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SPACES
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In this paper, we investigate iterative methods for solving the pseudomono-
tone monotone variational inequality and the generalized variational inequality in Hilbert
spaces. We propose an iterative algorithm by using self-adaptive method and projection
method. Strong convergence result of the proposed algorithm is obtained under a weaker
condition than sequential weak continuity imposed on pseudomonotone operators.
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1. Introduction

The variational inequality problem (in short, VIP(C,)) is to find a point z* € C
such that

where C is a nonempty convex closed subset of a real Hilbert space H with inner product
(-,) and induced norm || - || and ¢ : C — H is a nonlinear operator. The solution of

VIP(C, 1)) is denoted by Sol(C, ).

VIP(C,)) studied by Stampacchia ([16]) unveiled theory and algorithms for the study
of a large category of problems such as differential equations, optimization problems ([34,
44]), fixed point problems ([8, 17, 18, 19, 32]), mathematical programming problems ([10]),
equilibrium problems ([30, 47]) and so on. Elaborate efforts were made to study VIP(C,))
in different directions including existence theories, solution methods and applications in
augmented reality, see, e.g., [1]-[47]. One of the most influential algorithms for solving
VIP(C, v)) is projection algorithm ([1, 15, 28]) which defines a sequence {z*} by the following
manner

2" = projo [z* — s (aF)], k>0, (2)

where proj- means the orthogonal projection from H onto C and the constant ¢ is the
step-size.

In general, the operator ¢ in (2) should be strongly monotone and Lipschitz contin-
uous. Note that the Lipschitz constant of ¢ is very difficult to calculate. To relax these re-
strictions, several valuable methods have been presented for solving VIP(C, v), for example,
Korpelevich’s extragradient method ([11, 38, 46]), Tseng’s method ([21, 22, 40]), forward-
backward-forward method ([2]), subgradient-extragradient method ([5]), self-adaptive meth-
ods ([20, 27, 31, 41, 42]). Especially, Vuong [25] proved that Korpelevich’s extragradient
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method has weak convergence under the conditions that 1 is sequentially weak-to-weak
continuous and pseudo-monotone.

Let ¢ : C — H and ¢ : C' — C be two operators. Recall that the generalized
variational inequality is to find a point T € C such that

(@(z"), p(2) — p(a)) 2 0, ¥z € C. (3)

The solution set of (3) is denoted by Sol(C, ¢, ¢).

If ¢ = I, then the generalized variational inequality (3) reduces to VIP(C, ).

The general variational inequality (3) was introduced and studied in [13] and a wide
class of linear and nonlinear problems including nonsymmetric and odd-order obstacle, uni-
lateral and moving boundary value problems arising in pure and applied sciences can be
studied in the unified framework of general variational inequalities, see [33, 36] and the
references therein.

Our main purpose of this paper is to investigate the following problem of finding a
point u' such that

ul € Sol(C, ¢, ¢) and p(ul) € Sol(C,v), (4)

where ¢ is A-inverse strongly ¢-monotone and v is pseudomonotone.

We propose an iterative algorithm by using self-adaptive method and projection
method for solving problem (4). Strong convergence result of the proposed algorithm is
obtained under a weaker condition than sequential weak continuity imposed on the pseu-
domonotone operator .

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that an
operator f : C'— C is said to be L-Lipschitz (L > 0) if
1f(u) = ()l < Llju—vl|, Vu,v € C.
If L < 1, then f is said to be L-contraction. If L = 1, then f is said to be nonexpansive.
Let ¢ : C — C and A : C — H be two operators. Recall that an operator A: C — C

is said to be
e 7-strongly monotone if there exists a constant 1 > 0 such that

(A(u) — A(v),u —v) > nlju —v|?, Yu,v € C. (5)
e J\-inverse strongly ¢-monotone if there exists a constant A > 0 such that
(A(u) — A(v), pu) — () = M A() — AW)[[2, ¥u,v € C.
e pseudomonotone if
(A(w),u —v) > 0= (A(u),u —v) >0, Yu,v € C.
Remark 2.1. Let ¢ : C — C be an n-strongly monotone operator. Let ¢ : C — H be a

A-inverse strongly w-monotone operator. Then, we have the following assertions:
e According to the definition of ¢, we have

le(@) — el = nllz —yl, Yo,y € C. (6)
e Forallz,y € C and o0 > 0, we have

I(e(z) = 0g(2)) = (¢(y) = ooW)I* < oo = 20)[[é(x) = dW)I* + llo(x) —eWI*. ()

An operator S : H — 2/ is said to be monotone if and only if (z — y,u — v) > 0
for all z,y € dom(S), u € S(z), and v € S(y). A monotone operator S on H is said to be
maximal if and only if its graph is not strictly contained in the graph of any other monotone
operator on H.
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For Vz! € H, there exists a unique point in C, denoted by proj,[z'] satisfying
lz" = proje[a]|| < |z — 2f||, Vo € C.
Moreover, projc is firmly nonexpansive, that is,
Iprojelg*] — proja[v']||* < (projelg*] — projo[v'], ¢* — o), ¥g*, o' € H. (8)
Further, proj. has the following property ([39])
(¢* — projelg*], =" — projelq*]) <0, V¢* € H,z' € C. (9)

Lemma 2.1 ([6]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
¥ be a continuous and pseudomonotone operator on H. Then p € Sol(C,v) if and only if
pl satisfies

(W(uh),ut —p) >0, vut € C.

Lemma 2.2 ([26]). Let {ar} C [0,00), {bx} C (0,1) and {ci} be real number sequences.
Suppose the following conditions are satisfied
(i) apy1 < (1 —br)ag + cx, Vb > 1;
(i) 202y bkc: 005
(iii) limsup b—k <0 or Y2 |ek| < oo.
k—o00 k
Then limy_, o ar, = 0.

Lemma 2.3 ([12]). Let {Ux} be a real number sequence. Assume there exists at least a
subsequence {Vy,} of {01} such that ¥y, < Ok, 41 for alli > 0. For every k > Ky, define an
integer sequence {T(k)} as 7(k) = max{i < k : O, < Vg, 41}. Then 7(k) = o0 as k — oo
and for all k > Ko, max{¥y ), I} < Vr()41-

3. Main results

In this section, we first present an iterative algorithm and its convergence analysis.
Finally, we include several corollaries.

Let H be a real Hilbert space and C a nonempty closed convex subset of H. Let
f : C = C be a p-contractive operator. Let ¢ : C' — C be a weakly continuous and n-strongly
monotone operator with Rang(p) = C. Let ¢ : C' — H be a A-inverse strongly ¢-monotone
operator. Let the operator 1 be pseudomonotone on H and L-Lipschitz continuous on C.
Set T := {x|z € Sol(C, ¢, ¢) and ¢(x) € Sol(C,v)}.

Let {\;} and {<;} be two real number sequences in [0,1] and {ox} be a real number
sequence in (0,00). Let v € (0,1), w € (0,1), 0 € (0,1) and p € (0,2) be four constants. In
what follows, we suppose that T" # 0.

Next, we present an iterative algorithm for solving problem (4).

Algorithm 3.1. Let 2° € C be an initial point. Set k = 0.
Step 1. Let z* be given. Calculate

2 = projo[Mef () + (1 = M) (p(a®) — are(a®))]. (10)
Step 2. Find the smallest nonnegative integer m = min{0,1,2,---} such that
u® = projo[2F — va™ip(2F)], (11)
and
v [$(u’) = p(P)| < olu* — 2F. (12)
If uF = 2%, then set y* = 2* and go to Step 3. Otherwise, calculate
~k
. ]
y* = projc 2" + u(l - o)|lu* — 2F|? (13)

[ak|12 ]
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where 4% = uF — 2F — vw™(uF). Consequently, set @), = ™.
Step 3. Calculate

p(@" ) = (1= a)p(e®) + ay”. (14)
Step 4. Set k:=k+ 1 and return to step 1.

Remark 3.1. We have the following assertions
(i) The variational inequality

has a unique solution denoted by q*.

(ii) There exists the smallest nonnegative integer m satisfying (11) and (12).
i

(iii) 0 < 22 < @y, < 1(Vk > 0).

(iv) If 2 = projo[2* — v (2F)], then 2% € Sol(C, ).

In order to prove convergence analysis of Algorithm 3.1, we add an extra condition
(P): Let {t*} be any given sequence in H. If t* — T € H and lim infj_, |1 (t¥)|| = 0, then
we get ¥(t7) = 0.
Remark 3.2. If ¢ is sequentially weak-to-weak continuous, then 1 satisfies the above con-
dition (P).

Theorem 3.1. Suppose that the following conditions are satisfied:

(Cl): 1imk_,oo )\k =0 and Zzozl >\k = o0y

(c2): 0 < liminfy oo ¢ < limsupy_,oo sk < 1;

(c3): 0<v<n<2Xand 0 <liminfy_, o o < limsup,_, ., or < 2A.

Then the sequence {x*} generated by Algorithm 3.1 converges strongly to ¢* € T which solves
VI (15).

Proof. Since ¢* solves VI (15), ¢* € Sol(C, ¢, ) and ¢(q*) € Sol(C,+). It follows that

¢(q") = projc[p(q*) — orep(q")] for all k > 0. Set w* = p(z*) — orp(2*) — (¢(¢*) — o d(q"))
for all k > 0. Using (7), we obtain

[ [I* < [lo®) — o(g)I? + or(or — 20)[[6(2") — ¢(q*)1?
K 2 (16)
< lle(2®) = e(a),
T o) — onbe ) — (o) — ornrd@
< [le(@* ) = o(@®)[1” + ort1(orer — 20) [ @(=" ) — p(a*)|1?.
By (6), (10) and (16), we have
12 = o(g")|| = llproje M f(2*) + (1 = X)) (0(2*) — oxd(*))] — projele(q”) — ore(q)]|
< Ie(f(@*) = o(q*) + ord(q)) + (1 = Ae)w"||
<Nl F (@) = F(@) + Akl F (@) = o(d") + ord(@™) |+ (1= M) [w”|
< v /nllea®) — o(g) + Mell £(a°) — e(q*) + ore(q")]]
+ (1= M) lle(a™) — o(q")|
<= (1 =v/mAllle®) — o(@)l + Ml £(d") — (@) + 2Allo(g)])).-
Combining (16) and (18), we get
125 = o(@)IIP < Mell (=) = 0(q*) + ord (@) I* + (1 = Ap) ||
< NellF (@) = o(q") + ard (@) 1P + (1= M) [llp(=*) = (g (19)
+ ok(or — 2))[lo(z") — o (¢")|%].

(17)

(18)
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From (13), we have

ok
ly* = @(a")? = [[projc |2 + p(1 — o)|u” *ZkHQ”akH ~ projelip(q")]]|”
<[l = ela) + (1 = ) = P |
Ju — 2 2
= 12" = (a1 +2u(1 ~ U)WW“,Z’“ —¢(q"))
+ /1'2(]- _ 0_)2 ”’U"C — ZkH4
[lax]?
Now, we estimate (a*, 2% — (g*)). First, observe that
(@, 25 = p(g")) = (u* — 2* —vapp(u®), 25 — o(¢*))
= (u* = 2* +vwpp(*), 28 — 9(¢")) — var ("), 2* - v(g")
— v (p(u®), 2 —u*) —Vwk@/)(uk)»u —»(q"))
21
: "), 0lg") = 2") 2y

= v (Y(u"), o(q") — u*) + v (P(z
+ (" = 2+ vmp (Y (2F) — (), 2 — )
+ (¥ — 2 + vop(2F), uF — o(q7)).

Owing to ¢(q*) € Sol(C, 1), we have (¥(p(q%)), p(g*) —2*) < 0and (¥(p(q%)), p(q*) —u¥) <
0. Utilizing the pseudomonotonicity of v, we deduce

(®(=%), 0(q") — 2*) <0, (22)
and
(W (u"), (") — u*) <0. (23)
Applying inequality (9) to (11), we achieve
(= 2+ veab(F), uF — o)) < 0. (24)
In the light of (21)-(24), we derive

(@8, 2 — o(q")) < (¥ = 2 + v ((h) — v(ub)), 24 — )

(25)
< =l = 2F 2+ v llo () = Db — .
On the basis of (12) and (25), we get
(@*, 2" = o(q")) < —llu" = 2"|* + oflu® - 2*|?
k_ k|2 (26)
—(L=o)fju” — 27"
This together with (20) implies that
. . uF — k|4 b — k|4
I = (a7 < 12+ = ot = 2ut - oL 22D 4 ol 2]
oIt — 2*)* (27)

= ||2* = (@) — (2~ p)p(l - ) RE

< Jl2* = w(g")II*.
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According to (14), (18) and (27), we obtain

lo(@* 1) — e(g*) ]| < (1 = )lle(a®) — (@)l + slly* — ola?)]
< (1= a)lle®) — (@) + sll=* — o(g*)]
< (1—a)lle@®) — (@) + [l — (1= v/n)Ad]
% Jo(a*) — (@) + a1 £ (a%) — (@) +2Xlo(g")) (28
= [1— (1= v/maellle@) — o(g)|| + (1 — v/n)A

)
o @) = @)l +2A6(g7)]
1—v/n '

It results in that

o) = (0" < max {lota®) — pta)), L= HDENATI

Thus, the sequence {¢(x*)} is bounded and the sequences {z*} and {y*} are also bounded
due to (18) and (27). Since [|2* — ¢*|| < ll¢(zn) — (gl {2"} is bounded.

By (14), we have (@p(zF*1) — o(a), o(z¥) — ¢(q*)) = s (y* — 0(z"), o(z*) — ©(q")).
It follows that

le(@"*) = o(g)1? = lle(@®) = p(g")]
= ally® = e(@)I” = lle(@®) = (@)I? = lly* — @) + lly* — o)) (29)
= ally® = e(@)I” = lle(@*) = e(a)?] = (X = a)lly" — o).
Thanks to (27) and (29), we obtain
o(

| 2

(") = (@)I* < (1 = a)lle(a®) = p(a)? + <rll=® — ()
o (30)
— (L= a)lly* — (")
By virtue of (18), we get
125 = (@)1 < [1 = (1 = v/mAi]lle(z*) — (a1
*\ * * 2 (31)
- V/n))\k<|f(q ) @iq_)ﬂ/; 2)\[|#(q )II) .

Now, we analyze two cases: the sequence {|¢(2*) — ©(¢*)||} is either monotone decreasing
at infinity (Case 1) or not (Case 2).

For Case 1, there exists a large enough positive integer K such that {||p(z*) —¢(q*)||}
is monotone decreasing when k¥ > K. In this case, limy_,o [|[@(2%) — ©(¢*)| exists. On
account of (30) and (31), we have

k(1= a)lly* = o@")I? < (1= )lle(@®) = o(g)I* + all=" — ela")II?
— llp(@* ) = ()|
< (@) = o(@)1? = lle(@**) = o(g*)I?

e (LR CaTR LTy

— 0.
It follows that
li b o)) =o.
Jm [y — ()] =0 (32)
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Furthermore,
Jim oz — o(@")] = lim qilly* — o(z")] =0, (33)
—00 k—o0

which together with the strong monotonicity of ¢ implies that

lim [2**! — 2" = 0.
k—o0

Taking into account (14), (19) and (27), we deduce

(@) — o(g")1? < (1= )llo(®) — o(d*)1> + sklly® — o(a*)II”
< (1= qu)[lo(z®) = o(g*)1? + skl — o(g")]?

[ — 2|4
— (2 — p)p(l - U)QWHQH

< (1= a)lle(@®) = (@) + (@ = M)lle(=") = o(a")I?
+ (1= Ao (on — 2X)[lo(2*) — o(q")|I?

+ Ml F(2%) = @(g") + oe(q") | (34)
y 1 ozl = 2
— k(2= p)u(l - o) W
< Jlp(a®) — e(@)II” + sk Xell £ (&) — o(q*) + orep(q)|]?
y 1 ozl =2
— k(2 = p)u(l — o) W
+ (1= Ap)ok(or — 2M)[lo(z") — o (g")[|.
It results in that
_ Y (el s _ _ Ry _ ()12
k(2 —pp(l —o) I + k(1 = Ap)ok(2A — ox)[[p(z7) — &(g")]|
< le(@®) = e(@)I1* = le(@nt1) — e(@)I? + seAull f(2*) — o(q*) + ord ("))
— 0.
Accordingly,
Al
dm (35)

and

lim |6(z*) = 6(") | = 0. (36)
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As a result of (8), (10) and (16), we have

2% — 0(a") I = lIprojclAef (2) + (1= A)(p(a*) — o)) ~ projeliela®) — oxola")]IP
< (uf) + (1= W) (b)) = o0 + o), =~ oa°))
= M{7) - ola >+ak¢><q*>z —ola) + (L= M)k, 2 — ()
< MlF (@) — pla") + ord(a”), 7 — pla")) + 5 {12* — ola")I?

k)2 = llp(a*) - 2 = or(é(a*) - 6(a) 12}

< MF@) = ola”) + orala )12 = o(a)]
+ 3 {llo@®) = o@)I? + 124~ ola) P - o) — ola™)I?
— llp(a*) = 2512 + 20 () = 2¥, 6(a*) = 6la")) |-

It yields
125 = @(a)* < llp(z") = (a)* — llp(a) - 2*|?
+ 20k lp(2*) = 2F[lllo(2*) — ¢(g") (37)
+ 20l (") = (") + ow(a) 2" = o(g")ll.
By (34) and (37), we obtain
lo(@® ) = o(@)II* < llp(=") = o(a*)II* + 20kllo(a®) — 2*[[lo(*) — d(q")l]
+ 201 £ (%) = (@) + aro(a) 112" — (gl
= ckllp(a®) = 2*1%.
It follows that
skllo(@®) = 2117 < llo(@®) — o(@)I* = lle(@*) = o(d)]?
+ 20 |p(a") — 2|6 (*) — d(q")] (38)
+ 20| (%) = (g*) + ard(g)[12" = (a)].
In the light of (36) and (38), we deduce
lim [lp(a) — 2] = 0. (39)
From (11), we have
lu* = o(g*)l < llprojel2® — vwrp ()] — (")l
< 12" = (@)l + vl ().
Thus, the sequences {u*} and {@*} are bounded. Consequently, from (35), we get
Jim |uf — 2*|| = 0. (40)
In view of (12) and (40), we deduce
Jim () — ()] = 0. (a1)
As a result of (13), we have the following estimate

lu? — 2*

la*|

ly* — 2"l < p(1 - o)
This together with (35) implies that
li 2k =o.
Jm [y =2t =0 (42)
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Since the sequences {z*} and {z*} are bounded, we can select a common subsequence {k;}
of {k} such that z¥ — p' and

limsup(f(¢*) — ¢(¢"), 2" — (q")) = lim (f(¢*) — p(g*), 2" — p(q")). (43)

k— o0 i—00
Then, p(z*) — (p') because of the weak continuity of ¢, zF* — ¢(p') by (39) and
y*i — o(ph) due to (42).
Next, we show p' € Sol(C, ¢, ¢). Define an operator A by the following form

Then, A is maximal @-monotone. Let (0,u) € G(A). It follows that u — ¢(¥) € N¢(D)
and (p() — ("), u — ¢(0)) = 0. Since (p(0) — 2%, 2 — [Ag, f(2") + (1 = M) (0 (2") —
or,¢(z%))]) > 0, we have

ki — (ki )
(o0 = 54 P gk ) 4 25 Gp(6) = b pla) — o 0(ah) - S(a) 20,

i

It leads to
(0(0) — (@), u) = ((0) — o(z"), $(0))

= 25 0(0) - 2 p(a) = o B(H) — (o) (14)
o 2= pla®)
- (o) - a4, =220

() = M p(at) —on b () — F).

We have |zF — ¢(z%))|| — 0 by (39), Ay, — 0 by (cl) and @(z¥) — ¢(p'). Letting
i — oo in (44), we conclude that (¢(9) — (p'),u) > 0. Hence, pf € A71(0). Therefore,
p € Sol(C, 6, ¢).

Next, we show o(p') € Sol(C, ). In view of (11), we have

(uh — 2% vy (2R, Ul — M) >0, Yul € C.

It results in that
<7/J(Zki)ﬂ UT - Zk1> Z <¢(Zkl)aukl - Zk1>

1 45
(ub — 2F uki —uty, vl € C. (45)
VWi,
According to (40) and (45), we receive
lim inf (1(2%), u’ — 2%) > 0, Vul € C. (46)
1—00

There are two possibilities, i.e., possibility 1: liminf;_, [[¢(2%))|| = 0 and possibility 2:

lim inf; oo [[10(2%)|| > 0.
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For possibility 1, since z¥ — (p) and v satisfying condition (P), we deduce that
P(p(p")) = 0. Consequently, p(p') € Sol(C,1)). Next, we consider possibility 2. In terms
of (46), we can choose a positive real numbers sequence {¢;} satisfying lim;_, ¢; = 0. For
each ¢;, there exists the smallest positive integer n; such that

P ,
(————ul —2"9) +¢ >0, Vj >ny. (47)
[ (")
kg
Set g(2"i) = ) for j > n;. Then (h(¥3), g(z"3)) = 1. By virtue of (47), we have

("))
(W), ul + ¢l (") llg("9) = 249) > 0,
which implies, together with the pseudomonotonicity of ¢ on H, that
(W(u + [0 (2")[1g(z"9), ul + € ]|6(2"9)[lg(z") = 249) > 0. (48)

Note that lim;_, ej|\w(zk11)H||g(zk‘a)|| = lim; ;o €; = 0. Thus, taking the limit as j — oo
in (48), we obtain

($(uh),u’ = p(p)) > 0,vul € C. (49)
By Lemma 2.1 and (49), we deduce that o(p') € Sol(C, ). Therefore, pf € Sol(C, ¢, p) N
¢ 1(Sol(C,y)) =T.

From (43), we obtain

limsup(f(q*) — ¢(q"), 2" — (")) = lim (f(¢*) — (q"), 2" — @(q*))

ko0 oo (50)
= (f(q") — e(q"), 0(p") — 0(q")) < 0.
By (9) and (10), we have
12% = o(g)I* = Iproje[Me f (z*) + (1 = M) (p(2*) — org(2"))]

— projele(q) — (1 = A)ord(q")]|I®

< M(f (@) = 0(g") + (1= M)w*, 25 — p(g"))

= M (f (@) = f(g), 2" = o(a")) + M f(q7) — @(q%), 2" = o(q"))
+ (1= M) (w*, 25 — p(g"))

<= (1 =v/mllle®) — e(g)llz" — (gl
+ M (f(q") = (g"), 2 —p(q"))

< LV o0y (g2 + L (a0
+ M (f(q7) — e(q7), 2 = o(q")).
It follows that
12 = o(g)? < [1— (1 = v/mXellle(@®) = o(g")|1? + 20 f (") — @(q%), 2* — o(q*)).
Therefore,
lo(@* ) — o(g)|1? < (1= )llp(®) — o(q*)1* + skllz" — (g™
<[1— (1 —v/na]lle(@") — olg)|? (51)
+ 266 Ak (f(q7) — (%), 2% — 0(q")).

By Lemma 2.2 and (51), we conclude that ¢(x*) — ¢(¢*) and z¥ — ¢*.

In Case 2, for any integer K, there exists integer n > K such that ||o(z™) — p(¢*)| <
llo(x ) — o(g*)||. Let 95 = {||p(x*) — @(q*)||*}. Then, we have 9,, < J,,41. For all k > n,
define an integer sequence {7(k)} as follows 7(k) = max{i € Njn < i < k,¥; < 941} It
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is easy to check that 7(k) is non-decreasing and satisfies limg oo 7(k) = 0o and ¥, () <
Vr(ky+1, Yk > n.
Similarly, we can show

limsup(f(q*) — v(q¢%), P v(g*)) <0 (52)

k—o0

and

D1 < (1= (1 = /)Ny Sr () [0r () + 2Mr iy iy (F(@7) — 0(q%), 278 — (g™)).  (53)
Since V() < Vr k)41, from (53), we have

2
B < — 2 (F @) — o(q ). 2P — (g, 54
(k) < 17V/77<f(q ) —eld"), = ¢(q")) (54)
Taking into account (52) and (54), we derive limsupy,_, ., Y- < 0 and hence

Based on (52) and (53), we can deduce limsup;,_, ., Urx)+1 < limsup,_, ., ¥-). This to-
gether with (55) implies that limy o V7(k)4+1 = 0. By Lemma 2.3, we obtain 0 < ) <
max{V-(x), Vr(k)+1}- Therefore, 9 — 0. That is, o(z%) = ¢(q*) and thus z* — ¢*. This
completes the proof. O

Algorithm 3.2. Let 2° € C be an initial point. Set k = 0.
Step 1. Let z* be given. Calculate
2 = projo[Mf(*) + (1 = M) (@® — oo (z"))].
Step 2. Find the smallest nonnegative integer m = min{0,1,2,---} such that
ub = projo[s* — va™ip(:H)),
and
v [ (ut) — p(2F)|| < oflu® - 2F.

If uf = 2%, then set y* = 2F and go to Step 3. Otherwise, calculate
k : k Y P
y" =projo |2° +p(l —o)llu” — 27 T E |

where 4% = uk — 2% — vw™(uF). Consequently, set @), = w

Step 3. Calculate

m

.’Ek+1 _ (

1— )2k + gt
Step 4. Set k:=k+ 1 and return to step 1.

Corollary 3.1. Let H be a real Hilbert space and C' a nonempty closed convex subset
of H. Let f : C — C be a p-contractive operator. Let ¢ : C' = H be a A-inverse strongly
monotone operator. Let the operator i be pseudomonotone on H and L-Lipschitz continuous
on C. Suppose that the conditions (c1)-(¢c8) are satisfied. Suppose that T'y = {z|x €
Sol(C, ¢) N Sol(C, 1)} # 0. Then the sequence {x*} generated by Algorithm 3.2 converges
strongly to q* € I'y.

4. Conclusion

In this paper, we survey iterative algorithm for solving the pseudomonotone monotone
variational inequality (1) and the generalized variational inequality (3) in Hilbert spaces.
We propose an iterative algorithm for solving problem (4) by using self-adaptive method and
projection method. Strong convergence result of the proposed algorithm is obtained under
a weaker condition than sequential weak continuity imposed on pseudomonotone operators.
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