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RATES OF CONVERGENCE FOR A CLASS OF GENERALIZED
QUASI CONTRACTIVE MAPPINGS IN KOHLENBACH
HYPERBOLIC SPACES

Zahid AKHTAR' and Muhammad Ageel Ahmad KHAN?"

This paper is a continuation to the study of generalized quasi contractive
operators, essentially due to Akhtar et al. [A multi-step implicit iterative process for
common fixed points of generalized C ?-operators in convex metric spaces, Sci. Int.,
25(4) (2013), 887-891], in spaces of nonpositive sectional curvature. We aim to
establish results concerning convergence characteristics of the classical iterative
algorithms such as Picard, Mann, Ishikawa and Xu-Noor iterative algorithms
associated with the proposed class of generalized quasi contractive operators.
Moreover, we adopt the concept introduced by Berinde [Comparing Krasnosel skii
and Mann iterative methods for Lipschitzian generalized pseudo-contractions, Int.
Conference on Fixed Point Theory Appl., 15-26, Yokohama Publ., Yokohama,
2004.] for a comparison of the corresponding rates of convergence of these
iterative algorithms in such setting of spaces. The results presented in this paper
improve and extend some recent corresponding results in the literature.
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1. Introduction

Fixed point theory (FPT) contributes significantly to the theory of
nonlinear functional analysis. Iterative algorithms, with respect to various
nonlinear mappings, are ubiquitous in FPT and have been successfully applied in
the study of a variety of nonlinear phenomena. The theory of iterative
construction of fixed points of a nonlinear mapping under suitable set of control
conditions is coined as metric fixed point theory (MFPT). MFPT is a fascinating
field of research and has emerged as a powerful tool to solve various nonlinear
real world problems, such as Fredholm and Volterra integral equations, ordinary
differential equations, partial differential equations and image processing. MFPT
has its roots in the celebrated Banach Contraction Principle (BCP) which not only
guarantees the existence of a unique fixed point of a contraction but also describes
an approximant for the construction of such a unique fixed point. It is worth
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mentioning that the BCP also gives a geometric rate of convergence for the
classical Picard iterative algorithm to the unique fixed point. The BCP is a
frequently cited result in the whole theory of analysis and dominates FPT for the
class of contractions.

It is worth mentioning that the simplicity and applicability of the BCP
paved the way for developing a new class of mappings satisfying generalized
contractive condition. Most of the generalizations of the BCP possess the same
characteristics regarding the existence of a unique fixed point which can be
constructed by the Picard iterative algorithm. However, there are certain
contractive or nonexpansive type mappings for which the construction of fixed
points is also possible via Krasnosel’skii [21], Mann [13, 23], Ishikawa [14],
Sintunavarat and Pitea [28], Thakur et al. [29, 30, 31] and Xu-Noor [32] iterative
algorithms. In MFPT, different iterative algorithms can be evaluated with respect
to various characteristics, inter alia, convergence characteristics and rates of
convergence. The later concept has its own importance in MFPT and therefore we
adopt the concept introduced by Berinde [3] for a comparison of the rates of
convergence of different iterative algorithms involving a nonlinear mapping.

Since a variety of problems corresponding to the real world nonlinear
phenomena can be transformed into fixed point problems (FPP). Therefore, it is
natural to study FPP associated with a class of mappings in a suitable nonlinear
framework. The term nonlinear framework for FPT is referred as a metric space
embedded with a "convex structure”. It is remarked that the non-positively curved
hyperbolic space, introduced by Kohlenbach [20], provides rich geometrical
structures suitable for MFPT of various classes of mappings. For the results
concerning MFPT in Kohlenbach hyperbolic spaces, see, for example, [8, 10, 15,
16, 17, 18, 19] and the references cited therein. We are, therefore, interested into
iterative construction of fixed points of the class of quasi contractive mappings in
Kohlenbach hyperbolic spaces. As a consequence, we establish results concerning
rates of convergence associated with the modified Mann, Ishikawa and Xu-Noor
iterative algorithms, involving the class of quasi contractive mappings, in
comparison to the classical Picard iterative algorithm in Kohlenbach hyperbolic
spaces.

2 Preliminaries

Throughout this paper, we work in the setting of hyperbolic spaces
introduced by Kohlenbach [20] and hence the term Kohlenbach hyperbolic spaces
as one can find different notions of hyperbolic spaces in the current literature, see
[11, 12, 25, 26].

A Kohlenbach hyperbolic space X is a metric space (X, d) together with a
convexity mapping W: X* x [0,1] — X satisfying
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(W)d(u, W(x,yv,a)) =< ad(u,x) + (1 —a)d(wy)
(W2)d(W(x,y,a), W(x,y,6)) = la — Bld(x,y)
(W3)W(x,y,a) = W(y,x,(1—a))
(WH)d(W(x,z,a),W(y.w,a)) < ad(x,y) + (1 — a)d(z,w)
for all x,y,z.w € X and a,f € [0,1]. A subset K of a hyperbolic space X is
convex if W(x,y,a) €K forall x,y €K and a« € [0,1]. A hyperbolic space X is
uniformly convex [22] if for all u,x,¥y € X, » = 0 and = € (0,2], there exists
& € (0,1] such that d(W(xy,5)u) < (1-8)r
whenever d(x,u) < r,d(v,u) <rand d(x,v) = re.

A mapping 7: (0,02) x (0,2] — (0,1] providing such & = n(r,£) for given
r=0 and =€ (0,2] is called modulus of uniform convexity. For more on
hyperbolic spaces, we refer the reader to [20, p.384].

We now recall some mappings satisfying generalized contractive
condition. A mapping T: X — X is called:

(i) Zamfirescu mapping [33], if there exist real numbers a,b and ¢ satisfying

a€(0,1)and b,c € (Di) such that for each pair of points x, ¥ in X, we have
(Z1)d(Tx,Ty) < ad(x,y)
(22)d(Tx, Ty) < b[d(x, Tx) +d(v,Ty)] (2.1)
(Z23)d(Tx,Ty) < c[d(x,Ty) +d(v,.Tx)];

(ii) C%-mapping [7], if for some h € [0,1) and for all x, ¥ € X, we have

d(Tx, Ty) < hmax{d(x,y),d(x,Tx),d(v,Ty), d(x, Tv),d(v.Tx)} (2.2)
(iii) generalized contractive mapping [24], if for some h € [0,1) and for all
x,v € X, we have

d(Tx, Ty) < hmax{d(x,y),d(x,Tx),d(y.Ty), d(x, Ty) + d(v.Tx)}. (2.3)
(iv) generalized C?-mapping [1], if for some h € [0,1) and for all x,y € X, we
have

d(Tx,Ty) < hmax{d(x,y),d(x,Tx) + d(v.Ty),d(x,Ty) + d(v.Tx)}. (2.4)

Remark 2.1. It is evident from the above definitions that the class of mappings
defined in (2.4) contains properly the corresponding classes of mappings defined
in (2.1)-(2.3). However, the class of Zamfirescu mapping is one of the most
studied class of contractive mappings. For more on contractive type mapping, we
refer the reader to [6].

We now introduce different iterative algorithm, required in the sequel, in
Kohlenbach hyperbolic spaces. Let T: X — X be a given mapping and x; € X be
chosen arbitrarily, then the Picard, Mann, Ishikawa and Xu-Noor iterative
algorithms be defined, respectively, as follows:

x:lz+1 = Txuf (25)
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x:-z+1 = W(TI”,IH, c:[::lz:]i (26)
where {a,,} < [0,1],
x:-z+1 = W(T}’”,In, anj
}T:'! = W(Tx?!’x?!-'ﬁ?!j’ (27)
Where £au}! {ﬁ?!} c [011]1
x:lz+1 = W[T}Tu’xu’ GC”)
}:r” = W[Tz:'!’x?!’ﬂ?!) (2'8)
z:'! = W(Txil’x?!’ }'I;'! )’
where {a,,}, {8,,}. {1, } © [0,1].

We now recall the concept introduced by Berinde [3] for a comparison of
the rates of convergence of different iterative algorithms involving a nonlinear
mapping.

Let {a, }izo-{b,}n=o be two sequences of positive numbers that converge

to a, b, respectively. Assume that the limit [ = lim |ay—al

n—soa |By—=b| "
exists. If [ = 0, then the sequence {a,, },.=o converges to a faster than {b, },=; to
b.If 0 < I < oo, then we say that the two sequence {a, },.=, and {b,, },=o have the
same rate of convergence. It is remarked that the results concerning rates of
convergence associated with the classes of mappings defined in (2.1)-(2.3) have
been established in [2, 4, 5, 27]. See, also, [9] and the references cited therein. We
are now in a position to prove our main results.

3 Main Results

This section is devoted to establish the results concerning iterative
construction of fixed points of the class of generalized C?-mappings and
consequent rates of convergence for the modified Mann, Ishikawa and Xu-Noor
iterative algorithms in comparison to the classical Picard iterative algorithm in
Kohlenbach hyperbolic spaces.

Theorem 3.1. Let K be a nonempty closed convex subset of a uniformly convex
Kohlenbach hyperbolic space X and let T: K — K be a generalized C?-mapping.
Assume that F(T), the set of fixed points of T, is nonempty and the sequence
{a, )=, satisfies the following conditions:

C:0=a, <1,

(CZ) an=[!la:lz = 0o,

Then the iterative algorithms defined in (2.5) and (2.6) converges to a fixed point
p of T provided that the iterative algorithms have same initial guess x; € K.
Moreover, iterative algorithm defined in (2.5) converges faster than (2.6) to the
fixed point of T.

Proof. Since T is a generalized C%-mapping, therefore, if
d(Tx, Ty) < h{d(x,Tx) + d(v.Ty)}, then (2.4) becomes
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d(Tx,Ty) = h{d(x,Tx) +d(v.x) +d(x,Tx) + d(Tx,Ty)}.
So, we have
d(Tx Ty) < ——{d(x,y) +2d(x,Tx)}. (3.1)
If d(Tx, Ty) < h{d(x,Ty) + d(y, Tx)}, then (2.4) becomes
d(Tx,Ty) < h{d(x,Tx) +d(Tx,Ty) +d(yv, x) + d(x,Tx)}.

. h
Again, we have d(Tx,Ty) < —{d(x,y) +2d(x,Tx)}.
Letting A = max {h, lf—h} the above estimate implies that
d(Tx, Ty) < Ad(x,y) + 2Ad (x,Tx). (3.2)
Similarly, we can calculate the following inequality
d(Tx, Ty) < Ad(x,y) + 2Ad(y.Tx). (3.3)

Let p € F(T), then it follows from the estimate (3.2) and the sequence (2.5) that
d(x:lﬁlfp) = d[:T.i'{'”,p) = ‘A’d[:xufp)'
Continuing in this fashion, we have

d(*pe1, ) € 2d(x0, D). (3.4)
Since 4 € [0,1), therefore, (3.4) implies that
lim d(x,.,,,p) = 0. (3.5)

n—+od

Now utilizing the estimate (3.2) for the sequence (2.6), we get
d[:x:lz+1’p) = aud[Tx:lz’p) + (l - au)d[:xn’p)

= [:1_ (l_ijau)d[xufp)' (36)
The estimate (3.6) inductively yields
d(xy+0,0) = IIE=y (1 — (1 — Ay )d(x0.p)- 3.7)
Making use of conditions (C1) and (C2), the estimate (3.7) implies that
J}i_rr]c}:d(xn+1!p] =0 (38)

Hence the convergence of iterative algorithms (2.5) and (2.6) follows from the
estimates (3.5) and (3.8), respectively. In order to compare the rates of
convergence of iterative algorithms (2.5) and (2.6), we let a, =A" and
b, =TIE, (1 — (1 — Day)d(x,,p).
Now, consider
(1—-A)ea, =(1-4)
—(1-4) =-(1-4)a,
1-(1-4A)=1—-(1-3A)a,
A£1—-(1-A)a,
A
1—(1-A)ary =L
Moreover Y

max[1-(1-4)ey,]
n

) ,then  lim =% = 0.

n—oa by

S- n Jlk mll:'].ll;|r
INCE 1l=4 [L—(1-A)er] (ma'c[l—l'l—zl}m]
n H g . H

Hence (2.5) converges faster than (2.6) to the fixed point of T. [
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Theorem 3.2. Let K be a nonempty closed convex subset of a uniformly convex
Kohlenbach hyperbolic space X and let T: K — K be a generalized C?-mapping.
Assume that F(T), the set of fixed points of T, is nonempty and the sequences
{a, }n=0 and {f, };.=o satisfy the following conditions:

(Cl) 0 5 au!ﬁn = 1;

(C2) E ::=I}a:':! = oo,

Then the iterative algorithms defined in (2.6) and (2.7) converges to a fixed point
p of T provided that the iterative algorithms have same initial guess x; € K.
Moreover, iterative algorithm defined in (2.6) converges faster than (2.7) to the
fixed point of T

Proof. Note that the convergence of (2.6) has already been established in
Theorem 3.1. It remains to establish the convergence of (2.7) involving the class
of generalized C?-mapping. For this, we proceed with the following estimate:
d(x:lz+1!p:] = aud(T}Fn’pj + [:1 - au)d[xu’p)'
On using (3.2), we get
d(x:lz+1!p) = ﬂf”.ald(_'!fn,p:] + [:1 - aujd(xu’p)' (39)
Consider
d(¥:P) < Bpd(Txpp) + (1 — B,)d(x,,p)-
Again, using (3.2), we get
d(¥p:P) = Bpdd(x,,p) + (1 — B,)d(x,.p)
= [BoA + (1 - B,)]d(x,.p).
Substituting the above estimate in (3.9), we have
d[:x:lz+1’p) = au“:l’ﬁn“:l’:l_ (l - ﬁu)]dtxulpj + [:1 - au)d(xn’p)
= [a?!ﬁ?!‘l_ + fx”.:l(l - ﬁ?!] + (1 - a?!j]d(x?!’pj
= [1 — @y, [1 -4+ JG:I:":L - ﬁn“lz j]d[xu!p]
=[1—-a,((1-4) +B,4(1—1))]d(x,.p)
= [1— @, (1 = 2)(1 + £,1)]d(x,.p)- (3.10)
Consider
1-A<1+8,4
au[l _“1)[1 _‘;L] = G[!”[:l - ‘1][1 +JB:-1‘;|’]
—a,(1-A)(1+8,4) = —a,(1-4)(1—4)
1—a,(1-)(1+L,) =1—a,(1-1)%
Utilizing the above assertion, the estimate (3.10) implies that
d(x:lz+1!p) E 1 _a:z[j‘_‘lj_]d[xu’pj' (311)
Continuing in this fashion, we have
d(xXpe1,P) = [R=y[1 — @ (1 — A)7]d(x,p)-
Using the fact that A € [0,1) and conditions (C1)-(C2), we get
lim d(x,,,p) = 0. (3.12)

The estimate (3.12) implies that the iterative algorithm (2.7) converges to the
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fixed point of T. In order to compare the rates of convergence of (2.6) and (2.7),
we must compare a, =[Ig-,[1— a,(1—4)] and b, =TIE=;[1 — a, (1 —4)7].
For this, we reason as follow:
a (1—2)(1— 1) < a,(1-4)
—a,(1—A) € —a, (1—4)*
l1—a,(1—4) =1—a,(1-4)°
1—ap(1-4)

- = 1.
1—e (1-4)°
Also min{l-ay(1-4}} <1
max{l—eag(1-1)%} '
. n [Ll—agi1-4)] min{l—ay(1-4)} 4" . ap _
Since [1;-, e (1=217] < (mml_ml_i}:}} , then ?}1_122 - 0.
Hence (2.6) converges faster than (2.7) to the fixed point of T. [

Theorem 3.3. Let K be a nonempty closed convex subset of a uniformly convex
Kohlenbach hyperbolic space X and let T: K — K be a generalized C?-mapping.
Assume that F(T), the set of fixed points of T, is nonempty and the sequences
{a, n=o 1B, n=0 and {¥, }5.=o satisfy the following conditions:

(Cl) 0= aufﬁn’ ¥n < 1;

(C2): iy, = oo

Then the iterative algorithms defined in (2.7) and (2.8) converges to a fixed point
p of T provided that the iterative algorithms have same initial guess x; € K.
Moreover, iterative algorithm defined in (2.7) converges faster than (2.8) to the
fixed point of T

Proof. Note that the convergence of (2.7) has already been established in
Theorem 3.2. It remains to establish the convergence of (2.8) involving the class
of generalized C?-mapping. For this, we proceed with the following estimates:
d[:z?!’p:] = d(W[Tx?!’x?I’E! )-’pj
= Yo d(p. Tx,) + (1= ¥, )d(x,,p)
< (1— 3, (1= A)d(x,.p) (3.13)
and
d[:}ri'!’p:] = d(W(Tzi'!’x?!’ﬁ?!)’Pj
= B,d(p.Tz,) + (1 - B,)d(x,,.p)
< BoAd(z,,,p) + (1 — B,)d(x,,p). (3.14)
Substituting (3.13) in (3.14), we have
d(¥,p) < Budl(1 =%, (1 — D))d(x,,p)] + (1 — B)d(x,,p).  (3.15)
Moreover
d[:x:lz+1’p) = d(W(T}F”,I”,CIn:],}‘Jj
= a:ud[zpf T}Fuj + (1 - au)d(xufp)
= au‘ld[}rufp) + [:1 - au)d(x:lij- (316)
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Substituting (3.15) in (3.16), we get

d(xp+1,p) < [@, MB AL~ ¥, (1= A)) +1 =B} + (1 — a,)]d(x,.p)
={1-a,[1- 8,1 -y +xd —A(1 - B)}d(x,.p)

={1 —a,[1—- B4 + B, A — By * — A + B, A1}d (. P)

= {1 — [1 —i+ (1 - “1) [:ﬁu“l + JB:IJF:IJ‘A': :]]}d[:xufp)

= El @y [:l_ “:l’)[l + ﬁ:lz}'r:'z":l’: + -Eu“:l’]}d(xn’pj

= £1 - a:”[:l— Aj}d[.‘ru,p).
Making use of conditions (C1) and (C2), the above estimate implies that

lim d(x,,,,p) = 0. (3.17)
Now we use the estimate (3.3) for the iterative algorithm (2.8) to get the following
estimates:
d[:zufp) = d(W[Txnfxusz)Fp)
= Yo d(Tx,p) + (1 = ¥, )d(x,,p)

< 34¥,d(x,p) + (1 — 1) d (% p)

[34y, + (1 —¥.)]ld(x,.p), (3.18)
and
A(¥y:p) = 346, d(z,,p) + (1 — B, )d(x,,p). (3.19)
Substituting (3.18) in (3.19), we get
d[}F”,p] = 3‘118:': [3‘1};:-: + [1 - F:lzj + [1 - ﬁ:z]]d[xulp)' (320)
Now, consider
d(x:lﬁlf P) = E‘A'aud[:}?ufp) + [:1 - an:]d[:.i'{'n,p). (321)

Substituting (3.20) in (3.21) and then simplifying the terms, we have
d[:xu+1fp) = [1 - an(l - 3"1){1 + 9,1:]8”}-;2 + Elﬁaz}]d(xufp)

=[1—a,(1-34)]d(x,.p). (3.22)
Again, making use of conditions (C1) and (C2), the above estimate implies that
lim d(x,.,,p) = 0. (3.23)

The estimate (3.23) implies that the iterative algorithm (2.8) converges to the
fixed point of T. In order to compare the rates of convergence of (2.7) and (2.8),
we must compare a, = [1g_,[1 — a,(1—4)*] and b, =[1g-,[1 — a, (1 —34)].
For this, we have the following two cases:

Case (I). Let 4 € [0, ﬁ],then a, = 1and b, = 1, therefore, we have
lim,, _...(;*) = 0.

Case (Il). Let A € (g, 1), then again a,, = 1 and
b, =Ilg=y[1 —a (1 -30{1 + gfljﬁk}’k + 348 = 1.
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&n _ Tn 1—ey (1-4)°
S0 5y~ k=1 [1—:r~ (1-3A){1+94% By, al=1
el { Byt 345y}

Consequently

mln{l—n‘;{fl—.!l:l:} -1
maxf{l—ey (1- 3 {14947 By, +34 8, 1 )
Slnce ;::1 |: i 1—:rkl:1—".r1:lz ] = ( Ei'.l.i.nzi—irkl:i—:l:lz} )”’
1o (1340 {14947 By +34 5] max{1l-ay(1-340 {14947 By +31 5,01
.
therefore, we get lim 2 = 0.

This implies that, in both cases, (2.7) converges faster than (2.8) to the fixed point
of T. [ |
Remark 3.4. As an applications of Theorems (3.1)-(3.3), we can establish similar
kind of results for the classes of mappings defined in (2.1)-(2.3) in Kohlenbach
hyperbolic spaces. As a consequence, our results generalize the corresponding
results from linear spaces to more general setup of spaces.
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