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A NEW SCHEME FOR SOLVING OPTIMAL CONTROL OF THE

VOLTERRA INTEGRAL EQUATIONS VIA BERNSTEIN’S

APPROXIMATION
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In this study, a novel method is proposed to approximate the solution of
optimal control problems governed by Volterra integral equations. The method
is based on the Bernstein and parametrization approaches for discretizing of the
problem. Several numerical examples are presented to show the efficiency and
reliability of the proposed method.
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1. Introduction

Optimal control problems(OCPs) appear in a wide class of applications. It
is well known that there are two main class of OCPs. The first class contains
OCPs which governed by differential equations and the second class contains those
governed by integral equations. The classical theory of optimal control was originally
developed to deal with the problems of first class. But there are many problems in
economics, biology, epidemiology and memory effects which belong to the second
class.

During the past three decades, different types of techniques have been pro-
posed for solving OCPs governed by the Volterra integral equations(VIEs).

Belbas has suggested a method based on parametrization of Hamilton Jacobi
function and discretization of the original Volterra controlled system for optimal
control of VIEs (See [3]) and in [4], proposed a method to solve OCPs of VIEs
based on approximating the controlled VIEs by a sequence of systems of controlled
ordinary differential equations.

The necessary and sufficient conditions for existence of solution to optimal
control of VIEs have been considered in [16]. Existence and uniqueness of solution
of the optimal control of systems governed by VIEs can be found in [1]. Recently
homotopy perturbation method (HPM) [9], Legendre polynomials [15] and a hybrid
method based on steepest descent and Newton methods [12] have been used for solv-
ing OCPs governed by VIEs. In this paper we propose a method based on combining
Bernstein’s approximation [10, 2] and control parameterization [11] where control
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and trajectory functions are considered as polynomials with unknown coefficients.
Then a nonlinear programming is solved to determine the unknown coefficients.

The paper is organized as follows. In Section 2, Bernstein’s approximation
for solving OCP governed by VIE is presented. The convergence of the approach is
investigated. in Section 3. In Section 4, numerical examples are presented.

2. Bernstein’s approximation for OCP governed by VIE

In this section we present a numerical scheme to obtain an approximate so-
lution for a class of OCP governed by VIE by using Bernstein’s polynomials and
parametrized control.
An OCP governed by VIE is formulated as the following minimization problem (See
[9]).

Minimize J(u) =

∫ T

0
f(t, x(t), u(t))dt, (1)

subject to:

x(t) = y(t) + λ

∫ t

0
k(s, t, u(s))x(s)ds, t ∈ [0, T ] (2)

where k ∈ C([0, T ] × [0, T ] ×W ), y ∈ C([0, T ]), λ ∈ R and f ∈ C([0, T ] × R ×W ),
in which W ⊆ Rn is a compact set. It is known that for a given continuous control
u(s), the VIE has a unique and continuous solution.
To determine an approximate solution of Eq. (2), we first define the following
concepts.

Definition 2.1. A sequence {φl}∞0 in C([0, T ]) is called a basis for every f in
C([0, T ]), if there exists a unique sequence {βl}∞0 of real numbers such that:

f =

∞∑
l=0

βlφl. (3)

A basis {φl}∞0 of polynomials is called polynomial basis.

The Bernstein polynomial is defined as

B(t) =

n∑
i=0

aiPn,i(t), (4)

where Pn,i(t)(i = 0, 1, ..., n) are Bernstein basis polynomials of degree n defined on
[0, T ], as

Pn,i(t) =

(
n

i

)
ti(T − t)n−i

Tn
, i = 0, · · · , n, (5)

and ai(i = 0, 1, ..., n) are called the Bernstein coefficients. Without loss of generality
we suppose T = 1.

Definition 2.2. The Bernstein’s approximation of order n, Bn(x) to a function
x : [0, 1] → R is the polynomial

Bn(x(t)) =

n∑
i=0

aiPn,i(t), (6)
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where Pn,i is Bernstein basis polynomials of degree n, and ai = x( i
n).

Theorem 2.1. For all functions x in C[0, 1], the sequence {Bn(x);n = 1, · · · } con-
verges uniformly to x.
Proof : See [14].

Let u(t) ∈ C([0, 1]) be a given function, By using theorem 1, we approximate
x(t) as

x(t) =

n∑
i=0

aiPn,i(t). (7)

Obviously by substituting (7) in Eq. (2) we have
n∑

i=0

ai (

(
n

i

)
(ti(1− t)n−i − λ

∫ t

0
k(s, t, u(s)) si(1− s)n−ids) ) = y(t). (8)

Assume that t0 and tn are taken, respectively, near to 0 and 1, such that 0 < t0 <
tn < 1. We let

tj = t0 + j
∆

n
, j = 0, · · · , n, ∆ = tn − t0.

Substituting t = tj , j = 0, ..., n in the Volterra integration equation (8), we obtain:

En a = z, (9)

where the (n+ 1)× (n+ 1) matrix En(u) = [nei,j ] is defined as follows:

nei,j =

(
n

i

)
(tj

i(1− tj)
n−i − λ

∫ tj

0
k(s, tj, u(s)) s

i(1− s)n−ids), (10)

a = [a0, · · · an]T , z = [y(t0), · · · , y(tn)]T .
By solving system (9) and computing ai, (i = 0, · · · , n), an approximate solution of
Eq. (2) is defined as follows:

xn(t; u) :=

n∑
i=0

aiPn,i(t) (11)

In notation xn(t;u), u is appeared to emphasize that the solution is obtained for the
certain u.
Let {sl}∞0 be a basis for C[0, 1]. To obtain an appropriate continuous control func-
tion, we use the following approximation:

uk(s) =

k∑
l=0

bls
l. (12)

By substituting Eq. (12) in system (9), we obtain the following nonlinear system

En
k(b) a = z, (13)

where En
k (b) = [nk ēi,j ] is defined as follows:

n
k ēi,j =

(
n

i

)
(tj

i(1− tj)
n−i − λ

∫ tj

0
k(s, tj ,

k∑
l=0

bls
l) si(1− s)n−ids),
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a = [a0, · · · an]T , z = [y(t0), · · · , y(tn)]T , b = [b0, · · · , bn]T .
The approximate control and state functions can be obtained by solving the following
problem

Minimizea,b J̄k(a, b) =

∫ 1

0
f(t,

n∑
i=0

aiPn,i(t),

k∑
l=0

blt
l)dt, (14)

subject to:

En
k (b) a = z.

The optimization problem is solved with the optimization toolbox in MATLAB
to obtain the unknown coefficients a and b. By substituting these coefficients in
Eqs. (11) and (12), respectively, the approximate trajectory and control functions
are computed. Assuming J̄k as optimal value of (14) in the kth iteration, a stopping
criterion is considered in the following relation:

|J̄k − J̄k−1| < ϵ, (15)

where small positive number ϵ can be chosen according to the desired accuracy. In
the sequel based on above results the algorithm is described in two stages, initial-
ization step and main step.
Initialization step: Choose ϵ > 0 for the accuracy, in and ik for maximum itera-
tion of n and k respectively. Set n = 3, k = 1 and go to the main step.
Main step:
Step 1. Compute J̄k by (14) . If k = 1 go to step 3; Otherwise go to step 2.
Step 2. If the stopping criterion (15) holds, then stop; Otherwise go to step 3.
Step 3. Set k = k + 1. if k ≤ ik, go step 1; Otherwise go to step 4.
Step 4. Set n = n+ 1. If n > in, then stop; Otherwise set k = 1 and go to step 1.

3. Convergence of the approach

In this section we study the convergence of the mentioned approach.
The set of admissible control functions is defined as follows:

U = {u : [0, 1] −→ W | u(.) ∈ C[0, 1]}.

Definition 3.1. A trajectory-control pair (x(.), u(.)) is called admissible if the fol-
lowing conditions hold:
i): The trajectory function x(.) is continuous in [0, 1].
ii): The control function u(.) is continuous in [0, 1] and u(.) ∈ U .
iii): The pair (x(.), u(.)) satisfies in Eq. (2).

Let ξ ⊆ C([0, 1]) × C([0, 1]) denote the set of all admissible pairs (x(.), u(.)).
We define ξn and ξnk as follows:

ξn := {(xn(.; u), u(.))| u ∈ U}, ξnk := {(xn(.; uk), uk(.))| uk ∈ Pk ∩U}, (16)

where Pk is the set of all polynomials of degree at most k.
Let

I(x, u) :=

∫ 1

0
f(t, x(t), u(t))dt,

thus the problem can be converted to the following problem:

inf(x,u)∈ξI(x, u).
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We define

αn
k := inf

(xn,uk)∈ξnk
I(xn, uk), αn := inf

(xn,u)∈ξn
I(xn, u)

Assumption 3.1. We assume αn
k , αn exists for all n, k ∈ N .

Assumption 3.2.
i) ẍ(.;u) is a uniformly bounded function. It means

∃ c1 > 0, ∀u ∈ U : ∥ẍ(.;u)∥ 6 c1.

ii) The sequence {ẍn(.;u)} is a uniformly bounded sequence. It means

∃M1,∀u ∈ U, n > M1 : ∥ẍn(.;u)∥ 6 M1.

iii) ∥(En)−1(u)∥ is a uniformly bounded sequence, which means

∃M2, ∀u ∈ U, n > M2 : ∥(En)−1(u)∥ 6 M2.

Lemma 3.1. The following relation holds

αn
1 ≥ αn

2 ≥ · · · ≥ αn
k ≥ · · · ≥ αn.

Proof: By relations (16)

ξn1 ⊆ ξn2 ⊆, · · · ,⊆ ξnk · · · ⊆ ξn,

hence by infimum property the relation is established. �

Lemma 3.2. The following equality holds

lim
k→∞

αn
k = αn.

Proof: Since {αn
k} is a non-increasing and bounded sequence, then it is conver-

gent. Let α̃ be the limit point of the non-increasing sequence {αn
k}, as k → ∞.

From Lemma 3.1, we have αn ≤ α̃ ≤ αn
k , for any k ∈ N . Assume α̃ ̸= αn, let ϵ =

α̃−αn

2 > 0, because of the continuity of f and density of
∪

Pk in C([0, 1]), there exists
(xn(.;uk), uk(.)) ∈ ξnk , for sufficiently large k and n, such that I(xn(.;uk), uk(.)) <
αn+ ϵ, thus I(xn(.;uk), uk(.)) < α̃ which is a contradiction to the definition of α̃. �

Proposition 3.1. Let u(t) be a given control function and the solution of the
equation (2) belong to (Cα ∩ L2)[0, 1] for some α > 2. We have

sup
ti∈[0,T ]

|x(ti)−Bn(xn(ti))| ≤
1

8n
((1 + c0)∥(En)−1(u)∥∥ẍ∥+ ∥ẍn∥) (17)

where c0 = sups,t∈[0,T ],w∈W |k(s, t, w)|.
Proof. The proof is similar to Theorem 2 in [10].

Proposition 3.2. We have

∀ϵ > 0, ∃N, ∀u ∈ U, n > N |I(xn(.;u), u(.))− I(x(.), u(.))| < ϵ.
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Proof. By the Assumption 3.2
∃K, ∀u ∈ U, ((1+c0)∥(En)−1∥∥ẍ∥+∥ẍn∥) < K, then ∀u ∈ U, limn−→∞ sup |x(ti)−
Bn(xn(ti))| = 0, and by Theorem 2.1, we have

∀u ∈ U lim
n−→∞

∥xn(ti)− x(ti)∥ = 0.

Theorem 3.1. If limn→∞ αn exists, then limn→∞ limk→∞ αn
k = α,

where α = inf(x,u)∈ξI(x, u) = I(x∗, u∗).
Proof: By Lemma 3.2, limk→∞ αn

k = αn, then it sufficient to prove

lim
n→∞

αn = α.

Let limn→∞ αn = α̂, we will show α = α̂. We have

∀n αn = inf I(xn(.;u), u(.)) ≤ I(xn(.;u), u
∗(.)).

Then, if we take a limit from above relation as n → ∞, we will have

lim
n→∞

αn = α̂ ≤ lim
n→∞

I(xn(.;u
∗), u∗(.)) = I(x∗(.), u∗(.)) = α,

where x∗ and u∗ are exact trajectory and control vectors which are also admissible.
By contradiction, if α̂ < α, then ϵ = α−α̂

2 > 0, since limn→∞ αn = α̂ we have:

∃N′ : n > N′, |αn − α̂| < ϵ/2,=⇒ α̂− ϵ

2
< αn < α̂+

ϵ

2
. (18)

By Proposition 3.2, we have

∃N : n > N, |I(xn(., u), u(.))− I(x(.), u(.))| < ϵ, (19)

∃m > max{N,N ′}

αm = inf I(xm(., u), u(.)) =⇒ ∃ũ, I(xm(., ũ), ũ(.)) < αm +
ϵ

2
, (20)

from (18) and (19)

I(x(.), ũ(.)) < I(xm(.; ũ), ũ(.)) + ϵ < αm +
ϵ

2
+ ϵ < α̂+ 2ϵ < α,

where a contradiction is concluded.

4. Numerical experiments

To investigate the efficiency of the proposed method, we present results of
numerical experiments through three examples. In these examples the approximate
solutions is compared with the exact solution. In Example 1, the obtained results
are compared with the results of the presented method in [9], which is based on
HPM.
Example 1: In the first example, we consider the following OCP governed by VIE
which minimizes the functional [9]

J(x, u) =

∫ 1

0
(x(t)− t− 1)2 + (u(t)− t2 − t)2dt,

subject to:

x(t) = y(t) +

∫ t

0
st2u(s)x(s)ds,
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where,

y(t) = −1

5
t7 − 1

2
t6 − 1

3
t5 + t+ 1.

The exact optimal trajectory and control functions are: x∗(t) = t+1, u∗(t) = t2+ t.
Choosing t0 = 10−10, ϵ = 10−8.

tj = t0 + j∆/n, j = 0, · · · , n, tn = 1− t0.

The results of applying the algorithm are presented in Table 1. Figure 1 and Figure
2 show the comparison of the exact and approximate control and trajectory in some
iterations.

k n u(t)Approx J̄k J̄k (HPM)
1 3 −0.1672 + 1.9996t 0.0055 0.0056
2 3 −0.0006 + 1.0004t+ 0.9996t2 1.0002e− 009 1.8336e− 007
3 3 0.0000 + 1.0000t+ 1.0000t2 + 0.0000t3 9.5502e− 016 1.3452e− 009

Table 1. Results of the numerical experiments and comparison with (HPM) in example 1.
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Figure 1. The exact and approximate control and trajectory functions

in example 1.

Example 2: In this example an OCP as

Minimize J(x, u) =
1

8

∫ 1

0
(x(t)− u(t))2dt,

governed by VIE

x(t) = et − t2 +

∫ t

0
te−2su(s)x(s)ds,

is considered.
Choosing t0 = 10−10, ϵ = 10−5.
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x∗(t) = u∗(t) = et are the exact optimal trajectory and control functions.
The numerical results can be found in Table 2. In Figure 3 and Figure 4 the exact
and approximate control and trajectory functions are shown in some iterations.

k n u(t)Approx J̄k
1 3 0.8664 + 1.6890t 4.9415e− 004
2 3 1.0125 + 0.8547t+ 0.8360t2 3.5680e− 006
3 3 0.9899 + 1.1289t+ 0.1489t2 + 0.4593t3 1.4816e− 006

Table 2. Results of numerical experiments in example2.

Example 3:
Consider the following OCP governed by VIE

Minimize J(x, u) =
1

3

∫ 1

0
(
x(t)− sin(t)

2
)2 + (

u(t)− t3

2
)2dt,

subject to:

x(t) = sin(t) +

∫ t

0
t2(u(s)− s3)x(s)ds.

Choosing t0 = 10−10, ϵ = 10−3.
x∗(t) = sin(t) and u∗(t) = t3 consider as the exact optimal trajectory and control
functions respectively. The results of numerical experiments are shown in Table 3.
The comparison of obtained approximate control and trajectory with exact ones are
shown in Figure 5, Figure 6 and Figure 7.
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Figure 3. The exact and approximate control and trajectory functions

in example 2.
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in example 2.

k n u(t)Approx J̄k
1 3 −0.2005 + 0.8998t 0.0011
2 3 −0.0410− 0.0863t+ 1.0014t2 1.4670e− 004
3 3 0.0000 + 0.0000t+ 0.0000t2 + 1.0000t3 2.2034e− 009
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Table 3. Results of the numerical experiments in example 3.
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Figure 5. The exact and approximate control and trajectory functions

in example 3.
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Figure 7. The exact and approximate control and trajectory functions

in example 3.

5. Conclusion

In this paper we used Bernstein’s approximation and parameterized control
to approximate the solution of OCPs governed by VIEs. The achieved results in
this paper show that this approach is very effective and efficient. Convergence and
uniqueness of the approach have been proved and efficiency of it, discussed in three
examples.
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