
tant generalization of Rosenfeld’s fuzzy subgroup. It is natural to investigate some
similar generalizations of the existing fuzzy subsystems by considering some other
structures. With this objective in mind, Davvaz et al. in [2] obtained some re-
sults in near-rings. In particular, Ma et al. discussed the properties of generalized
interval-valued fuzzy h-ideals of hemirings in [17]. On the other hand, Dudek et al.
[5] introduced the concepts of fuzzy ideals of fuzzy rings and (α, β)-fuzzy h-ideals of
hemirings. Fruitful results have been obtained in the literature.

This paper is organized as follows. In Section 2, we first give some basic
definitions and results of hemirings. Then in Section 3, we introduce the concepts
of fuzzy h-ideals and h-interior ideals in hemirings. Some new characterization
theorems of fuzzy h-ideals of a hemiring are given. In Section 4, we investigate
prime and strong prime (∈γ ,∈γ ∨ qδ)-fuzzy h-ideals in hemirings. Finally, we show
that the h-hemiregular and h-semisimple hemirings can be described by using these
kinds of fuzzy h-ideals in Section 5.

2. Preliminaries

Recall that a semiring is an algebraic system (S,+, ·) consisting of a non-empty
set S together with two binary operations on S called addition and multiplication
(denoted in the usual manner) such that (S,+) and (S, ·) are semigroups and the
following distributive laws
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a(b + c) = ab + ac and (a + b)c = ac + bc

are satisfied for all a, b, c ∈ S.
By zero of a semiring (S,+, ·) we mean an element 0 ∈ S such that 0 · x =

x·0 = 0 and 0+x = x+0 = x for all x ∈ S. A semiring with zero and a commutative
semigroup (S,+) is called a hemiring.

Throughout this paper, S is a hemiring. We also write a∧ b for min{a, b} and
a ∨ b for max{a, b}, where a and b are real numbers.

A left ideal of a semiring is a subset A of S closed with respect to the addition
and such that SA ⊆ A. A subset A of a semiring S is called an interior ideal of S
if A is closed under addition and multiplication such that SAS ⊆ A. An ideal P of
R is called prime if IJ ⊆ P implies I ⊆ P or J ⊆ P for all ideals I and J of R.

A left ideal (right ideal, ideal and interior ideal) A of S is called a left h-ideal
of S (right h-ideal, h-ideal and h-interior ideal) of S, respectively,if for any x, z ∈ S
and a, b ∈ A from x + a + z = b + z it follows x ∈ A.

The h-closure A of A in S is defined by

A = {x ∈ S |x + a1 + z = a2 + z for some a1, a2 ∈ A, z ∈ S}.

Clearly, if A is a left ideal of S, then A is the smallest left h-ideal of S containing

A. We also have A = A for each A ⊆ S. Moreover, A ⊆ B ⊆ S implies A ⊆ B.
We next state some fuzzy logic concepts. Recall that a fuzzy set is a function

µ : S → [0, 1]. We denote by F(S) the set of all fuzzy sets of S. For any A ⊆ S, we
denote the characteristic function of A by χA.

For any t ∈ (0, 1], define a fuzzy set tA of S by

tA(x) =

{
t if x ∈ A,
0 if x ̸∈ A,

for all x ∈ S.
A fuzzy set µ of S of the form

µ(y) =

{
t( ̸= 0) if y = x,
0 if y ̸= x,

is said to be a fuzzy point with support x and value t and is denoted by xt.
A fuzzy point xt is said to be “belong to” (resp.,“ quasi − coincident with” ) a fuzzy
set µ, written as xt ∈ µ (resp., xtqµ) if µ(x) ≥ t (resp., µ(x) + t > 1).
If xt ∈ µ or xt q µ, then we write xt ∈∨ qµ. If µ(x) < t (resp., µ(x) + t ≤ 1), then
we say that xt ∈µ (resp., xt q µ).

We note here that the symbol ∈∨ q means that ∈∨ q does not hold.
Let γ, δ ∈ [0, 1] be such that γ < δ. For a fuzzy point xr and µ of S, we say
(1) xr ∈γ µ if µ(x) ≥ r > γ.
(2) xrqδµ if µ(x) + r > 2δ.
(3) xr ∈γ ∨qδµ if xr ∈γ µ or xrqδµ.
For any two fuzzy sets µ, ν of S and γ, δ ∈ [0, 1], γ < δ. Define a new ordered

relation “⊆ ∨q(γ,δ)” as follows:
xr ∈γ µ =⇒ xr ∈γ ∨qδν for all x ∈ S.
Define a relation “∼” on F(S) by
µ ∼ ν ⇐⇒ µ ⊆ ∨q(γ,δ)ν and ν ⊆ ∨q(γ,δ)µ.
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Lemma 2.1. Let µ and ν be any two fuzzy sets of S. Then µ ⊆ ∨q(γ,δ)ν ⇐⇒
ν(x) ∨ γ ≥ µ(x) ∧ δ for all x ∈ S.

Proof. Let µ ⊆ ∨q(γ,δ)ν. If there exists x ∈ S such that ν(x) ∨ γ < r < µ(x) ∧ δ,
that is, xr ∈γ µ, but xr∈γ ∨qδν, a contradiction.

Conversely, let ν(x) ∨ γ ≥ µ(x) ∧ δ for all x ∈ S. If µ⊆ ∨q(γ,δ)ν, then there

exists x ∈ S and r > γ such that xr ∈γ µ, but xr⊆ ∨q(γ,δ)ν, and so µ(x) ≥ r, ν(x) < r
and ν(x) + r < 2δ. Thus, ν(x) ∨ γ < µ(x) ∧ δ, a contradiction. �

The following is obvious.

Lemma 2.2. µ ⊆ ∨q(γ,δ)ν ⊆ ∨q(γ,δ)ω =⇒ µ ⊆ ∨q(γ,δ)ω.

Note that Lemma 2.1 gives that
µ ∼ ν ⇐⇒ (µ(x) ∧ δ) ∨ γ = (ν(x) ∧ δ) ∨ γ
for all x ∈ S and it follow from Lemmas 2.1 and 2.2 that ”∼” is an equivalence.

Definition 2.1. Let µ and ν be fuzzy sets of S.
(i) The h-sum of µ and ν is

(µ +h ν)(x) =
∨

x+a1+b1+z=a2+b2+z

µ(a1) ∧ µ(a2) ∧ ν(b1) ∧ ν(b2)

and (µ +h ν)(x) = 0 if x cannot be expressed as x + a1 + b1 + z = a2 + b2 + z.
(ii) The h-interior product of µ and ν is

(µ⊙h ν)(x) =
∨

x+
m∑
i=1

aibi+z=
n∑

j=1
a′jb

′
j+z

µ(ai) ∧ µ(a′j) ∧ ν(bi) ∧ ν(b′j)

and (µ⊙h ν)(x) = 0 if x cannot be expressed as x +
m∑
i=1

aibi + z =
n∑

j=1
a′jb

′
j + z.

Proposition 2.1. Let A,B ⊆ S. Then we have
(1) A ⊆ B ⇔ χA ⊆ ∨ q(γ,δ) χB;
(2) χA ∩ χB = χA∩B;
(3) χA ⊙h χB = χAB;
(4) χA +h χB = χA+B.

3. (∈γ ,∈γ ∨qδ)-fuzzy h-ideals

In this Section, we introduce the concepts of fuzzy h-ideals and h-interior ideals
in hemirings. Some new characterization theorems of fuzzy h-ideals of a hemiring
are given.

Definition 3.1. Let γ, δ ∈ [0, 1] be such that γ < δ. A fuzzy set µ of S is called an
(∈γ ,∈γ ∨qδ)-fuzzy left (resp., right) h-ideal of S if for all t, r ∈ (γ, 1] and x, z ∈ S,

(F1a) µ +h µ ⊆ ∨q(γ,δ)µ;
(F1b) χS ⊙h µ ⊆ ∨q(γ,δ)µ (resp., µ⊙h χS ⊆ ∨q(γ,δ)µ);
(F1c) x + a + z = b + z, at, br ∈γ µ =⇒ xt∧r ∈γ ∨qδµ for all a, b, x, z ∈ S.
A fuzzy set of S is called an (∈γ ,∈γ ∨qδ)-fuzzy h-ideal if it is both an (∈γ ,∈γ

∨qδ)-fuzzy left h-ideal and an (∈γ ,∈γ ∨qδ)-fuzzy right h-ideal.

Example 3.1. Let S = {0, a, b} be a hemiring with the Cayley table as follows:
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+ 0 a b
0 0 a b
a a 0 b
b b b 0

. 0 a b
0 0 0 0
a 0 0 0
b 0 0 b

Define a fuzzy set µ of S by µ(0) = 0.6, µ(a) = 0.8 and µ(b) = 0.2. Then µ is an
(∈0.2,∈0.2 ∨q0.6)-fuzzy h-ideal of S, but it is not a fuzzy h-ideal of S.

Theorem 3.1. A fuzzy set µ of S is an (∈γ ,∈γ ∨qδ)-fuzzy left (resp., right) h-ideal
of S if and only if it satisfies:

(F2a) µ(x + y) ∨ γ ≥ µ(x) ∧ µ(y) ∧ δ for all x, y ∈ S;
(F2b) µ(xy) ∨ γ ≥ µ(y) ∧ δ (resp., µ(xy) ∨ γ ≥ µ(x) ∧ δ);
(F2c) x + a + z = b + z =⇒ µ(x) ∨ γ ≥ µ(a) ∧ µ(b) ∧ δ.

Proof. We only consider the case for (∈γ ,∈γ ∨qδ)-fuzzy left h-ideals.
Let µ be an (∈γ ,∈γ ∨qδ)-fuzzy left h-ideal of S. If there exist x, y ∈ S such

that µ(x + y) ∨ γ < t < µ(x) ∧ µ(y) ∧ δ, then µ(x) > t, µ(y) > t, µ(x + y) < t < δ,
that is, (x + y)t∈γ ∨qδµ. On the other hand, µ(0) ∨ γ ≥ µ(x) ∧ δ ≥ t ∧ δ = t > γ,
and so µ(0) ≥ µ(x) ∧ δ. Thus,

(µ +h µ)(x + y) =
∨

x+y+a1+b1+z=a2+b2+z

µ(a1) ∧ µ(a2) ∧ µ(b1) ∧ µ(b2)

≥µ(0) ∧ µ(x) ∧ µ(y)

≥µ(x) ∧ µ(y) ∧ δ

>t ∧ δ = t,

which implies, (x + y)t ∈γ µ +h µ, and hence (x + y)t ∈γ ∨qδµ, contradiction.
Thus (F2a) holds.

Similarly, we can see that (F2b) holds.
Finally, if there exist a, b, x, z ∈ S with x + a + z = b + z and γ ∈ [0, 1] such

that µ(x) ∨ γ < r < µ(a) ∧ µ(b) ∧ δ, then µ(a) ≥ r, µ(b) ≥ r and µ(x) < r < δ, and
so ar, br ∈γ µ and xr∈γ ∨qδµ, contradiction. This proves (F2c) holds.

Conversely, assume that the conditions (F2a) (F2b) and (F2c) hold. If xt ∈γ

µ +h µ, but xt∈γ ∨qδµ, then µ(x) < t and µ(x) < δ. For any a1, a2, b1, b2, x, z ∈ S
such that x + a1 + b1 + z = a2 + b2 + z, then by (F2a) and (F2c), we have

δ > µ(x) ∨ γ ≥µ(a1 + b1) ∧ µ(a2 + b2) ∧ δ

≥(µ(a1 + b1) ∨ γ) ∧ (µ(a2 + b2) ∨ γ) ∧ δ

≥µ(a1) ∧ µ(b1) ∧ µ(a2) ∧ µ(b2) ∧ δ,

which implies, µ(x) ≥ µ(a1) ∧ µ(b1) ∧ µ(a2) ∧ µ(b2). Thus,

t ≤ (µ +h µ)(x) =
∨

x+a1+b1+z=a2+b2+z

µ(a1) ∧ µ(a2) ∧ µ(b1) ∧ µ(b2)

=
∨

x+a1+b1+z=a2+b2+z

µ(x)

=µ(x),
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contradiction. Thus (F1a) holds.
Similarly, we can prove (F1b) holds.
Finally, if there exist a, b, x, z ∈ S and t, r ∈ [0, 1] with x + a + z = b + z and

at, br ∈γ µ such that xt∧r∈γ ∨qδµ, then µ(a) ≥ t, µ(b) ≥ r, µ(x) ∨ γ < t ∧ r < δ,
contradiction. �
Remark 3.1. For any (∈γ ,∈γ ∨qδ)-fuzzy left (resp., right) h-ideal µ of S, we see
that

(i) If γ = 0 and δ = 1, then µ is the fuzzy left (resp.,right) h-ideal of S (see
[15]).

(ii) If γ = 0 and δ = 0.5, then µ is the (∈,∈ ∨q)-fuzzy left (resp.,right) h-ideal
of S (see [18]).

Theorem 3.2. Let µ be a fuzzy set of S. Then
(1) µ is an (∈γ ,∈γ ∨qδ)-fuzzy left (resp., right) h-ideal of S if and only if

µγ
r (̸= ∅) is a left (resp., right) h-ideal of S for all r ∈ (γ, δ].

(2) If 2δ = 1 + γ, then µ is an (∈γ ,∈γ ∨qδ)-fuzzy left (resp., right) h-ideal of

S if and only if µδ
r( ̸= ∅) is a left (resp., right) h-ideal of S for all r ∈ (δ, 1].

(3) If 2δ = 1 + γ, then µ is an (∈γ ,∈γ ∨qδ)-fuzzy left (resp., right) h-ideal of

S if and only if [µ]δr( ̸= ∅) is a left (resp., right) h-ideal of S for all r ∈ (γ, 1].

Proof. (1) We only consider the fuzzy left h-ideals. Let µ be an (∈γ ,∈γ ∨qδ)-fuzzy
left h-ideal of S.

(i) If x, y ∈ µγ
r for all r ∈ (γ, δ], then µ(x) ≥ r and µ(y) ≥ r. It follows that

µ(x + y) ∨ γ ≥ µ(x) ∧ µ(y) ∧ δ ≥ r ∧ δ > r > γ, and so µ(x + y) ≥ r, that is,
(x + y)r ∈γ µ.

(ii) If y ∈ µγ
r , then µ(y) ≥ r and so µ(xy) ∨ γ ≥ µ(y) ≥ r > γ, and so

µ(xy) ≥ r, that is, (xy)r ∈γ µ.
(iii) Let x, z ∈ S and a, b ∈ µγ

r be such that x + a + z = b + z. Then
µ(x) ∨ γ ≥ µ(x) ∧ µ(y) ∧ δ ≥ r ∧ δ = r > γ, and so µ(x) ≥ r, that is xr ∈γ µ. Thus,
µγ
r is a left h-ideal of S.

Conversely, assume that µγ
r is a left h-ideal of S for all r ∈ (γ, δ]. Let x, y ∈ S.

If µ(x + y) ∧ γ < r = µ(x) ∧ µ(y) ∧ δ, then xr ∈γ µ,yr ∈γ µ, but(x + y)r∈γ ∨qδµ,
and so x, y ∈ µγ

r . Since µγ
r is a left h-ideal of S, we have x+ y ∈ µγ

r , a contradiction.
Thus (F2a) holds. Similarly, we can prove (F2b) and (F2c) hold.

(2) It is similar to (1).
(3) Let µ be an (∈γ ,∈γ ∨qδ)-fuzzy left h-ideal of S and r ∈ (γ, 1]. Then for

all x, y ∈ [µ]δr, we have xr, yr ∈γ ∨qδµ, that is, µ(x) ≥ r > γ or µ(x) > 2δ − r >
2δ − 1 = γ, and µ(y) ≥ r > γ or µ(y) > 2δ − r > 2δ − 1 = γ. Since µ is an
(∈γ ,∈γ ∨qδ)-fuzzy left h-ideal of S, then µ(x+ y)∨ γ ≥ µ(x)∧µ(y)∧ δ > γ ∧ δ = γ.
and so µ(x + y) ≥ µ(x) ∧ µ(y) ∧ δ.

Case 1: r ∈ (γ, δ]. Then 2δ − r ≥ δ ≥ r, and so
µ(x + y) ≥ r ∧ r ∧ δ = r
or µ(x + y) ≥ r ∧ (2δ − r) ∧ δ = r
or µ(x + y) ≥ (2δ − r) ∧ (2δ − r) ∧ δ = δ > r. Hence, (x + y)r ∈γ µ.
Case 2: r ∈ (δ, 1]. Then 2δ − r < δ < r, and so
µ(x + y) ≥ r ∧ r ∧ δ = δ > 2δ − r
or µ(x + y) ≥ r ∧ (2δ − r) ∧ δ = 2δ − r
or µ(x + y) ≥ (2δ − r) ∧ (2δ − r) ∧ δ = 2δ − r. Hence, (x + y)rqδµ.
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Thus in any case, (x + y)r ∈γ ∨qδµ, that is, (x + y)r ∈ [µ]δr. Similarly, we can

prove the others of left h-ideals. Hence, [µ]δr is a left h-ideal of S.
Conversely, assume that [µ]δr is a left h-ideal of S for all r ∈ (γ, δ]. If x, y ∈

S such that µ(x + y) ∨ γ < r = µ(x) ∧ µ(y) ∧ δ, then xr ∈γ µ, yr ∈γ µ, but

(x + y)r∈γ ∨qδµ, and so x, y ∈ [µ]δr. Since [µ]δr is a left h-ideal of S, we have

x + y ∈ [µ]δr, a contradiction. Thus (F2a) holds.
Similarly, we can prove (F2b) and (F2c) hold. Hence µ is an (∈γ ,∈γ ∨qδ)-fuzzy

left h-ideal of S. �
If we take γ = 0 and δ = 0.5 in Theorem 3.2, we can conclude the following

results:

Corollary 3.1. Let µ be a fuzzy set of S. Then
(1) µ is an (∈,∈ ∨q)-fuzzy left (resp., right) h-ideal of S if and only if µr (̸= ∅)

is a left (resp., right) h-ideal of S for all r ∈ (0, 0.5](see [18]).
(2) µ is an (∈,∈ ∨q)-fuzzy left (resp., right) h-ideal of S if and only if

Q(µ; r)(̸= ∅) is a left (resp., right) h-ideal of S for all r ∈ (0.5, 1], where Q(µ, r) =
{x ∈ S | xrqµ}.

(3) µ is an (∈,∈ ∨q)-fuzzy left (resp., right) h-ideal of S if and only if [µ]r (̸= ∅)
is a left (resp., right) h-ideal of S for all r ∈ (0, 1] (see [18]).

Definition 3.2. Let γ, δ ∈ [0, 1] be such that γ < δ. A fuzzy set µ of S is called an
(∈γ ,∈γ ∨qδ)-fuzzy h-interior ideal of S if it satisfies (F1a), (F1c) and

(F3a) µ⊙h µ ⊆ ∨q(γ,δ)µ;
(F3b) χS ⊙h µ⊙ χS ⊆ ∨q(γ,δ)µ.

It is easy to get the following result:

Theorem 3.3. Every (∈γ ,∈γ ∨qδ)-fuzzy h-ideal of S is an (∈γ ,∈γ ∨qδ)-fuzzy h-
interior ideal.

Remark 3.2. The converse of Theorem 3.3 is not true.

Example 3.2. Let S = {0, 1, 2, 3} be a hemiring with Cayley tables as follows:

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

. 0 1 2 3
0 0 0 0 0
1 0 2 0 2
2 0 0 0 0
3 0 2 0 2

Define a fuzzy set µ of S by µ(0) = µ(1) = 0.6 and µ(2) = µ(3) = 0.2. Thus,
µ is an (∈γ ,∈γ ∨qδ)-fuzzy h-interior ideal of S, but it is not an (∈γ ,∈γ ∨qδ)-fuzzy
h-ideal of S.

Theorem 3.4. A fuzzy set µ of S is an (∈γ ,∈γ ∨qδ)-fuzzy h-interior ideal of S if
and only if it satisfies (F2a), (F2c) and

(F4a) µ(xy) ∨ γ ≥ µ(x) ∧ µ(y) ∧ δ;
(F4b) µ(xyz) ∨ γ ≥ µ(y) ∧ δ.

Proof. It is similarly to that of Theorem 3.1. �
Remark 3.3. For any (∈γ ,∈γ ∨qδ)-fuzzy h-interior ideal µ of S, we have

(i) If γ = 0 and δ = 1, then µ is the fuzzy h-interior ideal of S (see [21]).
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(ii) If γ = 0 and δ = 0.5, then µ is the (∈,∈ ∨q) fuzzy h-interior ideal of S
(see [21]).

Theorem 3.5. Let µ be a fuzzy set of S. Then
(1) µ is an (∈γ ,∈γ ∨qδ)-fuzzy h-interior ideal of S if and only if µγ

r (̸= ∅) is
an h-interior ideal of S for all r ∈ (γ, δ].

(2) If 2δ = 1 + γ, then µ is an (∈γ ,∈γ ∨qδ)-fuzzy h-interior ideal of S if and

only if µδ
r (̸= ∅) is an h-interior ideal of S for all r ∈ (δ, 1].

(3) If 2δ = 1 + γ, then µ is an (∈γ ,∈γ ∨qδ)-fuzzy h-interior ideal of S if and

only if [µ]δr (̸= ∅) is an h-interior ideal of S for all r ∈ (γ, 1].

Proof. It is similarly to that of Theorem 3.2. �
If we take γ = 0 and δ = 0.5 in Theorem 3.5, we can conclude the following

results.

Corollary 3.2. Let µ be a fuzzy set of S. Then
(1) µ is an (∈,∈ ∨q)-fuzzy h-interior ideal of S if and only if µr( ̸= ∅) is an

h-interior ideal of S for all r ∈ (0, 0.5] (see [21]).
(2) µ is an (∈,∈ ∨q)-fuzzy h-interior ideal of S if and only if Q(µ; r)(̸= ∅) is

an h-interior ideal of S for all r ∈ (0.5, 1].
(3) µ is an (∈,∈ ∨q)-fuzzy h-interior ideal of S if and only if [µ]r (̸= ∅) is an

h-interior ideal of S for all r ∈ (0, 1].

4. Prime (∈γ ,∈γ ∨qδ)-fuzzy h-ideals

In this Section, we investigate prime and strongly prime (∈γ ,∈γ ∨ qδ)-fuzzy
h-ideals in hemirings.

Definition 4.1. An (∈γ ,∈γ ∨qδ)-fuzzy h-ideal of S is called prime if for all x, y ∈
S, t ∈ (γ, 1], we have

(P) (xy)t ∈γ µ ⇒ xt ∈γ ∨qδµ or yt ∈γ ∨qδµ.

Example 4.1. Consider the hemiring (N0,+, ·), where N0 is the set of all non-
negative integers. Define a fuzzy set µ of N0 by

µ(x) =

{
0.7 if x ∈ ⟨2⟩,
0.2 otherwise.

Then, one easily checks that µ is a prime (∈γ ,∈γ ∨qδ)-fuzzy h-ideal of N0.

Theorem 4.1. An (∈γ ,∈γ ∨qδ)-fuzzy h-ideal of S is prime if for all x, y ∈ S, it
holds,

(P’) µ(x) ∨ µ(y) ∨ γ ≥ µ(xy) ∧ δ.

Proof. Let µ be a prime (∈γ ,∈γ ∨ qδ)-fuzzy h-ideal of S. If there exist x, y ∈ S such
that µ(x) ∨ µ(y) ∨ γ < t = µ(xy) ∧ δ, then γ < t ≤ δ, (xy)t ∈γ µ, but xt∈γµ and
yt∈γµ. Since µ(x) + t < 2t ≤ 2δ, and µ(y) + t < 2t ≤ 2δ, then xtqδµ and ytqδµ,
and hence, we have xt∈γ ∨ qδµ and yt∈γ ∨ qδµ, which is a contradiction. Thus, (P’)
holds.

Conversely, suppose that the condition (P’) holds. Let (xy)t ∈γ µ. Then
µ(xy) ≥ t and so µ(x) ∨ µ(y) ≥ µ(xy) ∧ δ ≥ t ∧ δ. We consider the following two
cases:
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(i) If t ∈ (γ, δ], then µ(x) ≥ t or µ(y) ≥ t, that is, xt ∈γ µ or yt ∈γ µ. Thus,
xt ∈γ∨ qδµ or yt ∈γ∨ qδµ.

(ii) If t ∈ (δ, 1], then µ(x) ∨ µ(y) ≥ δ, and so, µ(x) ≥ δ or µ(y) ≥ δ. Hence,
µ(x) + t > 2δ or µ(y) + t > 2δ, that is, xtqδµ or ytqδµ. Thus, xt ∈γ ∨ qδµ or
yt ∈γ∨ qδµ.

This proves that µ is prime. �
Theorem 4.2. An (∈γ ,∈γ ∨qδ)-fuzzy h-ideal µ of S is prime if and only if µγ

t (̸= ∅)
is a prime h-ideal of S for all t ∈ (γ, δ].

Proof. Let µ be a prime (∈γ ,∈γ ∨ qδ)-fuzzy h-ideal of S and t ∈ (γ, δ]. Then, by
Theorem 3.2(1), µγ

t is an h-ideal of S for all γ < t ≤ δ. Let xy ∈ µγ
t . By Theorem

4.1, we have µ(x)∨µ(y) ≥ µ(xy)∧ δ ≥ t∧ δ = t, and so µ(x) ≥ t or µ(y) ≥ t. Thus,
x ∈ µγ

t or y ∈ µγ
t . This shows that µγ

t is a prime h-ideal of S for all t ∈ (γ, δ].
Conversely, assume that µγ

t (̸= ∅) is a prime h-ideal of S for all t ∈ (γ, δ]. Then
by Theorem 3.2(1), µ is an (∈γ ,∈γ ∨ qδ)-fuzzy h-ideal of S. Let (xy)t ∈γ µ. Then
xy ∈ µγ

t . Since µγ
t is prime, x ∈ µγ

t or y ∈ µγ
t , that is, xt ∈γ µ or yt ∈γ µ. Thus,

xt ∈γ∨ qδµ or yt ∈γ∨ qδµ. Therefore, µ must be a prime (∈γ ,∈γ∨ qδ)-fuzzy h-ideal
of S. �

If γ = 0 and δ = 0.5 in Theorem 4.2, we can conclude the following result.

Corollary 4.1. µ is a prime (∈,∈ ∨q)-fuzzy h-ideal of S if and only if µt( ̸= ∅) is a
prime h-ideal of S for all t ∈ (0, 0.5](see [19]).

Theorem 4.3. If 2δ = 1 + γ, then a fuzzy set µ of S is a prime (∈γ ,∈γ ∨qδ)-fuzzy
h-ideal of S if and only if µδ

t ( ̸= ∅) is a prime h-ideal of S for all t ∈ (δ, 1].

Proof. Let µ be a prime (∈γ ,∈γ ∨ qδ)-fuzzy h-ideal of S and t ∈ (δ, 1]. Then by

Theorem 3.2(2), µδ
t is an h-ideal of S and t > δ > 2δ − t. To prove µδ

t is prime,
let xy ∈ µδ

t . Hence µ(xy) > 2δ − t. Since µ is a prime (∈γ ,∈γ ∨ qδ)-fuzzy h-ideal
of S, we have µ(x) ∨ µ(y) ∨ γ ≥ µ(xy) ∧ δ > 2δ − t ≥ 2δ − 1 = γ. It follows that
µ(x) ∨ µ(y) ≥ 2δ − t, and so x ∈ µδ

t or y ∈ µδ
t .

Therefore, µδ
t is a prime h-ideal of S.

Conversely, let µδ
t (̸= ∅) be a prime h-ideal of S for all t ∈ (δ, 1], then by

Theorem 3.2(2), we know µ is an (∈γ ,∈γ∨ qδ)-fuzzy h-ideal of S. Now, if there exist
x, y ∈ S such that µ(x) ∨ µ(y) ∨ γ < t = µ(xy) ∧ δ. Then t ≤ δ, µ(xy) ≥ t, µ(x) <
t, µ(x)+ t < 2t ≤ 2δ, µ(y) < t and µ(y)+ t < 2t ≤ 2δ. It follows that (xy)t ∈γ µ, but
xt∈γ∨ qδµ and yt∈γ∨ qδµ, a contradiction. Therefore, µ(x) ∨ µ(y) ∨ γ ≥ µ(xy) ∧ δ
for all x, y ∈ S and so µ is a prime (∈γ ,∈γ ∨ qδ)-fuzzy h-ideal of S. �
Theorem 4.4. If 2δ = 1 + γ, then a fuzzy set µ of S is a prime (∈γ ,∈γ ∨qδ)-fuzzy
h-ideal if and only if [µ]δt (̸= ∅) is a prime h-ideal of S for all t ∈ (γ, 1].

Proof. Let µ be a prime (∈γ ,∈γ ∨ qδ)-fuzzy h-ideal of S. Then by Theorem 3.2(3),

[µ]δt is an h-ideal of S for all t ∈ (γ, 1].
To prove [µ]δt is prime, let xy ∈ [µ]δt . Since [µ]δt = µδ

t ∪ µγ
t , we have xy ∈ µδ

t or
xy ∈ µγ

t .
Case 1: xy ∈ µδ

t − µγ
t . Then µ(xy) + t > 2δ and µ(xy) < t.

(1) If µ(xy) ≤ δ, then µ(x)∨ µ(y) + t ≥ µ(xy)∧ δ + t = µ(xy) + t > 2δ, which
implies, µ(x) + t > 2δ or µ(y) + t > 2δ, that is, x ∈ µδ

t ⊆ [µ]δt or y ∈ µδ
t ⊆ [µ]δt .



20 Xueling Ma, Jianming Zhan

(2) If µ(xy) > δ, then δ < µ(xy) < t. Thus, µ(x) ∨ µ(y) + t ≥ µ(xy) ∧ δ + t =
δ + t > 2δ. Hence x ∈ µδ

t ⊆ [µ]δt or y ∈ µδ
t ⊆ [µ]δt .

Case 2: xy ∈ µγ
t . Then µ(xy) ≥ t.

(1) If t ≤ δ, then µ(x) ∨ µ(y) ≥ µ(xy) ∧ δ ≥ t, which implies, x ∈ µγ
t ⊆ [µ]δt or

y ∈ µγ
t ⊆ [µ]δt .
(2) If t > δ, then µ(x) ∨ µ(y) ≥ t ∧ δ = δ, which implies, µ(x) ∨ µ(y) + t > 2δ.

Hence, x ∈ µδ
t ⊆ [µ]δt or y ∈ µδ

t ⊆ [µ]δt .
Therefore, [µ]δt is a prime h-ideal of S.
Conversely, let [µ]δt (̸= ∅) be a prime h-ideal of S for all t ∈ (γ, 1], then by

Theorem 3.2(3), we know µ is an (∈γ ,∈γ ∨ qδ)-fuzzy h-ideal of S. Let (xy)t ∈γ µ,

then xy ∈ µγ
t ⊆ [µ]δt . Since [µ]δt is prime, we have x ∈ [µ]δt or y ∈ [µ]δt . This implies,

xt ∈γ ∨ qδµ or yt ∈γ ∨ qδµ. Therefore, µ is a prime (∈γ ,∈γ ∨ qδ)-fuzzy h-ideal of
S. �

If γ = 0 and δ = 0.5 in Theorem 4.4, we can conclude the following result.

Corollary 4.2. µ is a prime (∈,∈ ∨q)-fuzzy h-ideal of S if and only if [µ]t(̸= ∅) is
a prime h-ideal of S for all t ∈ (0, 1](see [18]).

Definition 4.2. An (∈γ ,∈γ ∨qδ)-fuzzy h-ideal ρ of S is called strongly prime if for
every (∈γ ,∈γ ∨qδ)-fuzzy h-ideals µ, ν of S, we have

(P”) µ⊙h ν ⊆ ρ ⇒ µ ⊆ ρ or ν ⊆ ρ.

Theorem 4.5. Let µ be a strongly prime (∈γ ,∈γ ∨qδ)-fuzzy h-ideal of S. Then
µγ
t (̸= ∅) is a prime h-ideal of S for all t ∈ (γ, δ].

Proof. Let t ∈ (γ, δ] be such that µγ
t is nonempty. Then µγ

t is an h-ideal of S by
Theorem 3.1(1). Now, we show that µγ

t is prime.
Let I and J be two h-ideals of S such IJ ⊆ µγ

t , then it is easy to see that tI
and tJ are two (∈γ ,∈γ ∨qδ)-fuzzy h-ideals of S and tI ⊙h tJ ⊆ µ. In fact, let x ∈ S.

If (tI ⊙h tJ)(x) = 0, then (tI ⊙h tJ)(x) = 0 ≤ µ(x). Otherwise, there exist
ai, bi, a

′
j , b

′
j(i = 1, 2, . . . ,m; j = 1, 2, . . . , n), z ∈ S such that

x +

m∑
i=1

aibi + z =

n∑
j=1

a′jb
′
j + z.

and tI(ai) ∧ tI(a′j) ∧ tJ(bi) ∧ tJ(b′j) ̸= 0.

This implies ai, a
′
j ∈ I and bi, b

′
j ∈ J , and so

m∑
i=1

aibi,
n∑

j=1
a′jb

′
j ∈ IJ . Hence

x ∈ IJ ⊆ µγ
t , that is, µ(x) ≥ t. Thus

(tI ⊙h tJ)(x) =
∨

x+
m∑
i=1

aibi+z=
n∑

j=1
a′jb

′
j+z

tI(ai) ∧ tI(a′j) ∧ tJ(bi) ∧ tJ(b′j)

≤t ≤ µ(x).

Therefore tI ⊙h tJ ⊆ µ. Since µ is a strongly prime (∈γ ,∈γ∨ qδ)-fuzzy h-ideal
of S, we have tI ⊆ µ or tJ ⊆ µ, this implies, I ⊆ µγ

t or J ⊆ µγ
t . This completes the

proof. �
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Theorem 4.6. Every strongly prime (∈γ ,∈γ ∨qδ)-fuzzy h-ideal is prime (∈γ ,∈γ

∨qδ)-fuzzy h-ideal.

Proof. It follows from Theorems 4.5 and 4.2. �
Remark 4.1. The converse of Theorem 4.6 is not true.

Example 4.2. Consider the hemiring (N0,+, ·), where N0 is the set of all non-
negative integers. Define a fuzzy set µ of N0 by

µ(x) =

 1 if x = 0,
0.2 if x = 2k ̸= 0,
0.4 if x = 2k + 1.

Thus µ is a prime (∈γ ,∈γ ∨qδ)-fuzzy h-ideal of N0, but it is not strong prime.

5. Characterization of h-hemiregular and h-hemisimple hemirings

In this Section, we show that the h-hemiregular and h-semisimple hemirings
can be described by using these kinds of fuzzy h-ideals.

Definition 5.1. [25]A hemiring S is said to be h-hemiregular if for each a ∈ S,
there exist x1, x2, z ∈ S such that a + ax1a + z = ax2a + z.

Lemma 5.1. [25] Let µ be a fuzzy set of L. Then an ∈-soft set (F,A) over L with
A = (α, β] ⊂ (0, 1] is a filteristic soft MTL-algebra over L if and only if µ is a fuzzy
filter with thresholds (α, β].

Theorem 5.1. A hemiring S is h-hemiregular if and only if for any (∈γ ,∈γ ∨qδ)-
fuzzy right h-ideal µ and (∈γ ,∈γ ∨qδ)-fuzzy left h-ideal ν, we have

µ ∩ ν ∼ µ⊙h ν.

Proof. Let S be a h-hemiregular hemiring, µ an (∈γ ,∈γ ∨qδ)-fuzzy right h-ideal and
ν an (∈γ ,∈γ ∨qδ)-fuzzy left h-ideal of S.

Then
µ⊙h ν ⊆ ∨q(γ,δ)µ⊙h χS ⊆ ∨q(γ,δ)µ

and
µ⊙h ν ⊆ ∨q(γ,δ)χS ⊙ ν ⊆ ∨q(γ,δ)ν.

Thus, µ⊙h ν ⊆ ∨q(γ,δ)µ ∩ ν.
For any x ∈ S, there exist a, a′, z ∈ S such that x + xax + z = xa′x + z since

S is h-hemiregular.
Thus, we have

(µ⊙h ν) ∨ γ =
∨

x+
m∑
i=1

aibi+z=
n∑

j=1
a′jb

′
j+z

µ(ai) ∧ µ(aj′) ∧ ν(bi) ∧ ν(bj′) ∨ γ

≥(µ(xa) ∧ µ(xa′) ∧ ν(x)) ∨ γ

=(µ(xa) ∨ γ) ∧ (µ(xa′) ∨ γ) ∨ (ν(x) ∨ γ)

≥µ(x) ∧ ν(x) ∧ δ

=(µ ∩ ν)(x) ∧ δ.
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This implies, µ ∩ ν ⊆ ∨q(γ,δ)µ⊙h ν. Whence µ ∩ ν ∼ µ⊙h ν.
Conversely, let A and B, resp., a right h-ideal and a left h-ideal of S. Then

χA and χB are (∈γ ,∈γ ∨qδ)-fuzzy right h-ideal and (∈γ ,∈γ ∨qδ)-fuzzy left h-ideal
of S, respectively.

Thus,

χAB = χA ⊙h χB ∼ χA∩B = χA ∩ χB,

which implies, AB = A∩B. It follows from Lemma 5.1 that S is h-hemiregular. �

Definition 5.2. [21]A subset A of S is called idempotent if A = A2.

Definition 5.3. [21]A hemiring S is called h-semisimple if every h-ideal is idempo-
tent.

Lemma 5.2. [21] A hemiring S is h-semisimple is if and only if one of the following
holds:

(1) There exist ci, di, ei, fi, c
′
j , d

′
j , e

′
j , f

′
j , z ∈ S such that

x +

m∑
i=1

cixdieixfi + z =

n∑
j=1

c′jxd
′
je

′
jxf

′
j + z

for all x ∈ S;
(2) x ∈ SxSxS for all x ∈ S;
(3) A ⊆ SASAS for all A ∈ S.

Theorem 5.2. Let S be an h-semisimple hemiring, µ a fuzzy set of S. Then µ is an
(∈γ ,∈γ ∨qδ)-fuzzy h-ideal if and only if it is an (∈γ ,∈γ ∨qδ)-fuzzy h-interior ideal.

Proof. Let µ be an (∈γ ,∈γ ∨qδ)-fuzzy h-ideal of S, it follows from Theorem 3.3 that
it is an (∈γ ,∈γ ∨qδ)-fuzzy h-interior ideal.

Conversely, Let µ be an (∈γ ,∈γ ∨qδ)-fuzzy h-interior ideal of S. For any x, y ∈
S, since S is h-semisimple, by Lemma 5.2, there exist ci, di, ei, fi, c

′
j , d

′
j , e

′
j , f

′
j , z ∈ S

such that x+
m∑
i=1

cixdieifi + z =
n∑

j=1
c′jxd

′
je

′
jxf

′
j + z and so xy +

m∑
i=1

cixdieifiy + zy =

n∑
j=1

c′jxd
′
je

′
jxf

′
jy + zy. Thus,

µ(xy) ∨ γ ≥(µ(
m∑
i=1

cixdieixfiy) ∧ µ(
n∑

j=1

c′jxd
′
je

′
jxf

′
jy) ∧ δ) ∨ γ

≥(µ(

m∑
i=1

cixdieixfiy) ∨ γ) ∧ (µ(

n∑
j=1

c′jxd
′
je

′
jxf

′
jy) ∨ γ) ∧ (δ ∨ γ)

≥µ(x) ∧ δ.

Thus, µ is an (∈γ ,∈γ ∨qδ)-fuzzy right h-ideal of S. Similarly, µ is an (∈γ ,∈γ

∨qδ)-fuzzy left h-ideal of S. Hence µ is an (∈γ ,∈γ ∨qδ)-fuzzy h-ideal of S. �

Corollary 5.1. [21] Let S be an h-semisimple hemiring, µ a fuzzy set of S. Then
µ is an (∈,∈ ∨q)-fuzzy h-ideal if and only if it is an (∈,∈ ∨q)-fuzzy h-interior ideal.
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Theorem 5.3. A hemiring S is h-semisimple if and only if for any (∈γ ,∈γ ∨qδ)-
fuzzy h-interior ideals µ and ν, we have

µ ∩ ν ∼ µ⊙h ν.

Proof. Let S be an h-semisimple hemiring, µ and ν (∈γ ,∈γ ∨qδ)-fuzzy h-interior
ideals of S. Then, by Theorem 5.2, µ and ν are (∈γ ,∈γ ∨qδ)-fuzzy h-ideals of S.
Thus,

µ⊙h ν ⊆ ∨q(γ,δ)µ⊙h χS ⊆ ∨q(γ,δ)µ
and µ⊙h ν ⊆ ∨q(γ,δ)χS ⊙h ν ⊆ ∨q(γ,δ)ν.
This proves, µ⊙h ν ⊆ ∨q(γ,δ)µ ∩ ν. For any x, y ∈ S, since S is h-semisimple,

there exist ci, di, ei, fi, c
′
j , d

′
j , e

′
j , f

′
j , z ∈ S such that x+

m∑
i=1

cixdieifi+z =
n∑

j=1
c′jxd

′
je

′
jxf

′
j+

z for all x ∈ S. Thus

(µ⊙h ν)(x) ∨ γ =(
∨

x+
m∑
i=1

aibi+z=
n∑

j=1
a′jb

′
j+z

µ(ai) ∧ µ(aj) ∧ ν(bi) ∧ ν(b′j)) ∨ γ

≥µ(cixdi) ∧ µ(c′jxd
′
j) ∧ ν(eixfi) ∧ ν(e′jxf

′
j) ∨ γ

=(µ(cixdi) ∨ γ) ∧ (µ(c′jxd
′
j) ∨ γ) ∧ (ν(eixfi) ∨ γ) ∧ (ν(e′jxf

′
j) ∨ γ)

≥µ(x) ∧ ν(x) ∧ δ

=(µ ∩ ν)(x) ∧ δ.

Thus, µ ∩ ν ⊆ ∨q(γ,δ)µ⊙h ν, and so, µ ∩ ν ∼ µ⊙h ν.
Conversely, let A be any h-ideal of S, then it is an h-interior ideal. Thus, its

characteristic functions χA is an (∈γ ,∈γ ∨qδ)-fuzzy h-interior ideal. Thus, we have

χA = χA ∩ χA ∼ χA ⊙h χA = χ
A2 , and so, A = A2. Thus, S is h-semisimple. �

Corollary 5.2. [21] A hemiring S is h-semisimple if and only if for any (∈,∈ ∨q)-
fuzzy h-interior ideals µ and ν, µ ∩ ν ∼ µ⊙h ν.

6. Conclusions

In the study of a fuzzy algebraic system, we notice that the (fuzzy) ideals with
special properties play an important role. By using these kinds of fuzzy h-ideals in
hemirings, we are able to characterize the hemirings, in particular, we are able to
show that the h-hemiregular hemirings can be characterized by their fuzzy h-ideals.

We believe that the research along this direction can be continued, and in
fact, some results in this paper have already constituted a foundation for further
investigation concerning the further development of hemirings. In the future study
of fuzzy hemirings, perhaps the following topics are worth to be considered:

(1) To describe the n-ary-hemirings;
(2) To establish an (∈γ ,∈γ ∨qδ)-fuzzy spectrum of n-ary-hemirings;
(3) To discuss soft n-ary-hemirings and some of its application in computer

science.
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