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1. Introduction and Preliminaries

Controlled frames have been recently introduced by Balazs et. al [1] in Hilbert spaces
to improve the numerical efficiency of interactive algorithms for inverting the frame operator.
Afterwards, this topic has been generalized for g-frames, fusion frames and K-frames, e. g.
[9, 10, 11]. Generalized fusion frames or briefly g-fusion frames introduced by Sadri et al.
[13] are obtained from the combination of fusion and g-frames also. In this note, we first
introduce the concept of controlled K-g-fusion frames which are generalizations of controlled
g-fusion frames in Hilbert spaces. After characterizing and constructing these frames by a
bounded operator, we present the Q-dual of controlled K-g-fusion frames and we describe
how to create the Q-dual of these frames. Finally, perturbation of these frames will be
discussed.

Throughout this paper, H is a separable Hilbert spaces, B(H) is the collection of all
bounded linear operators on H, GL(H) is the set of all bounded linear operators on H which
have bounded inverses, GL+(H) is the set of all positive operators in GL(H) and K ∈ B(H).
Also, πV is the orthogonal projection from H onto a closed subspace V ⊂ H and {Hi}i∈I is
a sequence of Hilbert spaces, where I is a subset of Z.

Lemma 1.1. [8] Let V ⊆ H be a closed subspace, and T be a linear bounded operator on
H. Then

πV T
∗ = πV T

∗πTV .

If T is unitary (i.e. T ∗T = IdH), then

πTV T = TπV .

If an operator U has closed range, then there exists a right-inverse operator U†

(pseudo-inverse of U) in the following sense (see [4]).
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Lemma 1.2. Let U ∈ B(H1, H2) be a bounded operator with closed range RU . Then there
exists a bounded operator U† ∈ B(H2, H1) such that

UU†x = x, x ∈ RU .

Lemma 1.3. [5] Let L1 ∈ B(H1, H) and L2 ∈ B(H2, H) be operators on given Hilbert
spaces. Then the following assertions are equivalent:

(1) R(L1) ⊆ R(L2);
(2) L1L

∗
1 ≤ λ2L2L

∗
2 for some λ > 0;

(3) there exists a mapping U ∈ B(H1, H2) such that L1 = L2U .

Now, we review some definitions about K-g-fusion, (C,C ′)-controlled g-fusion.

Definition 1.1 (K-g-fusion frame). [12] Let W = {Wi}i∈I be a collection of closed subspaces
of H, {vi}i∈I be a family of weights, i.e. vi > 0, Λi ∈ B(H,Hi) for each i ∈ I and K ∈ B(H).
We say that Λ := (Wi,Λi, vi) is a K-g- fusion frame for H if there exists 0 < A ≤ B < ∞
such that for each f ∈ H

A‖K∗f‖2 ≤
∑
i∈I

v2
i ‖ΛiπWif‖2 ≤ B‖f‖2.

Corresponding to this frame, the representation space is defined by

H2 :=
{
{fi}i∈I : fi ∈ Hi,

∑
i∈I
‖fi‖2 <∞

}
,

with the inner product defined by

〈{fi}, {gi}〉 =
∑
i∈I
〈fi, gi〉.

Definition 1.2 ((C,C ′)-controlled g-fusion frame). [14] Let W := {Wi}i∈I be a family of
closed subspaces of H and {vi}i∈I be a family of weights i.e. vi > 0 for all i ∈ I. Let {Hi}i∈I
be a sequence of Hilbert spaces, C,C ′ ∈ GL(H) and Λi ∈ B(H,Hi). ΛCC′ := (Wi,Λi, vi) is
a (C,C ′)-controlled g-fusion frame for H if there exist constants 0 < A ≤ B <∞ such that
for all f ∈ H

A‖f‖2 ≤
∑
i∈I

v2
i 〈ΛiπWi

C ′f,ΛiπWi
Cf〉 ≤ B‖f‖2.

2. (C,C ′)-controlled K-g-fusion frames

In this section, we introduce the concept of (C,C ′)-controlled K-g-fusion frame on
Hilbert spaces and present the corresponding operators. Throughout this paper, C and C ′

are invertible operators in GL(H).

Definition 2.1. Let W := {Wi}i∈I be a family of closed subspaces of H and {vi}i∈I be a
family of weights. Suppose that {Hi}i∈I is a sequence of Hilbert spaces and Λi ∈ B(H,Hi).
We call ΛCC′K := (Wi,Λi, vi) a (C,C ′)-controlled K-g-fusion frame (briefly CC ′-KGF) for
H if there exist constants 0 < ACC′ ≤ BCC′ <∞ such that for each f ∈ H

ACC′‖K∗f‖2 ≤
∑
i∈I

v2
i 〈ΛiπWi

C ′f,ΛiπWi
Cf〉 ≤ BCC′‖f‖2. (1)

Throughout this paper, ΛCC′K will be a triple (Wi,Λi, vi) with i ∈ I unless otherwise
stated. We call ΛCC′K a Parseval CC ′-KGF if ACC′ = BCC′ = 1 or, equivalently,∑

i∈I
v2
i 〈ΛiπWiC

′f,ΛiπWiCf〉 = ‖K∗f‖2.
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When K = IdH , we get a C,C ′-controlled g-fusion frame for H. If only the second inequality
(1) is required, ΛCC′K is called a (C,C ′)-controlled g-fusion Bessel sequence (briefly CC ′-
GBS) with bound BCC′ .

The synthesis and analysis operators are similar to those corresponding to controlled
g-fusion frame ([14]). So, if ΛCC′K is a CC ′-GBS, then

TCC′ :K 2
Λi
→ H,

TCC′

(
vi(C

∗πWiΛ
∗
i ΛiπWiC

′)
1
2 f
)

=
∑
i∈I

v2
iC
∗πWiΛ

∗
i ΛiπWiC

′f,

and

T ∗CC′ : H → K 2
Λi
,

T ∗CC′f = {vi(C∗πWi
Λ∗i ΛiπWi

C ′)
1
2 f}i∈I,

where

K 2
Λi

:= {vi(C∗πWiΛ
∗
i ΛiπWiC

′)
1
2 f : f ∈ H}i∈I ⊂ (

⊕
i∈I

H)l2 . (2)

Therefore, the frame operator is given by

SCC′f := TCC′T ∗CC′f =
∑
i∈I

v2
iC
∗πWi

Λ∗i ΛiπWi
C ′f,

and for each f ∈ H,

〈SCC′f, f〉 =
∑
i∈I

v2
i 〈C∗πWi

Λ∗i ΛiπWi
C ′f, f〉

=
∑
i∈I

v2
i 〈ΛiπWi

C ′f,ΛiπWi
Cf〉.

Hence

ACC′KK∗ ≤ SCC′ ≤ BCC′IdH .

Now, we conclude that that the following result holds.

Proposition 2.1. Let ΛCC′K be a CC ′-GBS for H. Then ΛCC′K is a CC ′-KGF if and
only if there exists ACC′ > 0 such that SCC′ ≥ ACC′KK∗.

For CC ′-KGF, like for K-frames, the operator SCC′ is not invertible and when K
has closed range, SCC′ is an invertible operator (for more details, we refer to [12]). Assume
that K has closed range. Since B(H) is a C∗-algebra, then S−1

CC′ is positive and self-adjoint.
Now, for any f ∈ SCC′(R(K)) we have

〈Kf, f〉 = 〈Kf, SCC′S−1
CC′f〉

= 〈SCC′(Kf), S−1
CC′f〉

= 〈
∑
i∈I

v2
iC
∗πWi

Λ∗i ΛiπWi
C ′Kf, S−1

CC′f〉

=
∑
i∈I

v2
i 〈S−1

CC′C
∗πWi

Λ∗i ΛiπWi
C ′Kf, f〉.

In the next results, we construct K-g-fusion frames by using a bounded linear operator.

Theorem 2.1. Let U ∈ B(H) be an invertible operator on H such that U∗ commutes
with C,C ′ and let ΛCC′K be a CC ′-KGF for H with bounds ACC′ and BCC′ . Then, Γ :=
(UWi,ΛiπWiU

∗, vi) is a CC ′-UKGF for H.
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Proof. Since U is invertible, UWj is a closed subspace of H for each i ∈ I. For f ∈ H, by
applying Lemma 1.1 with U instead of T , we have∑

i∈I

v2i
〈
ΛiπWiU

∗πUWiC
′f, ΛiπWiU

∗πUWiCf
〉

=
∑
i∈I

v2i
〈
ΛiπWiU

∗C′f, ΛiπWiU
∗Cf

〉
≤ BCC′‖U∗f‖2

≤ BCC′‖U‖2‖f‖2.

So, Γ is a g-fusion Bessel sequence for H. On the other hand,∑
i∈I

v2i 〈ΛiπWiU
∗πUWiC

′f, ΛiπWiU
∗πUWiCf〉 =

∑
i∈I

v2i 〈ΛiπWiU
∗C′f, ΛiπWiU

∗Cf〉

≥ ACC′‖K∗U∗f‖2

= ACC′‖(UK)∗f‖2,

and the proof is completed. �

Corollary 2.1. Let U ∈ B(H) be an invertible operator on H and U∗ commutes with C,C ′

and K∗, furthermore, let ΛCC′K be a CC ′-KGF for H. Then, Γ = (UWi,ΛiπWi
U∗, vi) is

a CC ′-KGF for H.

Theorem 2.2. Let U ∈ B(H) be an unitary operator on H which commutes with C,C ′, and
let ΛCC′K be a CC ′-KGF for H with bounds ACC′ and BCC′ . Then, Γ = (UWi,ΛiU

−1, vi)
is a CC ′-(U−1)∗KGF for H.

Proof. Via Lemma 1.1, we can write for every f ∈ H,

ACC′‖K∗U−1f‖2 ≤
∑
i∈I

v2
i 〈ΛiU

−1πUWi
C ′f,ΛiU

−1πUWi
Cf〉 ≤ BCC′‖U−1‖2‖f‖2.

�

Corollary 2.2. Let U ∈ B(H) be an unitary operator on H which commutes with C,C ′

and K∗, furthermore ΛCC′K be a CC ′-KGF for H with bounds ACC′ and BCC′ . Then,
Γ = (UWi,ΛiU

−1, vi) is a CC ′-KGF for H.

Theorem 2.3. Let ΛCC′K be a CC ′-KGF for H with bounds ACC′ and BCC′ and let K
be closed range. Assume that U ∈ B(H) is such that R(U) ⊆ R(K) and also U∗ commutes
with C,C ′. Then, Γ = (UWi,ΛiπWi

U∗, vi) is a CC ′-KGF for H if and only if there exists
δ > 0 such that for every f ∈ H,

‖U∗f‖ ≥ δ‖K∗f‖.

Proof. Assume that f ∈ H and Γ is a CC ′-KGF for H with the lower bound D. So, by
Lemma 1.1, we get

D‖K∗f‖2 ≤
∑
i∈I

v2
i 〈ΛiπWi

U∗πUWi
C ′f,ΛiπWi

U∗πUWi
Cf〉

=
∑
i∈I

v2
i 〈ΛiπWi

U∗C ′f,ΛiπWi
U∗Cf〉

≤ BCC′‖U∗f‖2.

Thus, ‖U∗f‖ ≥
√

D
BCC′

‖K∗f‖. For the opposite implication, we can write for all f ∈ H,

‖U∗f‖ = ‖(K†)∗K∗U∗f‖ ≤ ‖K†‖‖K∗U∗f‖.
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Therefore,

ACC′δ2‖K†‖−2‖K∗f‖2 ≤ ACC′‖K†‖−2‖U∗f‖2

≤ ACC′‖K∗U∗f‖2

≤
∑
i∈I

v2
i 〈ΛiπWiU

∗C ′f,ΛiπWiU
∗Cf〉

=
∑
i∈I

v2
i 〈ΛiπWi

U∗πUWi
C ′f,ΛiπWiU

∗πUWi
Cf〉

≤ BCC′‖U‖2‖f‖2.

The proof is completed. �

Theorem 2.4. If U ∈ B(H), R(U) ⊆ R(K) and ΛCC′K is a CC ′-KGF for H with bounds
ACC′ and BCC′ , then ΛCC′K is a CC ′-UGF for H.

Proof. By Lemma 1.3, there exists λ > 0 such that UU∗ ≤ λ2KK∗. Thus, for each f ∈ H
we have

‖U∗f‖2 = 〈UU∗f, f〉 ≤ λ2〈KK∗f, f〉 = λ2‖K∗f‖2.

It follows that

ACC′

λ2
‖U∗f‖2 ≤

∑
i∈I

v2
i 〈ΛiπWi

C ′f,ΛiπWi
Cf〉 ≤ BCC′‖f‖2.

�

Theorem 2.5. Let ΛCC′ := (Wj ,Λj , vj) and ΘCC′ := (Wj ,Θj , vj) be two CC ′-GBS for H
with bounds BΛ and BΘ, respectively. Suppose that TΛ and TΘ are their analysis operators
such that TΘT

∗
Λ = K∗, where K ∈ B(H). Then, ΛCC′ and ΘCC′ are CC ′-KGF and CC ′-

K∗GF, respectively.

Proof. For each f ∈ H we have,

‖K∗f‖4 = 〈K∗f,K∗f〉2

= 〈T ∗Λf, T ∗ΘK∗f〉2

≤ ‖T ∗Λf‖2‖T ∗ΘK∗f‖2

=
(∑

i∈I
v2
i 〈ΛiπWi

C ′f,ΛiπWi
Cf〉

)(∑
i∈I

v2
i 〈ΘiπWi

C ′K∗f,ΘiπWi
CK∗f〉

)
≤
(∑

i∈I
v2
i 〈ΛiπWi

C ′f,ΛiπWi
Cf〉

)
BΘ‖K∗f‖2.

Thus,

B−1
Θ ‖K

∗f‖2 ≤
∑
i∈I

v2
i 〈ΛiπWi

C ′f,ΛiπWi
Cf〉.

This means that ΛCC′ is a CC ′-KGF for H. Since TΛT
∗
Θ = K, then similarly ΘCC′ is a

CC ′-K∗GF with the lower bound B−1
Λ . �

Theorem 2.6. Let Λ := (Wj ,Λj , vj) be a K-g-fusion frame for H with the frame operator
SΛ moreover, suppose Λ is a CC ′-GBS with its the frame operator SCC′ . Then Λ is a
Parseval CC ′-KGF for H if and only if C = (S−pΛ )∗U and C ′ = S−qΛ V , where U, V are two
operators on H such that U∗V = KK∗ and p+ q = 1.
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Proof. Assume that Λ is a Parseval CC ′-KGF for H. It is clear that SCC′ = C∗SΛC
′ and

SCC′ = KK∗. Therefore, for each p, q ∈ R such that p+ q = 1, we obtain

KK∗ = C∗Sp
ΛS

q
ΛC
′.

We define U := (Sp
Λ)∗C and V := Sq

ΛC
′. So,

U∗V = C∗Sp
ΛS

q
ΛC
′ = KK∗.

Conversely, let U, V be two operators on H such that U∗V = KK∗. Let C∗ := U∗S−pΛ and

C ′ := S−qΛ V be two operators on H where p, q ∈ R and p+ q = 1. Since,

KK∗ = U∗V = C∗Sp
ΛS

q
ΛC
′ = C∗SΛC

′ = SCC′ ,

for each f ∈ H, we have

‖K∗f‖2 = 〈KK∗f, f〉 =
∑
i∈I

v2
i 〈C∗πWiΛ

∗
i ΛiπWiC

′f, f〉,

showing that, ΛCC′ is a Parseval CC ′-KGF for H. �

3. Q-Duality of (C,C ′)-Controlled K-g-Fusion Frames

In this section, we shall define duality of (C,C ′)-KGF and present some properties
of them.

Definition 3.1. Let ΛCC′ = (Wi,Λi, vi) be a (C,C ′)-KGF for H with the synthesis operator
TΛ. A (C,C ′)-controlled g-fusion Bessel sequence ΘCC′ := (Vi,Θi, wi) is called Q-controlled
dual K-g-fusion frame (or brevity Q-dual (C,C ′)-KGF) for ΛCC′ if there exists a bounded
linear operator Q : K 2

Λj
−→ K 2

Θj
such that

TΛQ
∗T ∗Θ = KCC ′. (3)

The following results present equivalent conditions of the duality with straightforward
proofs.

Proposition 3.1. Let ΘCC′ be a Q-dual (C,C ′)-KGF for ΛCC′ . The following conditions
are equivalent:

(1) TΛQ
∗T ∗Θ = KCC ′;

(2) TΘQT
∗
Λ = C ′∗C∗K∗;

(3) for each f, f ′ ∈ H, we have

〈KCf,C ′∗f ′〉 = 〈T ∗Θf,QT ∗Λf ′〉 = 〈Q∗T ∗Θf, T ∗Λf ′〉.

Theorem 3.1. If ΘCC′ is a Q-dual (C,C ′)-KGF for ΛCC′ and CC ′K = KCC ′, then ΘCC′

is a C2-K∗GF for H.

Proof. Suppose that f ∈ H and BCC′ is an upper bound of ΛCC′ . Therefore,

‖Kf‖4 = |〈Kf,Kf〉|2

= |〈C ′Kf,C∗(C∗)−1(C ′∗)−1Kf〉|2

= |〈KCC ′f, (C∗)−1(C ′∗)−1Kf〉|2

= |〈TΛQ
∗T ∗Θf, (C

∗)−1(C ′∗)−1Kf〉|2

= |〈T ∗Θf,QT ∗Λ(C∗)−1(C ′∗)−1Kf〉|2

≤ ‖T ∗Θf‖2‖Q‖2‖T ∗Λ((C∗)−1C ′∗)−1Kf‖2

≤ ‖T ∗Θf‖2‖Q‖2BCC′‖C−1‖2‖C ′−1‖2‖Kf‖2

= ‖Q‖2BCC′‖C−1‖2‖C ′−1‖2‖Kf‖2
∑
i∈I

w2
i 〈ΘiπVi

Cf,ΘiπVi
Cf〉,
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which completes the proof. �

Corollary 3.1. Assume Cop and Dop are the optimal bounds of ΘCC′ . Then

Cop ≥ B−1
op ‖Q‖−2‖C ′−1‖−2‖C−1‖−2 and Dop ≥ A−1

op ‖Q‖−2‖C ′−1‖−2‖C−1‖−2,

where Aop and Bop are the optimal bounds of ΛCC′ .

Suppose that ΛCC′ is a (C,C ′)-KGF for H. Since SCC′ ≥ ACC′KK∗, by Lemma
(1.3) there exists an operator U ∈ B

(
H,K 2

Λj
) such that

TCC′U = K. (4)

Now, we define the j-th component of Uf by Ujf = (Uf)j for each f ∈ H. It is clear that
Uj ∈ B(H,C∗(Wi)). By this operator, we may construct a some Q-dual (C,C ′)-KGF for
ΛCC′ .

Theorem 3.2. Let ΛCC′ be a (C,C ′)-KGF for H and K ∈ GL(H). If U is an operator as

in (4) and W̃i := C∗U∗i C
∗Wi is such that ΘC := (W̃i,Λi, vi) is a (C,C ′)-KGF for H, then

ΘC := (W̃i,Λi, vi) is a Q-dual (C,C ′)-KGF for ΛCC′ .

Proof. Define the mapping

Ψ0 : R(T ∗Θ)→ K 2
Λj
,

Ψ0(T ∗Θf) = UCC ′f.

Then Ψ0 is well-defined, since T ∗Θf is injective because K ∈ GL(H). Moreover,

‖Ψ0‖ = sup
f 6=0

‖Ψ0T
∗
Θf‖

‖T ∗Θf‖

≤ sup
f 6=0

‖UCC ′f‖√
AΘ‖K∗f‖

≤ sup
f 6=0

‖U‖‖C‖‖C ′‖‖f‖√
AΘ‖K−1‖−1‖f‖

=
‖U‖‖C‖‖C ′‖√
AΘ‖K−1‖−1

<∞,

where AΘ is a lower frame bound of ΘCC′ . Therefore, Ψ0 is a bounded operator. So, it has
a unique linear extension (also denoted by Ψ0) to R(T ∗Θ). Define

Ψ =

{
Ψ0, on R(T ∗Θ),

0, on R(T ∗Θ)
⊥

and let Q := Ψ∗. This implies that Q∗ ∈ B(K 2
Θ ,K

2
Λj

) and

TCC′Q∗T ∗Θ = TCC′ΨT ∗Θ = TCC′UCC ′ = KCC ′.

�

Theorem 3.3. Let ΛCC′K be a CC ′-KGF with optimal bounds of Aop and Bop, and K with
closed range. Then

Bop = ‖SCC′‖ = ‖TCC′‖2 , Aop = ‖U0‖−2,

where U0 is the unique solution of equation (4).



118 Gholamreza Rahimlou, Vahid Sadri, Reza Ahmadi

Proof. By Lemma (1.3), the equation (4) has a unique solution, U0, such that

‖U0‖2 = inf{α > 0 | KK∗ ≤ αTCC′T ∗CC′}
= inf{α > 0 | ‖K∗f‖2 ≤ α‖T ∗CC′f‖2 , f ∈ H}.

Now, we have

Aop = sup{A > 0 | A‖K∗f‖2 ≤ ‖T ∗CC′f‖2 , f ∈ H}

=
(

inf{α > 0 | ‖K∗f‖2 ≤ α‖T ∗CC′f‖2 , f ∈ H}
)−1

= ‖U0‖−2.

�

4. Perturbation of controlled K-g-fusion frame

Perturbation of frames has been firstly discussed by Cazassa and Christensen in [2].
Recently, for K-g-fusion frames, Sadri et al. studied it in [12]. Now, we present some
perturbation of CC ′-KGF.

Theorem 4.1. Let ΛCC′K be a CC ′-KGF for H with bounds ACC′ and BCC′ and {Θi ∈
B(H,Hi)}i∈I be a sequence of operators such that for each f ∈ H and i ∈ I,

‖vi(C∗πWiΛ
∗
i ΛiπWiC

′ − C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖ ≤ λ1‖vi(C∗πWiΛ

∗
i ΛiπWiC

′)
1
2 f‖+

+ λ2‖vi(C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖+ ci‖K∗f‖,

where, {ci}i∈I is a sequence of positive numbers such that β :=
∑

i∈I c
2
i < ∞ and 0 ≤

λ1, λ2 < 1. Then ΘCC′ is a CC ′-KGF for H with bounds:( (1− λ1)
√
ACC′ − β

1 + λ2

)2

,
( (1 + λ1)

√
BCC′ + β‖K‖

1− λ2

)2

.

Proof. Let f ∈ H be arbitrary. We have

‖vi(C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖ = ‖vi(C∗πWiΘ

∗
i ΘiπWiC

′ − C∗πWiΛ
∗
i ΛiπWiC

′)
1
2 f

+ vi(C
∗πWiΛ

∗
i ΛiπWiC

′)
1
2 f‖

≤ ‖vi(C∗πWiΘ
∗
i ΘiπWiC

′ − C∗πWiΛ
∗
i ΛiπWiC

′)
1
2 f‖

+ ‖vi(C∗πwiΛ
∗
i ΛiπWiC

′)
1
2 f‖

≤ λ1‖vi(C∗πWiΛ
∗
i ΛiπWiC

′f‖+ λ2‖vi(C∗πwiΘ
∗
i Θiπ

∼
Wi
C′)

1
2 f‖

+ ci‖K∗f‖+ ‖vi(C∗πWiΛ
∗
i ΛiπWiC

′)
1
2 f‖.

Hence,

(1− λ2)‖(vi(C∗πWi
Θ∗i ΘiπWi

C ′)
1
2 f‖ ≤ (1 + λ1)‖vi(C∗πWi

Λ∗i Λiπwi
C ′)

1
2 f‖+ ci‖K∗f‖.

Since ΛCC′K is a CC ′-KGF, it follows that

‖T ∗CC′f‖2 = ‖vi(C∗πwi
Λ∗i Λiπwi

c′)
1
2 f‖2

=
∑
i∈I

v2
i 〈ΛiπWiC

′f,ΛiπWiCf〉

≤ BCC′‖f‖2.



Construction of controlled K-g-fusion frames in Hilbert spaces 119

Therefore,

‖vi(C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖ ≤ (1 + λ1)‖vi(C∗πWiΛ

∗
i ΛiπWiC

′)
1
2 f‖+ ci‖K∗f‖

1− λ2

≤
( (1 + λ1)

√
BCC′ + β‖K‖

1− λ2

)
‖f‖.

Now, for the lower bound, we get

‖vi(C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖ = ‖vi(C∗πWiΛ

∗
i ΛiπWiC

′)
1
2 f − vi(C∗πWiΛ

∗
i ΛiπWiC

′

− C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖

≥ ‖vi(C∗πWiΛ
∗
i ΛiπWiC

′)
1
2 f‖

− ‖vi(C∗πWiΛ
∗
i ΛiπWiC

′ − C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖

≥ ‖vi(C∗πWiΛ
∗
i ΛiπWiC

′)
1
2 f‖ − λ1‖vi(C∗πWiΛ

∗
i ΛiπWiC

′)
1
2 f‖

− λ2‖vi(C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖ − ci‖K∗f‖.

Therefore

(1 + λ2)‖vi(C∗πWi
Θ∗i ΘiπWi

C ′)
1
2 f‖

≥ (1− λ1)‖vi(C∗πWiΛ
∗
i ΛiπWi

C ′)
1
2 f‖ − ci‖K∗f‖,

or

‖vi(C∗πWi
Θ∗i ΘiπWi

C ′)
1
2 f‖ ≥ (1− λ1)‖vi(C∗πWiΛ

∗
i ΛiπWiC

′)
1
2 f‖ − ci‖K∗f‖

1 + λ2
.

Since,

‖T ∗CC′f‖2 = ‖vi(C∗πWiΛ
∗
i ΛiπWiC

′)
1
2 f‖2 ≥ ACC′‖K∗f‖2,

it follows that

‖vi(C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖ ≥

( (1− λ1)
√
ACC′ − β

1 + λ2

)
‖K∗f‖.

This completes the proof. �

Proposition 4.1. Let ΛCC′K be a CC ′-KGF for H with bounds ACC′ and BCC′ and
{Θi ∈ B(H,Hi)}i∈I be a sequence of operators such that for each f ∈ H and i ∈ I,

‖vi(C∗πWi
Λ∗i ΛiπWi

C ′ − C∗πWi
Θ∗i ΘiπWi

C ′)
1
2 f‖ ≤ ci‖K∗f‖,

where, {ci}i∈I is a sequence of positive numbers such that β :=
∑

i∈I c
2
i <∞. Then ΘCC′ is

a CC ′-KGF for H with bounds:

(
√
ACC′ − β))2 , (β‖K‖+

√
BCC′)2.

Proof. Forf ∈ H we have

‖vi(C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖ = ‖vi(C∗πWiΘ

∗
i ΘiπWiC

′ − C∗πWiΛ
∗
i ΛiπWiC

′)
1
2 f

+ vi(C
∗πWiΛ

∗
i ΛiπWiC

′)
1
2 f‖

≤ ‖vi(C∗πWiΘ
∗
i ΘiπWiC

′ − C∗πWiΛ
∗
i ΛiπWiC

′)
1
2 f‖

+ ‖vi(C∗πwiΛ
∗
i ΛiπWiC

′)
1
2 f‖

≤ (β‖K‖+
√
BCC′)‖f‖.
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Therefore, ΘCC′ is a CC ′-GBS for H. On the other hand,

‖vi(C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖ ≥ ‖vi(C∗πWiΛ

∗
i ΛiπWiC

′)
1
2 f‖

− ‖vi(C∗πWiΛ
∗
i ΛiπWiC

′ − C∗πWiΘ
∗
i ΘiπWiC

′)
1
2 f‖

≥ (
√
ACC′ − β)‖K∗f‖,

and the proof is completed. �

Conclusions

The study of the controlled k-g-fusion frames shows that the emphasis on the Hilbert
spaces introduces a new idea.
Especially, the topic of the dual of frames which is important for frame applications has
been specified completely for those frames.
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