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In this paper, we investigate iterative methods for solving the pseudomono-
tone monotone variational inequality and the generalized variational inequality in Hilbert

spaces. We propose an iterative algorithm by using self-adaptive method and projection

method. Strong convergence result of the proposed algorithm is obtained under a weaker
condition than sequential weak continuity imposed on pseudomonotone operators.
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1. Introduction

The variational inequality problem (in short, VIP(C,ψ)) is to find a point x∗ ∈ C
such that

〈ψ(x∗), x− x∗〉 ≥ 0, ∀ x ∈ C, (1)

where C is a nonempty convex closed subset of a real Hilbert space H with inner product
〈·, ·〉 and induced norm ‖ · ‖ and ψ : C → H is a nonlinear operator. The solution of
VIP(C,ψ)) is denoted by Sol(C,ψ).

VIP(C,ψ)) studied by Stampacchia ([16]) unveiled theory and algorithms for the study
of a large category of problems such as differential equations, optimization problems ([34,
44]), fixed point problems ([8, 17, 18, 19, 32]), mathematical programming problems ([10]),
equilibrium problems ([30, 47]) and so on. Elaborate efforts were made to study VIP(C,ψ))
in different directions including existence theories, solution methods and applications in
augmented reality, see, e.g., [1]-[47]. One of the most influential algorithms for solving
VIP(C,ψ)) is projection algorithm ([1, 15, 28]) which defines a sequence {xk} by the following
manner

xk+1 = projC [xk − ςψ(xk)], k ≥ 0, (2)

where projC means the orthogonal projection from H onto C and the constant ς is the
step-size.

In general, the operator ψ in (2) should be strongly monotone and Lipschitz contin-
uous. Note that the Lipschitz constant of ψ is very difficult to calculate. To relax these re-
strictions, several valuable methods have been presented for solving VIP(C,ψ), for example,
Korpelevich’s extragradient method ([11, 38, 46]), Tseng’s method ([21, 22, 40]), forward-
backward-forward method ([2]), subgradient-extragradient method ([5]), self-adaptive meth-
ods ([20, 27, 31, 41, 42]). Especially, Vuong [25] proved that Korpelevich’s extragradient
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method has weak convergence under the conditions that ψ is sequentially weak-to-weak
continuous and pseudo-monotone.

Let φ : C → H and ϕ : C → C be two operators. Recall that the generalized
variational inequality is to find a point x† ∈ C such that

〈φ(x†), ϕ(x)− ϕ(x†)〉 ≥ 0, ∀x ∈ C. (3)

The solution set of (3) is denoted by Sol(C, φ, ϕ).
If ϕ = I, then the generalized variational inequality (3) reduces to VIP(C,ψ).
The general variational inequality (3) was introduced and studied in [13] and a wide

class of linear and nonlinear problems including nonsymmetric and odd-order obstacle, uni-
lateral and moving boundary value problems arising in pure and applied sciences can be
studied in the unified framework of general variational inequalities, see [33, 36] and the
references therein.

Our main purpose of this paper is to investigate the following problem of finding a
point u† such that

u† ∈ Sol(C, φ, ϕ) and ϕ(u†) ∈ Sol(C,ψ), (4)

where φ is λ-inverse strongly ϕ-monotone and ψ is pseudomonotone.
We propose an iterative algorithm by using self-adaptive method and projection

method for solving problem (4). Strong convergence result of the proposed algorithm is
obtained under a weaker condition than sequential weak continuity imposed on the pseu-
domonotone operator ψ.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that an
operator f : C → C is said to be L-Lipschitz (L ≥ 0) if

‖f(u)− f(v)‖ ≤ L‖u− v‖, ∀u, v ∈ C.

If L < 1, then f is said to be L-contraction. If L = 1, then f is said to be nonexpansive.
Let ϕ : C → C and A : C → H be two operators. Recall that an operator A : C → C

is said to be
• η-strongly monotone if there exists a constant η > 0 such that

〈A(u)−A(v), u− v〉 ≥ η‖u− v‖2, ∀u, v ∈ C. (5)

• λ-inverse strongly ϕ-monotone if there exists a constant λ > 0 such that

〈A(u)−A(v), ϕ(u)− ϕ(v)〉 ≥ λ‖A(u)−A(v)‖2, ∀u, v ∈ C.

• pseudomonotone if

〈A(v), u− v〉 ≥ 0⇒ 〈A(u), u− v〉 ≥ 0, ∀u, v ∈ C.

Remark 2.1. Let ϕ : C → C be an η-strongly monotone operator. Let φ : C → H be a
λ-inverse strongly ϕ-monotone operator. Then, we have the following assertions:
• According to the definition of ϕ, we have

‖ϕ(x)− ϕ(y)‖ ≥ η‖x− y‖, ∀x, y ∈ C. (6)

• For all x, y ∈ C and σ > 0, we have

‖(ϕ(x)− σφ(x))− (ϕ(y)− σφ(y))‖2 ≤ σ(σ − 2λ)‖φ(x)− φ(y)‖2 + ‖ϕ(x)− ϕ(y)‖2. (7)

An operator S : H → 2H is said to be monotone if and only if 〈x − y, u − v〉 ≥ 0
for all x, y ∈ dom(S), u ∈ S(x), and v ∈ S(y). A monotone operator S on H is said to be
maximal if and only if its graph is not strictly contained in the graph of any other monotone
operator on H.
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For ∀x† ∈ H, there exists a unique point in C, denoted by projC [x†] satisfying

‖x† − projC [x†]‖ ≤ ‖x− x†‖, ∀x ∈ C.
Moreover, projC is firmly nonexpansive, that is,

‖projC [q∗]− projC [v†]‖2 ≤ 〈projC [q∗]− projC [v†], q∗ − v†〉, ∀q∗, v† ∈ H. (8)

Further, projC has the following property ([39])

〈q∗ − projC [q∗], x† − projC [q∗]〉 ≤ 0, ∀q∗ ∈ H,x† ∈ C. (9)

Lemma 2.1 ([6]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
ψ be a continuous and pseudomonotone operator on H. Then p̂ ∈ Sol(C,ψ) if and only if
p† satisfies

〈ψ(u†), u† − p̂〉 ≥ 0, ∀u† ∈ C.

Lemma 2.2 ([26]). Let {ak} ⊂ [0,∞), {bk} ⊂ (0, 1) and {ck} be real number sequences.
Suppose the following conditions are satisfied
(i) ak+1 ≤ (1− bk)ak + ck,∀k ≥ 1;
(ii)

∑∞
n=1 bk =∞;

(iii) lim sup
k→∞

ck
bk
≤ 0 or

∑∞
n=1 |ck| <∞.

Then limk→∞ ak = 0.

Lemma 2.3 ([12]). Let {ϑk} be a real number sequence. Assume there exists at least a
subsequence {ϑki} of {ϑk} such that ϑki ≤ ϑki+1 for all i ≥ 0. For every k ≥ K0, define an
integer sequence {τ(k)} as τ(k) = max{i ≤ k : ϑki < ϑki+1}. Then τ(k) → ∞ as k → ∞
and for all k ≥ K0, max{ϑψ(k), ϑk} ≤ ϑτ(k)+1.

3. Main results

In this section, we first present an iterative algorithm and its convergence analysis.
Finally, we include several corollaries.

Let H be a real Hilbert space and C a nonempty closed convex subset of H. Let
f : C → C be a ρ-contractive operator. Let ϕ : C → C be a weakly continuous and η-strongly
monotone operator with Rang(ϕ) = C. Let φ : C → H be a λ-inverse strongly ϕ-monotone
operator. Let the operator ψ be pseudomonotone on H and L-Lipschitz continuous on C.
Set Γ := {x|x ∈ Sol(C, φ, ϕ) and ϕ(x) ∈ Sol(C,ψ)}.

Let {λk} and {ςk} be two real number sequences in [0, 1] and {σk} be a real number
sequence in (0,∞). Let ν ∈ (0, 1), $ ∈ (0, 1), σ ∈ (0, 1) and µ ∈ (0, 2) be four constants. In
what follows, we suppose that Γ 6= ∅.

Next, we present an iterative algorithm for solving problem (4).

Algorithm 3.1. Let x0 ∈ C be an initial point. Set k = 0.
Step 1. Let xk be given. Calculate

zk = projC [λkf(xk) + (1− λk)(ϕ(xk)− σkφ(xk))]. (10)

Step 2. Find the smallest nonnegative integer m = min{0, 1, 2, · · · } such that

uk = projC [zk − ν$mψ(zk)], (11)

and

ν$m‖ψ(uk)− ψ(zk)‖ ≤ σ‖uk − zk‖. (12)

If uk = zk, then set yk = zk and go to Step 3. Otherwise, calculate

yk = projC

[
zk + µ(1− σ)‖uk − zk‖2 ûk

‖ûk‖2

]
, (13)
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where ûk = uk − zk − ν$mψ(uk). Consequently, set $k = $m.
Step 3. Calculate

ϕ(xk+1) = (1− ςk)ϕ(xk) + ςky
k. (14)

Step 4. Set k := k + 1 and return to step 1.

Remark 3.1. We have the following assertions
(i) The variational inequality

〈f(x)− ϕ(x), ϕ(y)− ϕ(x)〉 ≤ 0, ∀y ∈ Γ, (15)

has a unique solution denoted by q∗.
(ii) There exists the smallest nonnegative integer m satisfying (11) and (12).
(iii) 0 < $σ

νL < $k ≤ 1(∀k ≥ 0).

(iv) If zk = projC [zk − ν$kψ(zk)], then zk ∈ Sol(C,ψ).

In order to prove convergence analysis of Algorithm 3.1, we add an extra condition
(P): Let {tk} be any given sequence in H. If tk ⇀ t† ∈ H and lim infk→∞ ‖ψ(tk)‖ = 0, then
we get ψ(t†) = 0.

Remark 3.2. If ψ is sequentially weak-to-weak continuous, then ψ satisfies the above con-
dition (P).

Theorem 3.1. Suppose that the following conditions are satisfied:
(c1): limk→∞ λk = 0 and

∑∞
k=1 λk =∞;

(c2): 0 < lim infk→∞ ςk ≤ lim supk→∞ ςk < 1;
(c3): 0 < ν < η < 2λ and 0 < lim infk→∞ σk ≤ lim supk→∞ σk < 2λ.
Then the sequence {xk} generated by Algorithm 3.1 converges strongly to q∗ ∈ Γ which solves
VI (15).

Proof. Since q∗ solves VI (15), q∗ ∈ Sol(C, φ, ϕ) and ϕ(q∗) ∈ Sol(C,ψ). It follows that
ϕ(q∗) = projC [ϕ(q∗)−σkφ(q∗)] for all k ≥ 0. Set wk = ϕ(xk)−σkφ(xk)− (ϕ(q∗)−σkφ(q∗))
for all k ≥ 0. Using (7), we obtain

‖wk‖2 ≤ ‖ϕ(xk)− ϕ(q∗)‖2 + σk(σk − 2λ)‖φ(xk)− φ(q∗)‖2

≤ ‖ϕ(xk)− ϕ(q∗)‖2,
(16)

and
‖ϕ(xk+1)− σk+1φ(xk+1)− (ϕ(xk)− σk+1φ(xk))‖2

≤ ‖ϕ(xk+1)− ϕ(xk)‖2 + σk+1(σk+1 − 2λ)‖φ(xk+1)− φ(xk)‖2.
(17)

By (6), (10) and (16), we have

‖zk − ϕ(q∗)‖ = ‖projC [λkf(xk) + (1− λk)(ϕ(xk)− σkφ(xk))]− projC [ϕ(q∗)− σkφ(q∗)]‖

≤ ‖λk(f(xk)− ϕ(q∗) + σkφ(q∗)) + (1− λk)wk‖

≤ λk‖f(xk)− f(q∗)‖+ λk‖f(q∗)− ϕ(q∗) + σkφ(q∗)‖+ (1− λk)‖wk‖

≤ λkν/η‖ϕ(xk)− ϕ(q∗)‖+ λk‖f(q∗)− ϕ(q∗) + σkφ(q∗)‖

+ (1− λk)‖ϕ(xk)− ϕ(q∗)‖

≤ [1− (1− ν/η)λk]‖ϕ(xk)− ϕ(q∗)‖+ λk(‖f(q∗)− ϕ(q∗)‖+ 2λ‖φ(q∗)‖).

(18)

Combining (16) and (18), we get

‖zk − ϕ(q∗)‖2 ≤ λk‖f(xk)− ϕ(q∗) + σkφ(q∗)‖2 + (1− λk)‖wk‖2

≤ λk‖f(xk)− ϕ(q∗) + σkφ(q∗)‖2 + (1− λk)[‖ϕ(xk)− ϕ(q∗)‖2

+ σk(σk − 2λ)‖φ(xk)− φ(q∗)‖2].

(19)
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From (13), we have

‖yk − ϕ(q∗)‖2 =
∥∥projC

[
zk + µ(1− σ)‖uk − zk‖2 ûk

‖ûk‖2

]
− projC [ϕ(q∗)]

∥∥2
≤
∥∥zk − ϕ(q∗) + µ(1− σ)‖uk − zk‖2 ûk

‖ûk‖2
‖2

= ‖zk − ϕ(q∗)‖2 + 2µ(1− σ)
‖uk − zk‖2

‖ûk‖2
〈ûk, zk − ϕ(q∗)〉

+ µ2(1− σ)2
‖uk − zk‖4

‖ûk‖2
.

(20)

Now, we estimate 〈ûk, zk − ϕ(q∗)〉. First, observe that

〈ûk, zk − ϕ(q∗)〉 = 〈uk − zk − ν$kψ(uk), zk − ϕ(q∗)〉

= 〈uk − zk + ν$kψ(zk), zk − ϕ(q∗)〉 − ν$k〈ψ(zk), zk − ϕ(q∗)〉

− ν$k〈ψ(uk), zk − uk〉 − ν$k〈ψ(uk), uk − ϕ(q∗)〉

= ν$k〈ψ(uk), ϕ(q∗)− uk〉+ ν$k〈ψ(zk), ϕ(q∗)− zk〉

+ 〈uk − zk + ν$k(ψ(zk)− ψ(uk)), zk − uk〉

+ 〈uk − zk + ν$kψ(zk), uk − ϕ(q∗)〉.

(21)

Owing to ϕ(q∗) ∈ Sol(C,ψ), we have 〈ψ(ϕ(q∗)), ϕ(q∗)−zk〉 ≤ 0 and 〈ψ(ϕ(q∗)), ϕ(q∗)−uk〉 ≤
0. Utilizing the pseudomonotonicity of ψ, we deduce

〈ψ(zk), ϕ(q∗)− zk〉 ≤ 0, (22)

and

〈ψ(uk), ϕ(q∗)− uk〉 ≤ 0. (23)

Applying inequality (9) to (11), we achieve

〈uk − zk + ν$kψ(zk), uk − ϕ(q∗)〉 ≤ 0. (24)

In the light of (21)-(24), we derive

〈ûk, zk − ϕ(q∗)〉 ≤ 〈uk − zk + ν$k(ψ(zk)− ψ(uk)), zk − uk〉

≤ −‖uk − zk‖2 + ν$k‖ψ(zk)− ψ(uk)‖‖zk − uk‖.
(25)

On the basis of (12) and (25), we get

〈ûk, zk − ϕ(q∗)〉 ≤ −‖uk − zk‖2 + σ‖uk − zk‖2

= −(1− σ)‖uk − zk‖2.
(26)

This together with (20) implies that

‖yk − ϕ(q∗)‖2 ≤ ‖zk − ϕ(q∗)‖2 − 2µ(1− σ)2
‖uk − zk‖4

‖ûk‖2
+ µ2(1− σ)2

‖uk − zk‖4

‖ûk‖2

= ‖zk − ϕ(q∗)‖2 − (2− µ)µ(1− σ)2
‖uk − zk‖4

‖ûk‖2

≤ ‖zk − ϕ(q∗)‖2.

(27)
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According to (14), (18) and (27), we obtain

‖ϕ(xk+1)− ϕ(q∗)‖ ≤ (1− ςk)‖ϕ(xk)− ϕ(q∗)‖+ ςk‖yk − ϕ(q∗)‖

≤ (1− ςk)‖ϕ(xk)− ϕ(q∗)‖+ ςk‖zk − ϕ(q∗)‖

≤ (1− ςk)‖ϕ(xk)− ϕ(q∗)‖+ ςk[1− (1− ν/η)λk]

× ‖ϕ(xk)− ϕ(q∗)‖+ ςkλk(‖f(q∗)− ϕ(q∗)‖+ 2λ‖φ(q∗)‖)

= [1− (1− ν/η)ςkλk]‖ϕ(xk)− ϕ(q∗)‖+ (1− ν/η)ςkλk

× ‖f(q∗)− ϕ(q∗)‖+ 2λ‖φ(q∗)‖
1− ν/η

.

(28)

It results in that

‖ϕ(xk)− ϕ(q∗)‖ ≤ max

{
‖ϕ(x0)− ϕ(q∗)‖, ‖f(q∗)− ϕ(q∗)‖+ 2λ‖φ(q∗)‖

1− ν/η

}
.

Thus, the sequence {ϕ(xk)} is bounded and the sequences {zk} and {yk} are also bounded
due to (18) and (27). Since ‖xk − q∗‖ ≤ 1

η‖ϕ(xn)− ϕ(q∗)‖, {xk} is bounded.

By (14), we have 〈ϕ(xk+1)− ϕ(xk), ϕ(xk)− ϕ(q∗)〉 = ςk〈yk − ϕ(xk), ϕ(xk)− ϕ(q∗)〉.
It follows that

‖ϕ(xk+1)− ϕ(q∗)‖2 − ‖ϕ(xk)− ϕ(q∗)‖2

= ςk[‖yk − ϕ(q∗)‖2 − ‖ϕ(xk)− ϕ(q∗)‖2 − ‖yk − ϕ(xk)‖2] + ς2k‖yk − ϕ(xk)‖2

= ςk[‖yk − ϕ(q∗)‖2 − ‖ϕ(xk)− ϕ(q∗)‖2]− ςk(1− ςk)‖yk − ϕ(xk)‖2.
(29)

Thanks to (27) and (29), we obtain

‖ϕ(xk+1)− ϕ(q∗)‖2 ≤ (1− ςk)‖ϕ(xk)− ϕ(q∗)‖2 + ςk‖zk − ϕ(q∗)‖2

− ςk(1− ςk)‖yk − ϕ(xk)‖2.
(30)

By virtue of (18), we get

‖zk − ϕ(q∗)‖2 ≤ [1− (1− ν/η)λk]‖ϕ(xk)− ϕ(q∗)‖2

+ (1− ν/η)λk

(
‖f(q∗)− ϕ(q∗)‖+ 2λ‖φ(q∗)‖

1− ν/η

)2

.
(31)

Now, we analyze two cases: the sequence {‖ϕ(xk)− ϕ(q∗)‖} is either monotone decreasing
at infinity (Case 1) or not (Case 2).

For Case 1, there exists a large enough positive integer K such that {‖ϕ(xk)−ϕ(q∗)‖}
is monotone decreasing when k ≥ K. In this case, limk→∞ ‖ϕ(xk) − ϕ(q∗)‖ exists. On
account of (30) and (31), we have

ςk(1− ςk)‖yk − ϕ(xk)‖2 ≤ (1− ςk)‖ϕ(xk)− ϕ(q∗)‖2 + ςk‖zk − ϕ(q∗)‖2

− ‖ϕ(xk+1)− ϕ(q∗)‖2

≤ ‖ϕ(xk)− ϕ(q∗)‖2 − ‖ϕ(xk+1)− ϕ(q∗)‖2

+ (1− ν/η)λk

(
‖f(q∗)− ϕ(q∗)‖+ 2λ‖φ(q∗)‖

1− ν/η

)2

→ 0.

It follows that

lim
k→∞

‖yk − ϕ(xk)‖ = 0. (32)
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Furthermore,

lim
k→∞

‖ϕ(xk+1)− ϕ(xk)‖ = lim
k→∞

ςk‖yk − ϕ(xk)‖ = 0, (33)

which together with the strong monotonicity of ϕ implies that

lim
k→∞

‖xk+1 − xk‖ = 0.

Taking into account (14), (19) and (27), we deduce

‖ϕ(xk+1)− ϕ(q∗)‖2 ≤ (1− ςk)‖ϕ(xk)− ϕ(q∗)‖2 + ςk‖yk − ϕ(q∗)‖2

≤ (1− ςk)‖ϕ(xk)− ϕ(q∗)‖2 + ςk‖zk − ϕ(q∗)‖2

− ςk(2− µ)µ(1− σ)2
‖uk − zk‖4

‖ûk‖2

≤ (1− ςk)‖ϕ(xk)− ϕ(q∗)‖2 + ςk(1− λk)‖ϕ(xk)− ϕ(q∗)‖2

+ ςk(1− λk)σk(σk − 2λ)‖φ(xk)− φ(q∗)‖2

+ ςkλk‖f(xk)− ϕ(q∗) + σkφ(q∗)‖2

− ςk(2− µ)µ(1− σ)2
‖uk − zk‖4

‖ûk‖2

≤ ‖ϕ(xk)− ϕ(q∗)‖2 + ςkλk‖f(xk)− ϕ(q∗) + σkφ(q∗)‖2

− ςk(2− µ)µ(1− σ)2
‖uk − zk‖4

‖ûk‖2

+ ςk(1− λk)σk(σk − 2λ)‖φ(xk)− φ(q∗)‖2.

(34)

It results in that

ςk(2− µ)µ(1− σ)2
‖uk − zk‖4

‖ûk‖2
+ ςk(1− λk)σk(2λ− σk)‖φ(xk)− φ(q∗)‖2

≤ ‖ϕ(xk)− ϕ(q∗)‖2 − ‖ϕ(xn+1)− ϕ(q∗)‖2 + ςkλk‖f(xk)− ϕ(q∗) + σkφ(q∗)‖2

→ 0.

Accordingly,

lim
k→∞

‖uk − zk‖2

‖ûk‖
= 0, (35)

and

lim
k→∞

‖φ(xk)− φ(q∗)‖ = 0. (36)
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As a result of (8), (10) and (16), we have

‖zk − ϕ(q∗)‖2 = ‖projC [λkf(xk) + (1− λk)(ϕ(xk)− σkφ(xk))]− projC [ϕ(q∗)− σkφ(q∗)]‖2

≤ 〈λkf(xk) + (1− λk)(ϕ(xk)− σkφ(xk))− ϕ(q∗) + σkφ(q∗), zk − ϕ(q∗)〉

= λk〈f(xk)− ϕ(q∗) + σkφ(q∗), zk − ϕ(q∗)〉+ (1− λk)〈wk, zk − ϕ(q∗)〉

≤ λk〈f(xk)− ϕ(q∗) + σkφ(q∗), zk − ϕ(q∗)〉+
1

2

{
‖zk − ϕ(q∗)‖2

+ ‖wk‖2 − ‖ϕ(xk)− zk − σk(φ(xk)− φ(q∗))‖2
}

≤ λk‖f(xk)− ϕ(q∗) + σkφ(q∗)‖‖zk − ϕ(q∗)‖

+
1

2

{
‖ϕ(xk)− ϕ(q∗)‖2 + ‖zk − ϕ(q∗)‖2 − σ2

k‖φ(xk)− φ(q∗)‖2

− ‖ϕ(xk)− zk‖2 + 2σk〈ϕ(xk)− zk, φ(xk)− φ(q∗)〉
}
.

It yields
‖zk − ϕ(q∗)‖2 ≤ ‖ϕ(xk)− ϕ(q∗)‖2 − ‖ϕ(xk)− zk‖2

+ 2σk‖ϕ(xk)− zk‖‖φ(xk)− φ(q∗)‖

+ 2λk‖f(xk)− ϕ(q∗) + σkφ(q∗)‖‖zk − ϕ(q∗)‖.
(37)

By (34) and (37), we obtain

‖ϕ(xk+1)− ϕ(q∗)‖2 ≤ ‖ϕ(xk)− ϕ(q∗)‖2 + 2σk‖ϕ(xk)− zk‖‖φ(xk)− φ(q∗)‖

+ 2λk‖f(xk)− ϕ(q∗) + σkφ(q∗)‖‖zk − ϕ(q∗)‖

− ςk‖ϕ(xk)− zk‖2.
It follows that

ςk‖ϕ(xk)− zk‖2 ≤ ‖ϕ(xk)− ϕ(q∗)‖2 − ‖ϕ(xk+1)− ϕ(q∗)‖2

+ 2σk‖ϕ(xk)− zk‖‖φ(xk)− φ(q∗)‖

+ 2λk‖f(xk)− ϕ(q∗) + σkφ(q∗)‖‖zk − ϕ(q∗)‖.
(38)

In the light of (36) and (38), we deduce

lim
k→∞

‖ϕ(xk)− zk‖ = 0. (39)

From (11), we have

‖uk − ϕ(q∗)‖ ≤ ‖projC [zk − ν$kψ(zk)]− ϕ(q∗)‖

≤ ‖zk − ϕ(q∗)‖+ ν$k‖ψ(zk)‖.

Thus, the sequences {uk} and {ûk} are bounded. Consequently, from (35), we get

lim
k→∞

‖uk − zk‖ = 0. (40)

In view of (12) and (40), we deduce

lim
k→∞

‖ψ(uk)− ψ(zk)‖ = 0. (41)

As a result of (13), we have the following estimate

‖yk − zk‖ ≤ µ(1− σ)
‖uk − zk‖2

‖ûk‖
This together with (35) implies that

lim
k→∞

‖yk − zk‖ = 0. (42)
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Since the sequences {xk} and {zk} are bounded, we can select a common subsequence {ki}
of {k} such that xki ⇀ p† and

lim sup
k→∞

〈f(q∗)− ϕ(q∗), zk − ϕ(q∗)〉 = lim
i→∞
〈f(q∗)− ϕ(q∗), zki − ϕ(q∗)〉. (43)

Then, ϕ(xki) ⇀ ϕ(p†) because of the weak continuity of ϕ, zki ⇀ ϕ(p†) by (39) and
yki ⇀ ϕ(p†) due to (42).

Next, we show p† ∈ Sol(C, φ, ϕ). Define an operator A by the following form

A(ṽ) =

{
φ(ṽ) +NC(ṽ), ṽ ∈ C,
∅, ṽ 6∈ C.

Then, A is maximal ϕ-monotone. Let (ṽ, u) ∈ G(A). It follows that u − φ(ṽ) ∈ NC(ṽ)
and 〈ϕ(ṽ) − ϕ(xki), u − φ(ṽ)〉 ≥ 0. Since 〈ϕ(ṽ) − zki , zki − [λkif(xki) + (1 − λki)(ϕ(xki) −
σkiφ(xki))]〉 ≥ 0, we have〈
ϕ(ṽ)− zki , z

ki − ϕ(xki)

σki
+ φ(xki)

〉
+
λki
σki
〈ϕ(ṽ)− zki , ϕ(xki)− σkiφ(xki)− f(xki)〉 ≥ 0.

It leads to

〈ϕ(ṽ)− ϕ(xki), u〉 ≥ 〈ϕ(ṽ)− ϕ(xki), φ(ṽ)〉

≥ 〈ϕ(ṽ)− ϕ(xki), φ(ṽ)〉 −
〈
ϕ(ṽ)− zki , z

ki − ϕ(xki)

σki
+ φ(xki)

〉
− λki
σki
〈ϕ(ṽ)− zki , ϕ(xki)− σkiφ(xki)− f(xki)〉

= 〈ϕ(ṽ)− ϕ(xki), φ(ṽ)− φ(xki)〉+ 〈zki − ϕ(xki), φ(xki)〉

− λki
σki
〈ϕ(ṽ)− zki , ϕ(xki)− σkiφ(xki)− f(xki)〉

−
〈
ϕ(ṽ)− zki , z

k − ϕ(xki)

σki

〉
≥ 〈zki − ϕ(xki), φ(xki)〉 −

〈
ϕ(ṽ)− zki , z

ki − ϕ(xki)

σki

〉
− λki
σki
〈ϕ(ṽ)− zki , ϕ(xki)− σkiφ(xki)− f(xki)〉.

(44)

We have ‖zki − ϕ(xki)‖ → 0 by (39), λki → 0 by (c1) and ϕ(xki) ⇀ ϕ(p†). Letting
i → ∞ in (44), we conclude that 〈ϕ(ṽ) − ϕ(p†), u〉 ≥ 0. Hence, p† ∈ A−1(0). Therefore,
p† ∈ Sol(C, φ, ϕ).

Next, we show ϕ(p†) ∈ Sol(C,ψ). In view of (11), we have

〈uki − zki + ν$kiψ(zki), u† − uki〉 ≥ 0, ∀u† ∈ C.

It results in that

〈ψ(zki), u† − zki〉 ≥ 〈ψ(zki), uki − zki〉

+
1

ν$ki

〈uki − zki , uki − u†〉, ∀u† ∈ C.
(45)

According to (40) and (45), we receive

lim inf
i→∞

〈ψ(zki), u† − zki〉 ≥ 0, ∀u† ∈ C. (46)

There are two possibilities, i.e., possibility 1: lim infi→∞ ‖ψ(zki)‖ = 0 and possibility 2:
lim infi→∞ ‖ψ(zki)‖ > 0.
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For possibility 1, since zki ⇀ ϕ(p†) and ψ satisfying condition (P), we deduce that
ψ(ϕ(p†)) = 0. Consequently, ϕ(p†) ∈ Sol(C,ψ). Next, we consider possibility 2. In terms
of (46), we can choose a positive real numbers sequence {εj} satisfying limj→∞ εj = 0. For
each εj , there exists the smallest positive integer nj such that

〈 ψ(zkij )

‖ψ(zkij )‖
, u† − zkij 〉+ εj ≥ 0, ∀j ≥ nj . (47)

Set g(zkij ) = ψ(z
kij )

‖ψ(z
kij )‖2

for j ≥ nj . Then 〈ψ(zkij ), g(zkij )〉 = 1. By virtue of (47), we have

〈ψ(zkij ), u† + εj‖ψ(zkij )‖g(zkij )− zkij 〉 ≥ 0,

which implies, together with the pseudomonotonicity of ψ on H, that

〈ψ(u† + εj‖ψ(zkij )‖g(zkij )), u† + εj‖ψ(zkij )‖g(zkij )− zkij 〉 ≥ 0. (48)

Note that limj→∞ εj‖ψ(zkij )‖‖g(zkij )‖ = limj→∞ εj = 0. Thus, taking the limit as j →∞
in (48), we obtain

〈ψ(u†), u† − ϕ(p†)〉 ≥ 0,∀u† ∈ C. (49)

By Lemma 2.1 and (49), we deduce that ϕ(p†) ∈ Sol(C,ψ). Therefore, p† ∈ Sol(C, φ, ϕ) ∩
ϕ−1(Sol(C,ψ)) = Γ.

From (43), we obtain

lim sup
k→∞

〈f(q∗)− ϕ(q∗), zk − ϕ(q∗)〉 = lim
i→∞
〈f(q∗)− ϕ(q∗), zki − ϕ(q∗)〉

= 〈f(q∗)− ϕ(q∗), ϕ(p†)− ϕ(q∗)〉 ≤ 0.
(50)

By (9) and (10), we have

‖zk − ϕ(q∗)‖2 = ‖projC [λkf(xk) + (1− λk)(ϕ(xk)− σkφ(xk))]

− projC [ϕ(q∗)− (1− λk)σkφ(q∗)]‖2

≤ 〈λk(f(xk)− ϕ(q∗)) + (1− λk)wk, zk − ϕ(q∗)〉

= λk〈f(xk)− f(q∗), zk − ϕ(q∗)〉+ λk〈f(q∗)− ϕ(q∗), zk − ϕ(q∗)〉

+ (1− λk)〈wk, zk − ϕ(q∗)〉

≤ [1− (1− ν/η)λk]‖ϕ(xk)− ϕ(q∗)‖‖zk − ϕ(q∗)‖

+ λk〈f(q∗)− ϕ(q∗), zk − ϕ(q∗)〉

≤ 1− (1− ν/η)λk
2

‖ϕ(xk)− ϕ(q∗)‖2 +
1

2
‖zk − ϕ(q∗)‖2

+ λk〈f(q∗)− ϕ(q∗), zk − ϕ(q∗)〉.
It follows that

‖zk − ϕ(q∗)‖2 ≤ [1− (1− ν/η)λk]‖ϕ(xk)− ϕ(q∗)‖2 + 2λk〈f(q∗)− ϕ(q∗), zk − ϕ(q∗)〉.
Therefore,

‖ϕ(xk+1)− ϕ(q∗)‖2 ≤ (1− ςk)‖ϕ(xk)− ϕ(q∗)‖2 + ςk‖zk − ϕ(q∗)‖2

≤ [1− (1− ν/η)ςkλk]‖ϕ(xk)− ϕ(q∗)‖2

+ 2ςkλk〈f(q∗)− ϕ(q∗), zk − ϕ(q∗)〉.
(51)

By Lemma 2.2 and (51), we conclude that ϕ(xk)→ ϕ(q∗) and xk → q∗.
In Case 2, for any integer K, there exists integer n > K such that ‖ϕ(xn)−ϕ(q∗)‖ ≤

‖ϕ(xn+1)−ϕ(q∗)‖. Let ϑk = {‖ϕ(xk)−ϕ(q∗)‖2}. Then, we have ϑn ≤ ϑn+1. For all k ≥ n,
define an integer sequence {τ(k)} as follows τ(k) = max{i ∈ N|n ≤ i ≤ k, ϑi ≤ ϑi+1}. It
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is easy to check that τ(k) is non-decreasing and satisfies limk→∞ τ(k) = ∞ and ϑτ(k) ≤
ϑτ(k)+1,∀k ≥ n.

Similarly, we can show

lim sup
k→∞

〈f(q∗)− ϕ(q∗), zτ(k) − ϕ(q∗)〉 ≤ 0 (52)

and

ϑτ(k)+1 ≤ [1− (1− ν/η)λτ(k)ςτ(k)]ϑτ(k) + 2λτ(k)ςτ(k)〈f(q∗)− ϕ(q∗), zτ(k) − ϕ(q∗)〉. (53)

Since ϑτ(k) ≤ ϑτ(k)+1, from (53), we have

ϑτ(k) ≤
2

1− ν/η
〈f(q∗)− ϕ(q∗), zτ(k) − ϕ(q∗)〉. (54)

Taking into account (52) and (54), we derive lim supk→∞ ϑτ(k) ≤ 0 and hence

lim
k→∞

ϑτ(k) = 0. (55)

Based on (52) and (53), we can deduce lim supk→∞ ϑτ(k)+1 ≤ lim supk→∞ ϑτ(k). This to-
gether with (55) implies that limk→∞ ϑτ(k)+1 = 0. By Lemma 2.3, we obtain 0 ≤ ϑk ≤
max{ϑτ(k), ϑτ(k)+1}. Therefore, ϑk → 0. That is, ϕ(xk) → ϕ(q∗) and thus xk → q∗. This
completes the proof. �

Algorithm 3.2. Let x0 ∈ C be an initial point. Set k = 0.
Step 1. Let xk be given. Calculate

zk = projC [λkf(xk) + (1− λk)(xk − σkφ(xk))].

Step 2. Find the smallest nonnegative integer m = min{0, 1, 2, · · · } such that

uk = projC [zk − ν$mψ(zk)],

and

ν$m‖ψ(uk)− ψ(zk)‖ ≤ σ‖uk − zk‖.
If uk = zk, then set yk = zk and go to Step 3. Otherwise, calculate

yk = projC

[
zk + µ(1− σ)‖uk − zk‖2 ûk

‖ûk‖2

]
,

where ûk = uk − zk − ν$mψ(uk). Consequently, set $k = $m.
Step 3. Calculate

xk+1 = (1− ςk)xk + ςky
k.

Step 4. Set k := k + 1 and return to step 1.

Corollary 3.1. Let H be a real Hilbert space and C a nonempty closed convex subset
of H. Let f : C → C be a ρ-contractive operator. Let φ : C → H be a λ-inverse strongly
monotone operator. Let the operator ψ be pseudomonotone on H and L-Lipschitz continuous
on C. Suppose that the conditions (c1)-(c3) are satisfied. Suppose that Γ1 := {x|x ∈
Sol(C, φ) ∩ Sol(C,ψ)} 6= ∅. Then the sequence {xk} generated by Algorithm 3.2 converges
strongly to q∗ ∈ Γ1.

4. Conclusion

In this paper, we survey iterative algorithm for solving the pseudomonotone monotone
variational inequality (1) and the generalized variational inequality (3) in Hilbert spaces.
We propose an iterative algorithm for solving problem (4) by using self-adaptive method and
projection method. Strong convergence result of the proposed algorithm is obtained under
a weaker condition than sequential weak continuity imposed on pseudomonotone operators.
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