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ON THE ANALYTICAL, NUMERICAL AND
EXPERIMENTAL MODELS FOR DETERMINING THE
MODE SHAPES OF TRANSVERSAL VIBRATIONS OF A
CANTILEVER BEAM

Amado STEFAN?, Andra NEGRU?, Florina BUCUR?

The paper presents theoretical, numerical and experimental aspects
regarding the determination of the natural frequencies of transverse vibrations for
the beams used in the construction of drones to support the motors. The following
schematizations were used: cantilever beam with constant flexural rigidity and rigid
mass concentrated at the free end on the beam axis; cantilever beam with constant
flexural rigidity, with mass concentrated eccentrically with respect to the axis of the
beam at the free end; elastic beam with two intervals of constant rigidity, and
eccentrically concentrated mass at the free end. The beam is of an annular section,
with the same dimensions throughout the length and is made of carbon fiber
composite.

Keywords: transversal beam mode shapes, analytical model, cantilever beam,
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1. Introduction

Over the last decades the aviation industry underwent significant changes
and unmanned air vehicles are the result of research and evolution in this domain.

An unmanned aerial vehicle (UAV) is an aircraft without a human pilot
aboard, commonly referred to as a drone or as an unpiloted aerial vehicle and a
remotely piloted aircraft (RPA) [1].

The performance characteristics are important design parameters for the
UAVs since the potential drone mission types can be differentiated on their basis.
The most important features considered in the design of UAVs include weight,
range, endurance, production costs, speed and maximum flight altitude.

UAVs with rotary wings generate the lift from the rotation of the rotor
blades [1, 2], which can be designed to have the structure equipped with a number
of engines that can vary from one to twelve [3].

The main source of vibration is the rotation of rotor blades assembly and
its interaction with air. The natural frequencies of vibrating systems must be
different from the frequencies of unbalanced motor rotation and the vortexes
frequencies, to avoid resonance regimes.
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2. Theoretical approach

The beam model corresponding to the Euler-Bernoulli beam, neglects the
effect of the shear force on the displacement of the points on the beam axis,
respectively on the rotation angle of the section. Also, the angular acceleration
with which the beam element rotates is ignored because in the dynamic
equilibrium equation of the beam element the inertia torque is not considered.

The infinitesimal beam element has the massdm = p-A-dx, where p is

density and A stands for the transverse section area.
The inertial force acts in opposite direction with the acceleration of beam
element, and it is distributed to the length dx, as in Fig. 1 (T, and M, are

positive, p, is positive if it is oriented in positive direction of z axis) .

ot?
Fig. 1 Infinitesimal beam element

The differential equation of free transverse vibrations under the conditions

described above is [4]:
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where W(x,t) is a point displacement along the Oz axis, represents the

atZ
infinitesimal beam element acceleration.
Solution of the differential equation is [5]:

w(x,t)=(C,sin(kx)+C, cos(kx)+C,sinh(kx)+C, cosh (kx))cos(wt + p) (2)

o’ pA
y

The beam with the motor and accessory parts is illustrated in Fig. 2. The

beam section is annular with the outer diameter of 16 mm and the inner diameter

of 14 mm and the distance from the clamped end of the beam up to the center of
mass of the motor is 273 mm. As for the beam mechanical properties, the Young’s

where k* =

,and C,, C,, C;, C,, @ are the unknowns.
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modulus has the value of 3.6-10* MPa and density equals 1400kg/m®. Because
the number of plies and their orientation is unknown, the elastic modulus of the
beam is determined using a bending experimental test [6].
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Fig. 2. Geometry of the beam

The following schematizations are used in this research, where section A
is fixed (Fig. 3):
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Fig. 3. Considered schematizations for analytical models

For (a) and (b) cases, the mass considered concentrated is the sum of the
masses of the clamping bushes, the motor support plate and the motor,
respectively 0.143 kg. In case (b), the center of mass eccentricity is at 22.47 mm
from the beam axis.

For the (c) case, the beam part between sections B and C (Fig. 2), the
clamping bushings, the motor board and the motor are considered rigid. This
assumption is made because the motor material is metallic, with a higher rigidity
comparative to the beam. The motor support plate weights 1 g. A half of the
motor support plate, between section B and C, is rigid because it is clamped and
the other half has a free end. The free end half weights 0.5 g so it can be neglected
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compared to the motor mass. Fig. 4 shows the part considered rigid and the
position of its center of mass relative to section B and the beam axis.

i

25.66 mm

Fig. 4. Part considered rigid

The mass of the part considered rigid is 0.147 kg. The position relative to
section B is 25.66 mm through the axis of the beam and to 21.98 mm above it.

In case (a), the integration constants are determined from boundary conditions.
In the clamped end of the beam [7]:

w(0,t)=0 ®)
Mzo (4)
OX
and in the free end:
o*w(L,t
Tz(L’t)z_MO'% (5)
M, (L,t)=0 (6)
: o°w 0 o*w .
Since M, (x,t)=-El,— andT,(x,t)=—| —EI,—- |, the followin
,O00) -1, 2% an, (x0) - £ -1, 2% :
system of four equations with five unknowns is obtained [8]:
C,+C, =0
C,+C,=0
Cl[—Elykscos(kL)+ Moa)zsin(kL)]+
+C, [ E1k’sin (kL) + My’ cos(kL) |+ ()

+C,| —El k* cosh (KL) + M sinh (KL) | +
+C,[ El,k*sinh (KL)+Mqe® cosh (kL) | =0
—C, sin(kL)—-C, cos(kL)+C,sinh(kL)+C, cosh(kL) =0
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Since the system is homogeneous, in order to have a different solution
from the trivial one, it must be underdetermined compatible. The system matrix
determinant must be null, a condition which represents an algebraic equation with
the unknown w .

The mode shapes (eigenmodes) are represented in Fig. 5, giving the value
1 for C, constant and solving the determined compatible system (8), where the

constant k is calculated for each mode according to the corresponding pulsation.

0 1 0 C, -1
1 0 1 C,t= 0 (8)
—sin(kL) —cos(kL) sinh(kL))|C,| |-cosh(kL)

In case (b) and (c) the boundary conditions in the fixed end are similar to
those from case (a). At the free end, the shear force equals the mass inertia force,
and the bending moment equals the inertia bending moment of the concentrated
mass [9].
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Fig. 5. The 1%tand 2" mode shapes of transverse vibration for case (a)

Thus, for (b) case:

2
TZ(L,t)=—Mo-% (9)
L, 0%p(L,t L O°w(L,t
Miy(L,t):MOLZ%:MOLzﬁ (10)

the equation (7) becomes:
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and

M, (Lt =M, (L +15)

where L2 +

C,[ E1k?sin(KL)+M,L*ke’ cos(kL) |+

+C, | El K’ cos(kL)—M,L"*ke’ sin (kL) | +
+C,[ ~Elk®sinh (kL) + M,L"” ke cosh(kL) |+
+C, [ ~EI k° cosh (kL) + M, L"* ke’ sinh(kL) | =

In the schematization from (c) case, the boundary conditions from section
B, are:

Tz(Ll,t)=—M1%(w<Ll,t)+Lz<0<Lvt>):

(11)

. (12)

0
M, w0+ L 2w, 0)

3 3

8W(ZL1,t)=Mld28 W(2L1,t) (13)
ot ox ot ox

L2 =d? is the distance between section B and the concentrated mass.

The last two relations in system (7) become:

Cl[—Eka3cos(kL1)+Mla)zsin(kLl)+MlL2ka)zcos Ll)J+
+C, | El k’sin (KL, )+ M, cos (kL ) — M, L ke’ sin (kL ) | +
+C,[ El k® cosh (KL, )+ M, @’ sinh (KL, ) + M, Lk’ cosh (kL, ) ] +
+C [EI k®sinh(kL, )+ M @’ cosh (KL, )+ M, L,ke? smh(kLl)]

(14)

C,[ El,k’sin(kL, )+ M,d ke’ cos (KL, ) |+

+C, | EI,k* cos (KL, )~ M,d ke’ sin (kL ) |+
+C,[ —El K*sinh (KL, )+ M,d ke cosh(kL,) |+
+C, [ ~El k® cosh (KL, )+ M,d*ke’sinh(KL,) | =

(15)

The transcendental equations have been solved using a program with root

function developed in Mathcad software.

3. Finite element method approach

The CAD model presented in Fig. 2 was developed Solidworks software

and analyzed using COSMOSWORKS software.

For the finite element model an automatic mesh was created [10], initially

with the average size of elements of 2.5 mm for the support plate, motor and
clamping bushes, and 2 mm for the motor support beam. For the beam
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discretization SHELL elements with average size of 1 mm and were used. For the
other components, SOLID elements were used (Fig. 6).

Fig. 6 Finite element discretization
The number of nodes resulted from the discretization are 88845. The
clamping bush is restricted in displacement on the surfaces which are in contact
with the drone body. The contact between elements is bonded type.
In Table 1 are presented the corresponding frequencies of the first 8
normal modes resulted from the finite element analysis (FEA). The bolded values
(from the 1% and 4™ mode) are the frequencies that correspond to the first two

normal modes of transversal vibrations of the cantilever beam considered.
Table 1
The frequencies for the first 8™ eigenmodes of vibration resulted from FEA

Mode number Frequency (Hz)

36.781
36.951
388.86
407.94
485.15
659.26
1323.5
1737.6

O~NO U, WN R

In Fig. 7 and Fig. 8 are represented the first and the fourth eigenmode of
transverse vibration in plane xOz rezulted from the numerical simulations. On the
fourth eigenmode of transverse vibration the maximum relative amplitudine is at
the free-end of the motor suport plate. The mass of this component is insignificant
compared to the mass of the part considered rigid (presented in Fig. 4), for this
reason in the analytical study it was neglected.
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Fig. 7. First mode shape of vibration (first eigenmode of transverse vibration in XOz plane)

AMPRES
2,181e+01
l 1,993 +01
L 1.817ex01
_ 1.635e+01
- 1.45de+0i
L 1.272e+01
| 1.0%0e+01
| 9086e
| T.268en

00
00
L 5.452e+00
00
00

3.63de 4
1817
0.0002+00

Fig. 8. Fourth mode shape of vibration (second eigenmode of transverse vibration in XOz plane)
4. Experimental results

For the frequency experimental determination of the first eigenmode of
vibration, which corresponds to a transverse vibration in the xOzplane, a laser
vibrometer Polytec PDV 100 was used, the procedure being similar with the one
described in [11]. In Fig. 9 the experimental set-up is presented. The electrical
signal acquisition was accomplished with a SIGLENT SDS 1202X-E
oscilloscope, which allows storing and measuring the output of the vibrometer
(vibrational velocities in the frequency range up to 22 kHz) as presented in  Fig.
10. For the excitation of the beam an impact hammer was used. The structure was
impulsed in the transversal Oz direction, on the motor area.
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Fig. 9. Polytec PDlOO laser vibrometer placed under the electric motor
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Fig. 10. The signal recorded by the oscilloscope, with the acquisition rate of 100000 Samples/s
Using the Fourier transform of the signal, the 415 Hz frequency was
highlighted, corresponding to modes 2 of transverse vibrations in the xOz plane.

The FFT transform is presented in Fig. 11.
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Fig. 11. FFT transform

5. Conclusions and future work

From the finite element analysis were obtained similar results to
experimental ones due to the accuracy with which the system geometry is defined
(see Table 2 and Table 3). The analytical model in which the motor mass is
concentrated on the beam axis, is acceptable for the first mode of vibration, but
produces large errors for mode 2 and for higher ones. From all the
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schematizations used, (c) case leads to the results closest to the experimental
results.
In Table 2, the frequencies corresponding to (a), (b), (c) cases of analytical

analysis, FEM and experimental studies are presented.

Table 2

Frequencies (Hz) for (a), (b), (c) analytical cases, FEM and Experimental

Vibration mode | Case a) | Case b) | Casec) | FEM | Experimental
Mode 1 3450 | 3425 | 36.35 | 35.20 35.90

Mode 2 890.28 | 449.96 | 352.91 | 407.90 415.00

The percentage errors between the frequency values obtained from
experimental and analytical cases, and the ones between experimental and
numerical are presented in Table 3. The (a) case of the analytical study has the
largest errors compared to the experimental measurement because the inertia
moment of the concentrated mass situated on the beam axis is null. The (b) and (c)
cases have better results due to moment of inertia calculated with respect to
section B, which is different from zero.

Table 3
Percentage errors between experimental-analytical and experimental-numerical values
Vibration Experimental- Experimental- Experimental- Experimental-
mode analytical (a) case  analytical (b) case  analytical (c) case numerical with
(%) (%) (%) FEM (%)
Mode 1 3.87 4.59 1.25 1.95
Mode 2 114.50 8.42 14.96 1.71

In future research, the influence of the rotation frequency of the motor rotor
at different speeds acting on the quadcopter arm will be studied.
Motor operating regimes which work at a frequency that overlaps the eigen
frequency of the beam must be avoided in order to avert the resonance
phenomenon.
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