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KKM MAPPINGS IN PMT SPACES WITH APPLICATIONS

Mahboobeh Tatari', S. Mansour Vaezpour?, Reza Saadati®

In this paper, we study some topological properties of PMT spaces, next
we obtain KKM mapping in these spaces, as an application, we get some fized point
existence results for set-valued mappings and a new version of Fan’s best approrimation
theorem on such spaces.
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1. Introduction

Recently, Khamsi and Hussain [7] introduced the concept of metric type space and
discussed a natural topology defined in any metric type space, which this topology enjoys
most of the metric like properties (see also [2, 5, 6]). In this paper, we introduce probabilistic
metric type space and establish some topological properties of these spaces. We study the
class of KKM type mappings on probabilistic metric type space and apply it for getting
some fixed point existence results for set-valued mappings and a new version of Fan’s best
approximation theorem on such spaces.

2. Basic definitions and results

First, let us start by making some basic definitions.
Definition 2.1 ([4, 9, 10]). mapping F' : (—oo,00) — [0, 1] is called a distribution function
if it is non-decreasing and left-continuous with inf,cp F'(x) = 0 and sup,cp F'(z) = 1. If in
addition F'(0) = 0, then F is called a distance distribution function. The set of all distance
distribution functions (d.d.f) is denoted by A*. The maximal element for A" in this order
is the d.d.f, ¢ given by
0 ift<0,
eo(t) = { N

1 ift>0.

Definition 2.2 ([1, 3, 8]). A triangular norm (shorter t-norm) is a binary operation 7' on
[0, 1], which satisfies the following conditions:

(1) T is associative and commutative;
(2) T(a,1) =afor all a € [0,1];
(3) T(a,b) < T(c,d) whenever a < ¢ and b < d, for each a,b,c,d € [0,1].

The operations T7,(a,b) = max(a + b — 1,0), Th(a,b) = min{a, b} and Tp(a,b) = ab
on [0, 1] are ¢- norms.
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Definition 2.3. A probabilistic metric type space (PMT space) is a triple (M, F, T'), where
M is a nonempty set, T is a continuous t-norm and F is a mapping from M x M into AT
such that, if F, , denote the value of F' at the pair (x,y), the following conditions hold:

(PMT1) F,,(t) =¢eo(t) for all ¢ > 0 if and only if x = y;

(PMT2) F,,(t) = F,.(t);

(PMT3) F,(K(s+1t)) > T(Fy,.(s), Fsy(t)) for any z,y,z € M , t,s > 0 for some constant
K> 1

Observe that if K = 1, then the PMT space is a probabilistic metric space, however
it does not hold true when K > 1. Thus the class of PMT spaces is effectively larger than
that of the ordinary probabilistic metric spaces. That is, every probabilistic metric space is
a PMT space, but the converse need not be true.

Example 2.1. Let (M, D) be a metric type space with constant K > 1. Define
0 ift<o
Fpy(t) = ¢ e o

Then (M, F,T,) is a PMT space with constant K. (PMT1) and (PMT2) are obvious and
we show (PMTS3).

t S
T Fm z t 7FZ = ’
p(Fuz(t), Fsy(s)) t+ D(x,z) s+ D(z,y)
14 D(atu,z) 1 + D(z,y)
< 1 !
- D(z,z) * D(z,y)
]. + (t+8) ]' + (t+$)
- 1
> (D(z,2)+D(z,y))
L4 =y
< 1
= .| D(y)
1+ K(eryS)
- K(t+s)
" K(t+s)+ D(z,y)
= F,,(K(t+s)).

Remark 2.1. Let L, (0 < p < 1) be the set of all real functions f(z), = € [0, 1] such that
fol |f(x)[Pdz < oo. Define

D(z,y) = ( / (@) — g(x)Pda)? |

for each f,g € L,. Then D is a metric type space with K = 25

Example 2.2. Let M be the set of Lebesgue measurable functions on [0,1] such that
fol |f(2)|Pdz < oo, where p > 0 is a real number. Define

0 ift <0,
Fpy(t) = ¢ ift>0.

(L 1f (2)—g(x)|Pde) P

Then by Example 2.4 and Remark 2.5, (M, F,T},) is a PMT space with K = 2.
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Example 2.3. Let (M, D) be a metric type spaces with constant K > 1. Define

A = 0 ift<0,
DT TP i > 0.

Then (M, F,T,) is a PMT space with constant K. (PMT1) and (PMT2) are obvious and
we show (PMTS3).

t s
t+ D(z,2) s+ D(z,y)

—(D(z,2)) =(D(2,9))
t .€

Tp(Fr 2 (1), Fzy(s) =

= e s
< o (REY
= Fr,y(K(t+3))~

Remark 2.2. Let (M,d) be a metric space and D(x,y) = (d(x,y))", where n > 1 is a real
number. Then D is a metric type space with K = 2"~!. The triangle inequality follows
easily from the convexity of the function f(x) = z™ (z > 0).

Example 2.4. Let M be a nonempty set. Define

0 ift <0,
Fea) =9 = i

Then by Example 2.7 and Remark 2.8 (M, F,T},) is a PMT space with K = 271,

3. Topology induced by probabilistic metric type

We continue to present some concepts and results from probabilistic metric space
theory, in the context of PMT spaces. Let (M, F,T) be a PMT space. We define the open
ball B, (r,t) and the closed ball B,[r,¢] with center x € M and radius 0 < r <1, ¢ > 0 as
follows:

By(rit)={yeM : F,,(t)>1—-r},

By tl={yeM : Fy,(t)>1-r}.
Definition 3.1. Let (M, F,T) be a PMT space. A subset A C M is said to be open if and
only if, for any x € A there exists ¢ > 0 and 0 < r < 1 such that B, (r,t) C A.

Proposition 3.1. Let (M, F,T) be a PMT space. Define
7 = {ACM:xe€ Aifand only if there exists
t>0and 0 <r <1, such that B;(r,t) C A}.
Then tr 1s a topology on M.
Proof. (i) Clearly ) and M belong to Tp.
(ii) Let Ay, As, ..., A; € T, and put
U = Ujer 4.
We shall show that U € 7. If a € U, then a € U;c;A; which implies that a € A; for some
i € I. Since A; € Tp, there exists 0 < r < 1, ¢t > 0, such that B,(r,t) C A;. Hence
Bu(r,t) CA; CUjerA; =U.

This shows that U € 7.
(iii) Let Ay, Asg, ..., Ay, € Tp, and U = NI, A;. We shall show that U € 7p. Let a € U. Then
a € A; for all 1 < i <n. Hence, for each 1 < i < n, there exists 0 < r; < 1, t; > 0 such that
Ba(’riati) C A;. Let

r=min{r;, 1 <i<n}
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and
t =max{t;, 1 <i<mn}.
Thusr <r;forall1 <i<n,1—r>1—r;forall 1 <i<mn. Also, t> 0. So, B,(r,t) C A;
for all 1 <7 < n. Therefore
Ba(T‘, t) C ﬂ?’zlAi =U.
This shows that U € 7. O

Proposition 3.2. Every PMT space with constant K is Hausdorff.

Proof. Let (M, F,T) be a PMT space. Let x,y be two distinct points of M. Then 0 <
Fpy(t) < 1. Let F,,(t) = r, for some r, 0 < r < 1. For each ry, r < ry < 1, we can find an
r1 such that T'(r1,71) > ro. Now consider the open balls B, (1 — 71, 5% ) and By (1 —ry, 5%).
Clearly

t t
Bx(l — T, ﬁ) n By(l — T, ﬁ) = @
Otherwise, if there exists z € By (1 — r1, 5%) N By(1 — r1, 5%). Then
o= Fpy)

> T(Fes(g) Pu(5r)

[l x,z 2K yLzy 2K

> T(ri,m1) >0

> r,
which is a contradiction. Therefore (M, F,T') is Hausdorff. O

Proposition 3.3. Let (M, D) be a metric type space and Fy ,(t) = m

responding standard PMT on M. Then the topology Tp induced by the metric D and the
topology TF induced by the F' are the same. That is, Tp = TF.

be the cor-

Proof. Suppose that A € 7p. Then there exists ¢ > 0 such that B(z,e) C A, for every
x € A. For a fixed t > 0, we obtain that

t t
F,,(t) = > .
a(t) t+ D(xz,y) = t+e
Let
t
1—r= .
t+e€
Then
Foyt)>1—r.

It follows that, B,(r,t) C A. Hence A € 7. This shows that 7p C 7. Conversely, suppose
that A € 7p. Then there exists 0 < r < 1 and ¢ > 0 such that B,(r,t) C A for every x € A.
We obtain that

t
Fpyt)= —— > 1—
.,J() t+D($,y) > r
t>(1—-r)t+ (1 —r)D(z,y)
rt
D .
(@) < 7
Let € = {_tr where 0 < € < 1. Then D(z,y) < ¢, and therefore B(z,¢) C A. Hence A € 7p.
This implies that 77 C 7p. Therefore 7p = 7p. O

Definition 3.2. Let (M, F,T) be a PMT space. A subset X of M is said to be p-bounded
if there exists ¢ > 0 and 0 < r < 1 such that Fj ,(¢) > 1 —r for all z,y € X.

Remark 3.1. Let (M, F,T) be a PMT space induced by a metric type D on M. Then
X C M is p-bounded if an only if it is bounded.



KKM mappings in PMT spaces with applications 65

Definition 3.3. Let (M, F,T) be a PMT space. We say that {z,} is:

(1) Convergent sequence, if for 0 < r < 1 and ¢t > 0 there exists ng € N such that
F, .(t)>1—r forall n > ngy and for some fixed x € M;

(2) Cauchy sequence, if for every 0 < r < 1 and t > 0 there exists ng € N such that
Fy ., (t) > 1 —r for all n,m > ng. A PMT space is said to be complete if every
Cauchy sequence is convergent in M.

Theorem 3.1. Let (M, F,T) be a PMT space and T be the topology induced by the PMT.
Then for a sequence {xy} in M, the sequence {x,} converges to x if and only if Fy, .(t)
converges to 1 as n — 0o.

Proof. Fix t > 0. Suppose that the sequence {z,} converges to . Then for 0 < r < 1, there

exists ng € N such that z,, € B,(r,t) for all n > ng. It follows that F, ,(t) > 1—r and

hence 1 — F,,, »(t) < r. Therefore F,,, ,(t) converges to 1 as n — oo.

Conversely, if for each ¢ > 0, F,, (t) converges to 1 as n — oo then for 0 < r < 1, there

exists ng € N such that 1 — Fy . (t) < r for all n > ng. It follows that F,_ .(t) > 1—r for

all n > ng. Thus z,, € B,(r,t) for all n > ng, and hence the sequence{z,} converges to x.
O

Remark 3.2. Let (M, F,T) be a PMT space induced by a metric type D on M. Then
{z,} is convergent in 7 if and only if {z,} is convergent in (M, D).

Theorem 3.2. Let (X, F,T) be a PMT space and T be the topology induced by the PMT.
Then for a sequence {x,} in X, the sequence {z,} is Cauchy if and only if Fy, 4. (t)
converges to 1 as n,m — o0.

Proof. Fix t > 0. Suppose that the sequence {z,} is Cauchy. Then for 0 < r < 1, there
exists ng € N such that z,, € By, (r,t) for all n,m > ng. It follows that Fy ., () >1—r
and hence 1 — F,, . (t) <r. Therefore F, . (t) converges to 1 as n,m — oo.

Conversely, if for each ¢ > 0, Fy,, ,(Kt) converges to 1 as n, m — oo then for 0 < r < 1, there
exists ng € N such that 1—F,_, (t) <r for all n,m > ng. It follows that F, . (t)>1—r
for all n,m > ng. Thus x,, € B, (r,t) for all n,m > ng, and hence the sequence{x,} is

m

Cauchy. O

Remark 3.3. Let (M, F,T) be a PMT space induced by a metric type D on M. Then
{zn} is Cauchy in 7p if and only if {x,} is Cauchy in (M, D).

Proposition 3.4. Let (M, F,T) be a PMT space and T be the topology induced by PMT.
Then for any nonempty subset X C M we have

(1) X is closed if and only if for any sequence {x,} in X which converges to x, we have
zeX;

(2) if we define ):( to be the intersection of all closed subsets of M which contain X, then
for any x € X and for any 0 <7 <1 and t > 0, we have B,(r,t) N X # 0.

Proof. Let us prove (1) first. Assume that X is closed and let {z,,} be a sequence in X such
that lim,_,cc ¢, = . Let us prove that € X. Assume not, i.e. ¢ X. Since X is closed,
then there exists 0 < r < 1 and ¢ > 0 such that B,(r,t) N X = 0. Since {x,} converges
to x, then there exists N > 1 such that for any n > N we have z,, € B,(r,t). Hence
xn € Bi(r,t) N X, which leads to a contradiction. Conversely assume that for any sequence
{2} in X which converges to x, we have x € X. Let us prove that X is closed. Let = ¢ X.
We need to prove that there exists 0 < r < 1 and ¢ > 0 such that B, (r,t) N X = (. Assume
not, i.e. for any 0 < r < 1 and ¢ > 0, we have B,(r,t) N X ¢ 0. So for any n > 1, choose
Tp € Bz(%,t) N A. Clearly we have {z,} converges to . Our assumption on X implies
x € X, a contradiction.
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Let us prove (2). Clearly X is the smallest closed subset which contains X. Set
X* = {x e M,;forany0 < r < 1, there existsa € X
such that : Fy o(t) > 1—r}.
We have X C X*. Next we prove that X* is closed. For this we use property (1). Let {z,}

be a sequence in X* such that {x,} converges to x. Let 0 < r < 1 and ¢ > 0. Since {x,}
converges to x, there exists IV > 1 such that for any n > N we have

4
Fx,xn(ﬁ) >1—r,
where K is the constant to the condition (PMT3). Let ro = Fy 4, (5%) > 1 —r. Since

ro > 1—17, we can find an s, 0 < s < 1, such that 7o > 1 —s > 1 —ry. Now for a given r
and s such that rg > 1 — s we can find 71, 0 < r; < 1, such that

T(To,(l —7’1)) Z 1—s.

Now, since x,, € X*, there exists a € X such that

t
F, — 1—ry.
Z717a(2K) > 1
Hence
t t
F, >T(Fpp (=), Fp ol=— T 1-— >1- 1-—
wa(t) =T ‘L7In(2K)7 -Ln,ya(2K)) > T'(ro, ( 1)) > s > T,
which implies 2 € X*. Therefore X* is closed and contains X. The definition of X C X*,
which implies the conclusion of (2). O

Proposition 3.5. Every compact subset X of a PMT space M is p-bounded.

Proof. Given X a compact subset of M. Fix ¢t > 0 and 0 < r < 1. Consider an open cover
{By(r,t) : © € X} of X. Since X is compact, there exists 1, x2, ..., £, € X such that
X - U?:lei (T7 t) .
Let z,y € X. Then x € B,,(r,t) and y € By, (r,t) for some i, j. Therefore Fy, ,,(t) > 1—1r
and Fy ., (t) >1—r. Now, let @ = min{F;, ,,(t) : 1 <4,j <n}. Then a > 0. Now
Fz,y(K(QKt + t)) Z T(T(F%Il (t)a in,ﬂﬁj (t))v Fﬂ?j,y(t) Z T(T((l - T)v (1 - 7’)), a) )
where K is the constant in the condition (PMT3). Taking t = K (2Kt 4 t) and T(T((1 —

r),(1=7)),a) >1—s50<s <1, we have F, ,(t') > 1 — s for all z,y € X. Hence X is
p-bounded. O

Every compact subset of a Hausdorff topological space is closed. Then:
Remark 3.4. In a PMT space every compact subset is closed and p-bounded.

Proposition 3.6. Let (M, F,T) be a PMT space and T the topology defined above. Let X
be a nonempty subset of M. The following properties are equivalent
(1) X is compact.
(2) For any sequence {xy} in X, there exists a subsequence {x,, } of {x,} which converges,
and if {xn,} converges to x then x € X.

Proof. Assume that X is a nonempty compact subset of M. It is easy to see that any
decreasing sequence of nonempty closed subsets of X has a nonempty intersection. Let
{z,} be a sequence in X. Set C,, = {z,,, : m > n}. Then we have ), ~,C, # 0. Let
T € ﬂn>107n. Then for 0 < r < 1, ¢t > 0 and for any n > 1, there exists m,, > n such
that Fx,;mn (t) > 1 —r. This clearly implies the existence of a subsequence of {x,} which
converges to z. Since X is closed, then we must have z € X.
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Conversely, let X be a nonempty subset of M such that the conclusion of (2) is true.
Let us prove that X is compact. First, note that for any 0 < r < 1, ¢ > 0, there exists
x1,%2,...,L, € A such that

n
X B (rt).
i=1
Assume not, then there exists 0 < 79 < 1, such that for any finite number of points
T1,T9,...,Tn € X, we have

X ¢ | Bz, (rot).
i=1

Fix 21 € X. Since X € By, (ro,t), there exists zo € X \ By, (r0,t). By induction we build a
sequence {z,} such that

Tpt1 € X \ (le (To,t) U...u an (To,t))

for alln > 1. Clearly we have Fy, ;.. (t) < 1—rg, for alln,m > 1, with n # m. This condition
implies that no subsequence of {z,} will be Cauchy or convergent. This contradicts our
assumption on X. Next let {O4},; be an open cover of X. Let us prove that only finitely
many O, cover X. Fix ¢t > 0, First, note that there exists 0 < rqg < 1 such that for any
x € X, there exists a € J such that B,(rg,t) C O,. Assume not, then for any 0 < r < 1,
there exists z, € X such that for any a € J, we haveB, (r,t) ¢ O,. In particular, for
any n > 1, there exists z,, € X such that for any o € J, we have an(%,t) ¢ O,. By our
assumption on X, there exists a subsequence {z,, } of {z,} which converges to some point
z € X. Since the family {Oq}aecs covers X, there exists ap € J such that z € O,,. Since
Oy, is open, there exists 0 < rg < 1, and ¢y > 0 such that B, (rg,t) C Og,. Fix t > 0 and
let t1 = tK, for any ng > 1and a € By, (%{,t) = By, (-1, 1), we have

n ng'’ K

to — 61 t1 to — 11 1

K )7ank,a(}))>T(Fm,rnk( K )71_7)

Fz,a(t[)) 2 T(FI,Ink( Nk

for my, large enough, we will get Fj ,(t) > 1 — 7o for any a € BIk(i t). In the other

ng’
n—lk,t) C By(r0,t0), which implies By, (n—lk,t) C Og,-. This is in clear
contradiction with the way the sequence {z,} was constructed. Therefore, there exists
0 < ro < 1 such that for any = € X, there exists a € J such that B,(ro,t) C O,. For such

ro, there exist x1, xs,...,z, € X such that

words, we have Bwnk(

X C Bml(ro,t) U..u an(’)"o,t).

But for any ¢ = 1, ..., n, there exists a € J such that By, (r9,t) C Og,, i.e., X C Oy, U...UO,,, .
This completes the proof that X is compact. O

Definition 3.4. The subset X is called sequentially compact if and only if for any sequence
{z,} in X, there exists a subsequence {x,, } of {z, } which converges, and lim,,, 00 T, € X.
Also X is called totally bounded if for any 0 < r» < 1 and ¢ > 0, there exist x1, 2, ..., T, € X
such that

X C By, (r,t)U...U By, (r,1).
In the above proof we showed the following result.
Theorem 3.3. Let (M, F,T) be a PMT space and Tr the topology defined above. Let X be
a nonempty subset of M.

(1) X is compact if and only if X is sequentially compact.
(2) If X is compact, then X is totally bounded.
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4. KKM maps in PMT spaces

For a set X, we denote the set of all nonempty finite subsets of X by (X). Let A be
a nonempty p-bounded subset of PMT space (M, F,T). Then

(1) co(A) =nN{B C M, B is a closed ball in M such that A C B}.

(2) AMM)={AC M, A=co(A)}, ie. Aec A(M) if and only if A is an intersection of
all closed balls containing A. In this case, we say that A is an admissible set in M.

(3) A is called subadmissible, if for each D C (A), co(D) C A. Obviously, if A is an
admissible subset of M, then A must be subadmissible.

Let (M,F,T) be a PMT space and X a subadmissible subset of M. A set-valued
mapping G : X — 2™ is called a KKM mapping, if for each A € (X), we have co(A) C
G(A) = U{G(a),a € A}. More generally, if Y is a topological space and G : X — 2Y, S :
X — 2" are two set-valued mappings such that for any A € (X), we have S(co(A)) C G(A),
then G is called a generalized KKM mapping with respect to .S. If the set-valued mapping
S : X — 2Y satisfies the requirement that for any generalized KKM mapping G : X — 2¥
with respect to S the family {G(z),x € X} has the finite intersection property, then S is
said to have the KKM property. We define

KKM(X,Y)={S:X —2¥, S has the KKM property }.

Let X be a nonempty subset of a PMT space M. Then S : X — 2M is said to have the
approximate fixed point property if for any 0 < r < 1 and ¢t > 0, there exists an x € X
such that S(z) N By(r,t) # 0, i.e. there exists y € S(x) such that F, ,(t) > 1 —r. We now
establish the approximate fixed point property of KKM-type mapping on a subadmissible
subset of a PMT space.

Theorem 4.1. Let (M, F,T) be a PMT space and X a nonempty subadmissible subset of
M. Let S € KKM (X, X) be such that S(X) is totally bounded. Then S has the approxzimate
fixed point property.

Proof. Set Y = S(X) C X. Since Y is totally bounded, fix ¢ > 0 then for any 0 < r < 1 and
t > 0, there exists a finite subset A C X such that Y C J, 4 Bz(r, £). Define G : X — 2%
by

G(z) =Y [ Ba(r, Kt)°

where Z€ is the complement of Z in M. Clearly G(x) is closed. Note that for any x € M,
we have

[N tva

r5) C Bu(r, Kt) ‘€ Bu(r, Kt).
Indeed, let y € B,(r, ). Assume that y ¢ B,(r, Kt)cc, ie., y € By(r,Kt)°. From the
properties of the closure in PMT spaces, there exists a sequence {y,} € B.(r, Kt)“ such

that lim,, s~ ¥, = y. Hence

B, (

t t
1—r2>Fpy, (Kt) > T(Fz,y(§)aFy’yn(§))
If we let n — oo, we get 1 —r > F, (). This is a contradiction to y € By(r, £). Hence

Bu(r,3) C Bulr, K0)

Next let y € B,(r, Kt)cc. Let us prove that y € B, (r, Kt). Assume not, i.e., y & B, (r, Kt).
Hence y € B,(r, Kt)°, which implies y € B,(r, Kt)°. This is a contradiction with y €
———~C

B, (r, Kt)° . Therefore, we have

B, (r, KO)° C B,(r, Kt).



KKM mappings in PMT spaces with applications 69

On the other hand, since Y C {J, ¢ 4 Bz (r, 5), then we have (., G(z) = 0. So G is not a
generalized KKM mapping with respect to S. Since S € KKM (X, X), there exists a finite
nonempty subset B C X such that

S(co(B)) ¢ | G(x).

z€EB
So there exists zg € S(co(B)) such that z¢ ¢ G(z) for any = € B.

In other words, we have zg € B,(r, Kt)cc, for any x € B. Hence zy € B, (r, Kt) for
any ¢ € B or B C B(r, Kt). By the definition of co(B) we deduce that co(B) C By(r, Kt).
Since x¢ € S(co(B)), there exists z, € co(B) such that zg € S(z,). But 2, € co(B) C

By, (r, Kt), gives Fy, 5 (Kt) > 1 —r. Therefore, we have proved
S(@r) () Ba, (r, Kt) # 0.

Since 0 < 7 < 1 and ¢ > 0 were arbitrary, the proof of the theorem is complete. O

As a direct consequence of this result, we get the following fixed point result.

Theorem 4.2. Let (M, F,T) be a PMT space and X a nonempty subadmissible subset of
M. Let S € KKM(X,X) be closed and compact. Then S has a fized point, i.e. there erists
x € X such that x € S(x).

Proof. Since S is compact, then S(X) is compact. Hence S(X) is totally bounded. The
previous theorem implies the existence of x, € X such that

S(xr)ﬂBwr(rvKt) # 0,

for any 0 < r < 1 and t > 0. In particular, for any n > 1, there exists x,, € X such that

San) () Be (o, K1) #0

Hence there exists y,, € S(z,) such that F,, ., (Kt) > 1— X for any n > 1. Since S is
compact, there exists a subsequence {yy,, } which is convergent to y. Clearly we have {z,, }
is also convergent to y. Since {(zn,yn)} € Gr(S) and Gr(S) is closed, then (y,y) € Gr(S),
i.e. y € S(y) where Gr(S) denotes the graph of the mapping S. O

Before we obtain on further results, we would like to give an example to support
Theorem 4.2.

Example 4.1. Assume that M := R and (R, F,T,) be a PMT space similar to Example
2.4. Let X =[0,1] and define a map S : X — 2% by

1—a,1] ifz €[0,3),
S(x) =4 {1} ifa =3,
0,1 -2]u{1} ifze(3,1]
Clearly, we have X being subadmissible and S being closed and compact. Now, let G : X —
2% be a given generalized KKM map with respect to S. It is clear that S(x) C G(z) for

all x € X. Since S has the finite intersection property, so does G. Therefore, we have
S e KKM(X,X). In view of Theorem 4.2, S has a fized point.

The following lemma will be useful to prove Schauder’s type fixed point theorem for
PMT spaces.

Lemma 4.1. Let (M, F,T) be a PMT space and X a nonempty subadmissible subset of M.
Suppose that Y is a topological space, S € KKM(X,Y) and f:Y — X is continuous, then
foSe KKM(X,X).
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Proof. Let G : X — 2% be generalized KKM mappings with respect to f o S such that
G(z) is closed for each € X. Then, for any finite subset {x1,z2,...,2,} of X, since G
is a generalized KKM mapping with respect to f o S we have f o S(co{x1,x2,...,2,}) C
Ui<i<n G(@i). Hence

S(co{z1,x2, ..., xn}) C U fHG(x:))
1<i<n
Therefore, f~1(G) is a generalized KKM mapping with respect to S. Since S € KKM (X,Y),
then the family {f~'(G(z)), * € X} has the finite intersection property since f is contin-

uous. This will imply that the family {G(z), z € X} has the finite intersection property.
This shows that foS € KKM(X,X). O

Corollary 4.1. Let (M,F,T) be a PMT space and X a nonempty subadmissible subset
of M. Suppose that the identity mapping I : X — X belongs to KKM (X, X), then any
continuous mapping f: X — X such that f(X) is compact, has a fized point.

Proof. Since I € KKM(X, X), and f is continuous, then by Lemma 4.4, f € KKM (X, X).
Using that f(X) is compact and every continuous map is closed, we conclude by Theorem
4.2 that f has a fixed point. O

5. Applications

In this section as an application of the PMT-KKM principle, we give the version of
Fan’s best approximation in nonexpansive retraction probabilistic metric type spaces (NR-
PMT spaces).

Definition 5.1. A PMT space (M, F,Tys) is called NR-PMT space if there exists a closed
convex subset (W, u, Thr) of a completely probabilistic metrizable topological vector space
(V, 1, Thr), in which

Koy +Bxz,ay1+By2 (t) 2 TM (:uxl Y1 (t)a Hao,yo (t))
for all z1,22,y1,y2 € W, a+8 =1, a, 8 > 0, and t > 0 such that (M, F, Tys) is isometrically
embedded into (W, u, Ths) and there exists a nonexpensive retraction r : W — M.

Lemma 5.1. Let (M, F,Ty) be an NR-PMT space, then r(convA) C co(A) for any A €
(M), where convA means the convex hull of A.

Proof. Since each closed ball in (W, u, Ths) is convex, then convA C ﬂ{BX [ra,t] + A C
BY [ra,t]} . Therefore,

r(convA) C r(ﬂ{BZ [ra,t] : AC waa [Fa,t], Ta € M})
C {BY[ra,t] : AC BY [ra.t], Ta € M} = co(A).
]
The above Lemma tells that in every NR-PMT space (M, F,Th;) and for any subad-

missible subset X of M, the identity mapping belongs to KK M (X, X). This result will be
called Fan’s Lemma.

Theorem 5.1. Let X € A(M) be compact subset of an NR-PMT space (M, F,Tyr). Suppose
that S : X — 2M s continuous with admissible values, then there exists an o € X, such
that Fyy () (t) = SUpyex Fi g(a0)(t) for t > 0. In particular, if S(xg) is compact and
xo ¢ S(xzg), then xo must be a boundary point of X.
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Proof. Let r : W — M be a nonexpansive retraction as in Definition 5.1. Define G : X — 2X
by G(y) = {r € X : F, g(z)(t) > F s()(t)}. Since S is continuous then G(y) is closed. (In
fact, let z, € G(y) such that x,, — z, we want to show that z € G(y). Since z, — x and
S is continuous then S(z,) — S(z). Since z,, € G(y) then F, g, )(t) > Fy 5, (t). Take
limit for both sides, we get F, g(z)(t) > F) () (t) which implies that z € G(y)). Since X is
compact and G(y) is closed subset of X, then G(y) is compact.

Now we will show that 7='G : X C W — 2W is a KKM mapping (i.e co(A4) C
r~1G(A), VA € (X) or r(co(A)) € G(A) ). Let A = {y1,vy2,..,yn} €< X > and yo ¢
Ur_,G(yx). If G(A) = X then co(A) C X = G(A) and hence, there is nothing to prove. Let
Yo ¢ G(A) = U;_G(yx). Then we have by definition of G, Fy, s(y0)(t) < Fy, seyo)(t),Vk =
1,2,...,n. Let J(yo) = {y € X : Fy, 5(40)(t) < Fy,5(40)(t)}. In particular A C J(yo). Take
21, € S(yo) such that for k = 1,2,...,n, Fy 5(y,)(t) < Fy, 2, (t). This is possible by using the
definition Fy, s5(y0)(t) = SUP.cg(ay) Fin,2(t) and that Fy, s(,0)(t) < Fy, s(40)(t). Let Ay >0
and Y, _; A, = 1. Then we have

HE%:l Ak'yk'az;ézl Ak 2k (t)

>
> min Fa®) > Fsoo®. (1)

Frsor ) (S0, aez) (B)

By Lemma 5.2, 7(3>_7_; Akyk) € co({z1, ..., 2, }) and since S(yo) is subadmissible co({z1, ..., 2, }) C
S(yo), we have T(ZZ=1 Aeyk) € S(yo) and from (1) FT(EZ:l/\kyk),S(yo)(t) > Fyms(yo)(t).
Hence, we deduce that (3"} _; A\eyk) € J(vo). Asyo ¢ J(yo), we have yo & r(conv({y1, ..., yn}))-
Consequently, 7(conv({y1, ..., yn})) C Up_, (yx) implies conv({y1, ....yn}) C Up_ ;7 G (yp).
This implies that 7—!G is a KKM mapping. By Fan’s Lemma mentioned after Lemma, 5.2,
which says that I € KKM (X, X), the family{r—1G(z) : x € X} = {r71G(x) : x € X}
has the finite intersection property, and therefore the family{G(xz) : * € X}. has the
finite intersection property. The compactness of G(z) for each € X implies that there
exists an zg € NyexG(y). Hence, Fyy (0 (t) > Fy s(z0)(t), for all y € X. Which implies
Foy.5(20)(t) = subye x Fy 520 (t) for t > 0.

If xg ¢ S(xo) and S(zo) is compact, then there exists ug € S(zo) such that Fy, ., (t) =
Fpy S(0)(t). In this case we will show that zo € 0X. Suppose that xg € IntX. Then there
exists 0 < 7 < 1, such that B,(r,t) C IntX C X and 0 <7 < F, g(2,)(t) < Fiy,5(a0) (), for

all y € By, (r,t) for t > 0. Then, it is clear thatBY (r,t) N BY (Fy, s(ae)(t) — 7, 1) # 0.
0 # r(By, (r,t) N By, (Fu 5(a0) (t) = 1,1))
C r(Byy (r, ) N (Bl (Fuy s(ao) (1) = 751))
C  BM(r,t) N BY (Fuy,5020)(t) — 7, 1).

And hence, BM (r,t) N BY! (Fy, s(a)(t) — 75t) # 0. If y is any element of this intersection,
then y € X and since ug € S(xg) implies Fy g(z0)(t) > Fyy,5(x0)(t) which is a contradiction.
Therefore xp must be a boundary point of X. (|

Theorem 5.2. Let X € A(M) be a compact subset of an NR-PMT space (M, F,Ta).
Suppose that S : X — A(M) is continuous. Then S has a fized point if one of the following
conditions holds for all x € 0X such that x ¢ S(x):

(1) There exists ay € X such that Fy gy (t) > Fy s(2)(t)-

(2) There exists an o > 1 such that aF, g(z)(t) <1 and X N Bg(z)(1 — aF, g(2)(t),t) # 0.

(3) S(z)NX #0.

Proof. (1) Suppose S has no fixed point. Then by Theorem 5.3, there exist an zg € 90X
such that 0 < F), g(z0)(t) < Fyy s(20)(t) for all y € X which contradicts condition.

(2) For any x € X such that 2 ¢ S(x), there exists a y € X such that y € X N Bg(y)(1 —
an75(w)(t),t> which implies Fy,S(w) (t) >1- (1 - OZFE75($) (t)) > 1 - (1 — Fm,S(w)(t)) =



72

Mahboobeh Tatari, S. Mansour Vaezpour, Reza Saadati

F, s(2)(t) which (2) implies (1).
(3) (3) = (2) trivial. O

6. Conclusions

In this paper, we introduced a notion of KKM mapping in probabilistic metric type

spaces. As application, some existence theorems of solutions for fixed point theorem are
obtained. Also, we defined NR-probabilistic metric type spaces and we obtained a version
of Fan’s best approximation theorem on these spaces.

(1]

(2]
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