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STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS IN

ŠERSTNEV PROBABILISTIC NORMED SPACES
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In this paper, we prove the Hyers-Ulam-Rassias stability of the following

quadratic functional equations in Šerstnev probabilistic normed space endowed with

ΠM triangle function:

f(x+ y) + f(x− y) = 2f(x) + 2f(y),

f(ax+ by) + f(ax− by) = 2a2f(x) + 2b2f(y)

for nonzero real numbers a, b with a ̸= ±1. More precisely, we show under some

suitable conditions that an approximately quadratic function can be approximated

by a quadratic mapping in above mentioned spaces.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of
Ulam [32] concerning the stability of group homomorphisms. Hyers [16] gave a first
affirmative answer to the question of Ulam on approximately additive mappings for
Banach spaces. Hyers’ theorem was generalized by by Aoki [6] for additive mapping
and by Rassias [24] for linear mappings by considering an unbounded Cauchy differ-
ence. The paper of Rassias [24] has provided a lot of influence in the development
of what we now call Hyers-Ulam-Rassias of functional equations. Găvruţă [12] pro-
vided a further generalization in the spirit of Rassias’ stability theorem. Later there
have been proved several new results on stability of various classes of functional
equations in the Hyers-Ulam sense (see [2, 11, 17, 19, 21, 25, 26] and the references
cited therein); as well as various stability of different functional equations in Menger
probabilistic normed spaces and random normed spaces has been recently studied
(cf. [7, 10, 14, 15, 30]). In [13], the authors established generalized Ulam-Hyers sta-
bility of Jensen functional equation in Šerstnev probabilistic normed spaces (briefly,
Šerstnev PN-spaces). In particular, they proved that if an approximate Jensen map-
ping in a Šerstnev PN-space is continuous at a point then can be approximate it by
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an anywhere continuous Jensen mapping. As a version of Schwaiger [27], they also
showed that if every approximate Jensen type mapping from natural numbers into
a Šerstnev PN-space can be approximate by an additive mapping then the norm of
Šerstnev PN-space is complete.

In this paper, we consider the following functional equations [22]:

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1)

f(ax+ by) + f(ax− by) = 2a2f(x) + 2b2f(y) (2)

for nonzero real numbers a, b with a ̸= ±1 and prove Hyers-Ulam-Rassias stability of
the functional equation (1) and (2) in Šerstnev probabilistic normed space endowed
with ΠM triangle function. More precisely, we show under some suitable condi-
tions that an approximately quadratic function can be approximated by a quadratic
mapping in Šerstnev probabilistic normed spaces.

The functional equation (1) is called the quadratic functional equation. In
particular, every solution of the quadratic functional equation is said to be a qua-
dratic mapping. It plays a fundamental role in the study of inner product spaces
[1, 5, 18], and its solutions are related to symmetric biadditive mapping (see [1, 20]).
The Hyers-Ulam stability of equation (1) was proved by Skof [31] for mappings from
a normed space to a Banach space. Cholewa [8] noticed that Skof’s theorem re-
mains true if the domain is replaced by an Abelian group. In 1992, Czerwik [9]
gave a generalization of the Skof–Cholewa’s result. Later, Lee et. al. [22] proved
Hyers-Ulam-Rassias stability of equations (1) and (2) in fuzzy Banach spaces.

The notion of a probabilistic normed space was introduced by Šerstnev [29].
In [3, 4], Alsina et. al. gave a general definition of probabilistic normed space
based on the definition of Menger for probabilistic metric spaces [23]. The theory of
probabilistic normed spaces is important as a generalization of deterministic result
of linear normed spaces and also in the study of random operator equations.

We recall and apply the definition of probabilistic space briefly as given in
[29], together with the notation that will be needed [28]. A distance distribution

function (briefly, a d.d.f.) is a nondecreasing function F from R+
into [0, 1] that

satisfies F (0) = 0 and F (+∞) = 1, and is left–continuous on (0,+∞); here as

usual, R+
:= [0,+∞]. The space of distance distribution functions will be denoted

by ∆+, and the set of all F in ∆+ for which lim
t→+∞−

F (t) = 1 by D+. The space ∆+

is partially ordered by the usual pointwise ordering of functions, that is, F ≤ G if

and only if F (t) ≤ G(t) for all t in R+
. For any a ≥ 0, ε+a is the distance distribution

function given by

ε+a (t) =

{
0, if t ≤ a,
1, if t > a.

(3)

The space ∆+ can be metrized in several ways [28], but we will here adopt the
Sibley metric ds. If F,G are d.f.’s and h is in ]0, 1[, let (F,G;h) denote the condition:
G(x) ≤ F (x+ h) + h, for all x ∈]0, 1h [. Then the Sibley metric ds is defined by

ds(F,G) := inf
{
h ∈]0, 1[

∣∣both (F,G;h) and (G,F ;h)
}
.
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In particular, under the usual pointwise ordering of functions, ε0 is the max-
imal element of ∆+. A triangle function is a binary operation on ∆+, namely, a
function τ : ∆+ × ∆+ → ∆+ that is associative, commutative, nondecreasing in
each place, and has ε0 as identity. Moreover, a triangle function is continuous if it
is continuous in the metric space (∆+, ds).

Typical continuous triangle functions are ΠT (F,G)(x) = sup
s+t=x

T (F (s), G(t)),

and ΠT ∗(F,G)(x) = inf
s+t=x

T ∗(F (s), G(t)). Here T is a continuous t-norm, that is, a

continuous binary operation on [0, 1] that is commutative, associative, nondecreasing
in each variable and has 1 as identity; T ∗ is a continuous t-conorm, namely a contin-
uous binary operation on [0, 1] which is related to the continuous t-norm T through
T ∗(x, y) = 1 − T (1 − x, 1 − y). For example, T (x, y) = min(x, y) = M(x, y) and
T ∗(x, y) = max(x, y) or T (x, y) = π(x, y) = xy and T ∗(x, y) = π∗(x, y) = x+y−xy.

Note that ΠM(F,G)(x) = min{F (x), G(x)} for F,G ∈ ∆+ and x ∈ R+.

Definition 1.1. (cf. [14, 15]) A Probabilistic Normed space (briefly, PN space) is
a quadruple (X, ν, τ, τ∗), where X is a real vector space, τ and τ∗ are continuous
triangle functions with τ ≤ τ∗ and ν is a mapping (the probabilistic norm) from X
into ∆+ such that for every choice of p and q in X the following hold:
(N1) νp = ε0 if and only if p = θ (θ is the null vector in X),
(N2) ν−p = νp,
(N3) νp+q ≥ τ(νp, νq),
(N4) νp ≤ τ∗(νλp, ν(1−λ)p) for every λ ∈ [0, 1].

A PN space is called Šerstnev space if it satisfies (N1), (N3) and the following
condition:

ναp(t) = νp(
t

|α|
) (4)

holds for every α ̸= 0 ∈ R and t > 0. When there is a continuous t-norm T such
that τ = ΠT and τ∗ = Πτ∗ , the PN space (X, ν, τ, τ∗) is called Menger PN space
(briefly, MPN space), and is denoted by (X, ν, τ).

Let (X, ν, τ) be a MPN space and let {xn} be a sequence in X. Then {xn} is
said to be convergent if there exists x ∈ X such that

lim
n→∞

ν(xn − x)(t) = 1 (5)

for all t > 0. In this case x is called the limit of {xn}.
The sequence {xn} in MPN space (X, ν, τ) is called Cauchy if for each ε > 0

and δ > 0, there exists some n0 such that ν(xn − xm)(δ) > 1− ε for all m,n ≥ n0.
Clearly, every convergent sequence in MPN space is Cauchy. If each Cauchy

sequence is convergent in MPN space (X, ν, τ), then (X, ν, τ) is called Menger Prob-
abilistic Banach space (briefly, MPB space).

2. Stability of quadratic functional equations (1)

In this section, we prove uniform and nonuniform version of the Hyers-Ulam-
Rassias stability of equation (1) in Šerstnev MPN space.
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Theorem 2.1. Let X be a linear space and (Υ, ν,ΠM) be a Šerstnev MPB space.
Let φ : X2 → [0,∞) be a control function such that

φ̃n(x, y) = {4−n−1φ(2nx, 2ny)} (6)

converges to zero for all x, y ∈ X. Let f : X → Υ be a uniformly approximately
quadratic function with respect to φ and f(0) = 0 in the sense that

lim
t→∞

ν(f(x+ y) + f(x− y)− 2f(x)− 2f(y))(tφ(x, y)) = 1 (7)

uniformly on X ×X. Then Q(x) := lim
n→∞

f(2nx)
4n exists for each x ∈ X and defines a

quadratic mapping Q : X → Υ such that if for some δ > 0, α > 0

ν(f(x+ y) + f(x− y)− 2f(x)− 2f(y))(δφ(x, y)) ≥ α (8)

for all x, y ∈ X, then

ν(Q(x)− f(x))(δφ̃n(x, x)) ≥ α (9)

for all x, y ∈ X. Furthermore, the quadratic mapping Q : X → Υ is the unique
mapping such that

lim
t→∞

ν(Q(x)− f(x))(tφ̃n(x, x)) = 1 (10)

uniformly on X.

Proof. For a given ε > 0, by (7), we can find some t0 ≥ 0 such that

ν(f(x+ y) + f(x− y)− 2f(x)− 2f(y))(tφ(x, y)) ≥ 1− ε (11)

for all x, y ∈ X and all t ≥ t0. Putting y = x in (11), we obtain

ν(4f(x)− f(2x))(tφ(x, x)) ≥ 1− ε (12)

and replacing x by 2nx, we get

ν(4−n−1f(2n+1x)− 4−nf(2nx))(t4−n−1φ(2nx, 2nx)) ≥ 1− ε. (13)

By passing to a nonincreasing subsequence, if necessary, we may assume that
{4−n−1φ(2nx, 2nx)} is nonincreasing.

Thus for each n > m, we have

ν(4−mf(2mx)− 4−nf(2nx))(t4−m−1φ(2mx, 2mx))

= ν(

n−1∑
k=m

(4−kf(2kx)− 4−k−1f(2k+1x)))(t4−m−1φ(2mx, 2mx))

≥ ΠM{ν(4−mf(2mx)− 4−m−1f(2m+1x)),

ν(

n−1∑
k=m+1

(4−kf(2kx)− 4−k−1f(2k+1x)))}(t4−m−1φ(2mx, 2mx))

≥ ΠM{1− ε,ΠM{ν(4−m−1f(2m+1x)− 4−m−2f(2m+2x)),

ν(
n−1∑

k=m+2

(4−kf(2kx)− 4−k−1f(2k+1x)))}(t4−m−2φ(2mx, 2mx))}

≥ 1− ε. (14)
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It follows from (6) that for a given δ > 0 there is an n0 ∈ N such that

t04
−n−1φ(2nx, 2nx) < δ, ∀n ≥ n0. (15)

Thus by (14) we deduce that

ν(4−mf(2mx)− 4−nf(2nx))(δ)

≥ ν(4−mf(2mx)− 4−nf(2nx))(t04
−m−1φ(2mx, 2mx))} ≥ 1− ε. (16)

for each n ≥ n0. Thus {f(2nx)
4n } is Cauchy sequence in Υ. Since (Υ, ν,ΠM) is

complete, the sequence {f(2nx)
4n } converges to some point Q(x) ∈ Υ. So, we can

define a mapping Q : X → Υ by Q(x) := lim
n→∞

f(2nx)
4n , namely, for each t > 0, and

x ∈ X,

lim
n→∞

ν(Q(x)− f(2nx)

4n
)(t) = 1. (17)

Let x, y ∈ X. Fix t > 0 and 0 < ε < 1. Since {4−n−1φ(2nx, 2nx)} converges
to zero, there is some n1 > n0 such that t0φ(2

nx, 2nx) < t4n+1 for all n ≥ n1. Hence
for each n ≥ n1, we have

ν(Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y))(t)

≥ ΠM{ΠM{ν(Q(x+ y)− f(2n+1(x+ y))

4n+1
)(t), ν(Q(x− y)− f(2n+1(x− y))

4n+1
)(t)},

ΠM{ν(Q(x)− 4−n−1 · 2f(2n+1x))(t), ν(Q(y)− 4−n−1 · 2f(2n+1y))(t),

ν(f(2n+1(x+ y)) + f(2n+1(x− y))− 2f(2n+1x)− 2f(2n+1y))(4n+1t)}}. (18)

The first four terms on the right–hand side of the above inequality tend to 1 as
n→ ∞, and the fifth term is greater than

ν(f(2n+1(x+ y)) + f(2n+1(x− y))− 2f(2n+1x)− 2f(2n+1y)(t0φ(2
nx, 2ny))

which is greater than or equal to 1− ε. Thus

ν(Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y))(t) ≥ 1− ε

for all t > 0. It follows that ν(Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y))(t) = 1 for all
t > 0. By (N1), we have Q(x + y) + Q(x − y) − 2Q(x) − 2Q(y) = 0 for all x ∈ X.
Hence the mapping Q : X → Υ is quadratic.

Next, let (8) holds for some positive δ and α. And we can put m = 0 and
α = 1 − ε in (16) for all x ∈ X, we get ν(f(2nx) − 4nf(x))(δ) ≥ α for all positive
integers n ≥ n0. Thus for large enough n, we have

ν(f(x)−Q(x))(δ4−n−1φ(2nx, 2nx)) ≥
ΠM{ν(f(x)− 4−nf(2nx)), ν(4−nf(2nx)−Q(x))}(δ4−n−1φ(2nx, 2nx)) ≥ α,

therefore

ν(Q(x)− f(x))(δφ̃n(x, x)) ≥ α.

The existence of uniform limit (10) immediately follows from the proof of the
first part of Theorem 2.1. It remains to prove the uniqueness assertion. Let Q′ be
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another quadratic mapping satisfying (1) and (10). Fix c > 0. Given ε > 0, by (10)
for Q and Q′, we can choose some t0 such that

ν(f(x)−Q(x))(tφ̃n(x, x)) ≥ 1− ε, ν(f(x)−Q′(x))(tφ̃n(x, x)) ≥ 1− ε

for all x ∈ X and t ≥ t0. Fix some x ∈ X and find some integer n0 such that

t04
−nφ(2nx, 2nx) < c,

for all n ≥ n0. Thus we have

ν(Q(x)−Q′(x))(c) ≥ ΠM{ν(4−nf(2nx)−Q′(x)), ν(Q(x)− 4−nf(2nx))}(c)
= ΠM{ν(f(2nx)−Q′(2nx)), ν(Q(2nx)− f(2nx))}(4nc)
≥ ΠM{ν(f(2nx)−Q′(2nx)), ν(Q(2nx)− f(2nx))}(t0φ(2nx, 2nx))
≥ 1− ε.

It follows that ν(Q(x) − Q′(x))(c) = 1 for all c > 0. Thus Q(x) = Q′(x) for all
x ∈ X. �
Corollary 2.1. Let X be a linear normed space and (Υ, ν,ΠM) be a Šerstnev MPB
space. Let θ ≥ 0 and 0 ≤ p < 2. Suppose that f : X → Υ is a mapping with f(0) = 0
such that

lim
t→∞

ν(f(x+ y) + f(x− y)− 2f(x)− 2f(y))(tθ(∥x∥p + ∥y∥p)) = 1 (19)

uniformly on X×X. Then Q(x) := lim
n→∞

4−nf(2nx) exists for all x ∈ X and defines

a quadratic mapping Q : X → Υ such that if for some δ > 0, α > 0

ν(f(x+ y) + f(x− y)− 2f(x)− 2f(y))(δθ(∥x∥p + ∥y∥p)) ≥ α (20)

for all x, y ∈ X, then

ν(Q(x)− f(x))(
2n(p−2)

2
δθ∥x∥p) ≥ α (21)

for all x, y ∈ X. Furthermore, the quadratic mapping Q : X → Υ is the unique
mapping such that

lim
t→∞

ν(Q(x)− f(x))(
2n(p−2)

2
tθ∥x∥p) = 1 (22)

uniformly on X.

Proof. Define φ(x, y) := θ(∥x∥p + ∥y∥p) and apply Theorem 2.1 to get the
result. �

We are ready to give our nonuniform version of the Hyers-Ulam-Rassias the-
orem for equation (1) in Šerstnev MPB space.

Theorem 2.2. Let X be a linear space and (Z, ω,ΠM) be a Šerstnev MPN space.
Let ψ : X2 → Z be a function such that for some 0 < α < 4

ω(ψ(2x, 2y))(t) ≥ ω(αψ(x, y))(t) (23)

for all x, y ∈ X and t > 0. Let (Υ, ν,ΠM) be a Šerstnev MPB space and let f : X →
Υ be a ψ-approximately quadratic mapping with f(0) = 0 in the sense that

ν(f(x+ y) + f(x− y)− 2f(x)− 2f(y))(t) ≥ ω(ψ(x, y))(t) (24)
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for all x, y ∈ X and t > 0. Then there exists unique quadratic mapping Q : X → Υ
such that

ν(f(x)−Q(x))(t) ≥ ω(
1

4
ψ(x, x))(t) (25)

for all x ∈ X and t > 0.

Proof. Putting y = x in (24), we obtain

ν(f(2x)− 4f(x))(t) ≥ ω(ψ(x, x))(t) (26)

for all x ∈ X and t > 0. Using (23) and induction on n, one can verify that

ω(ψ(2nx, 2nx))(t) ≥ ω(αnψ(x, x))(t) (27)

for all x ∈ X and t > 0. It follows from (26) and (27) that

ν(4−nf(2nx)− 4−n+1f(2n−1x))((
αn

4n
)t) ≥ ω((

1

α
)ψ(x, x))(t). (28)

Thus for all n ≥ m ≥ 0, x ∈ X and t > 0, we have

ν(4−nf(2nx)− 4−mf(2mx))((
αm+1

4m+1
)t)

= ν(
n∑

k=m+1

4−kf(2kx)− 4−k+1f(2k−1x))((
αm+1

4m+1
)t) ≥ ω((

1

α
)ψ(x, x))(t). (29)

So we get

ν(4−nf(2nx)− 4−mf(2mx))(t) ≥ ω((
1

α
)ψ(x, x))((

4m+1

αm+1
)t). (30)

Fix x ∈ X. Thanks to the fact that lim
s→∞

ω(( 1α)ψ(x, x))(s) = 1, we deduce that

{f(2nx)
4n } is a Cauchy sequence in Υ. Since (Υ, ν,ΠM) is complete, this sequence

converges to some point Q(x) ∈ Υ. Using (30) with m = 0, we obtain

ν(Q(x)− f(x))(t) ≥ ΠM{ν(Q(x)− 4−nf(2nx)), ν(4−nf(2nx)− f(x))}(t)

≥ ΠM{ν(Q(x)− 4−nf(2nx)), ω(
1

4
ψ(x, x))}(t). (31)

Hence

ν(Q(x)− f(x))(t) ≥ ΠM{ lim
n→∞

ν(Q(x)− 4−nf(2nx)), ω(
1

4
ψ(x, x))}(t)

= ω(
1

4
ψ(x, x))(t).

It follows from (24) that

ν(
f(2n(x+ y))

4n
+
f(2n(x− y))

4n
− 2

f(2nx)

4n
− 2

f(2ny)

4n
)(t)

≥ ω(ψ(x, y))((
4

α
)nt). (32)
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Hence we have

ν(Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y))(t)

≥ ΠM{ΠM{ν(Q(x+ y)− f(2n(x+ y))

4n
)(t), ν(Q(x− y)− f(2n(x− y))

4n
)(t)},

ΠM{ν(Q(x)− 2
f(2nx)

4n
)(t), ν(Q(y)− 2

f(2ny)

4n
)(t),

ν(
f(2n(x+ y))

4n
+
f(2n(x− y))

4n
− 2

f(2nx)

4n
− 2

f(2ny)

4n
)(t)}}. (33)

By (32) and the fact that lim
n→∞

ν(Q(x)− f(2nx)
4n )(t) = 1 for all x ∈ X and t > 0,

each term on the right–hand side tends to 1 as n→ ∞. Hence

ν(Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y))(t) = 1. (34)

By (N1), it follows that Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y). The uniqueness of
Q can be proved in a similar fashion as in the proof of Theorem 2.1. �

3. Stability of quadratic functional equations (2)

In this section, we prove uniform and nonuniform version of the Hyers-Ulam-
Rassias stability of equation (2) in Šerstnev MPN space. From now on, we suppose
that a, b are nonzero real numbers with a ̸= ±1.

Lemma 3.1. (cf. [22]). Let V andW be real vector spaces. If a mapping f : V →W
satisfies

f(ax+ by) + f(ax− by) = 2a2f(x) + 2b2f(y)

for all x, y ∈ V , then the mapping f : V →W is quadratic, i.e.,

f(x+ y) + 2f(x− y) = 2f(x) + 2f(y)

holds for all x, y ∈ V .

Theorem 3.1. Let X be a linear space and (Υ, ν,ΠM) be a Šerstnev MPB space.
Let φ : X2 → [0,∞) be a control function such that

φ̃n(x, 0) = {a−2n−2φ(anx, 0)} (35)

converges to zero for all x, y ∈ X. Let f : X → Υ be a uniformly approximately
quadratic function with respect to φ and f(0) = 0 in the sense that

lim
t→∞

ν(f(ax+ by) + f(ax− by)− 2a2f(x)− 2b2f(y))(tφ(x, y)) = 1 (36)

uniformly on X ×X. Then Q(x) := lim
n→∞

f(anx)
a2n

exists for each x ∈ X and defines

a quadratic mapping Q : X → Υ such that if for some δ > 0, α > 0

ν(f(ax+ by) + f(ax− by)− 2a2f(x)− 2b2f(y))(δφ(x, y)) ≥ α (37)

for all x, y ∈ X, then

ν(Q(x)− f(x))(δφ̃n(x, 0)) ≥ α (38)
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for all x, y ∈ X. Furthermore, the quadratic mapping Q : X → Υ is the unique
mapping such that

lim
t→∞

ν(Q(x)− f(x))(tφ̃n(x, 0)) = 1 (39)

uniformly on X.

Proof. For a given ε > 0, by (36), we can choose some t0 ≥ 0 such that

ν(f(ax+ by) + f(ax− by)− 2a2f(x)− 2b2f(y))(tφ(x, y)) ≥ 1− ε (40)

for all x, y ∈ X and all t ≥ 2t0. Letting y = 0 in (40), we get

ν(2f(ax)− 2a2f(x))(tφ(x, 0)) ≥ 1− ε (41)

and replacing x by anx, we get

ν(a−2n−2f(an+1x)− a−2nf(anx))(ta−2n−2φ(anx, 0)) ≥ 1− ε (42)

for all x, y ∈ X and all t ≥ 2t0. By passing to a nonincreasing subsequence, if
necessary, we may assume that {a−2n−2φ(anx, 0)} is nonincreasing.

Thus for each n > m, we have

ν(a−2mf(amx)− a−2nf(anx))(ta−2m−2φ(amx, 0))

= ν(

n−1∑
k=m

(a−2kf(akx)− a−2k−2f(ak+1x)))(ta−2m−2φ(amx, 0))

≥ ΠM{ν(a−2mf(amx)− a−2m−2f(am+1x)),

ν(

n−1∑
k=m+1

(a−2kf(akx)− a−2k−2f(ak+1x)))}(ta−2m−2φ(amx, 0))

≥ 1− ε. (43)

It follows from (35) that for a given δ > 0 there is an n0 ∈ N such that

t0a
−2n−2φ(anx, 0) < δ, ∀n ≥ n0. (44)

Thus by (43) we deduce that

ν(a−2mf(amx)− a−2nf(anx))(δ)

≥ ν(a−2mf(amx)− a−2nf(anx))(t0a
−2m−2φ(amx, 0))} ≥ 1− ε. (45)

for each n ≥ n0. Thus the sequence {f(anx)
a2n

} is Cauchy in Υ. Since (Υ, ν,ΠM) is

complete, the sequence {f(anx)
a2n

} converges to some point Q(x) ∈ Υ. So we can define

a mapping Q : X → Υ by Q(x) := lim
n→∞

f(anx)
a2n

, namely, for each t > 0, and x ∈ X,

lim
n→∞

ν(Q(x)− f(anx)

a2n
)(t) = 1. (46)

Let x, y ∈ X. Fix t > 0 and 0 < ε < 1. Since {a−2n−2φ(anx, 0)} converges to
zero, there is some n1 > n0 such that t0φ(a

nx, 0) < ta2n+2 for all n ≥ n1. Hence for
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each n ≥ n1, we have

ν(Q(ax+ by) +Q(ax− by)− 2a2Q(x)− 2b2Q(y))(t)

≥ ΠM{ΠM{ν(Q(ax+ by)− f(an+1(ax+ by))

a2n+2
)(t),

ν(Q(ax− by)− f(an+1(ax− by))

a2n+2
)(t)},ΠM{ν(2a2Q(x)− a−2n−2 · 2a2f(an+1x))(t),

ν(2b2Q(y)− a−2n−2 · 2a2f(an+1y))(t), ν(f(an+1(ax+ by))

+ f(an+1(ax− by)− 2a2f(an+1x)− 2b2f(an+1y))(a2n+2t)}} (47)

The first four terms on the right-hand side of the above inequality tend to 1 as
n→ ∞, and the fifth term is greater than

ν(f(an+1(ax+ by)) + f(an+1(ax− by))− 2a2f(an+1x)− 2b2f(an+1y)(t0φ(a
nx, 0))

which is greater than or equal to 1− ε. Thus

ν(Q(ax+ by) +Q(ax− by)− 2a2Q(x)− 2b2Q(y))(t) ≥ 1− ε

for all t > 0. It follows that ν(Q(ax+ by)+Q(ax− by)− 2a2Q(x)− 2b2Q(y))(t) = 1
for all t > 0. By (N1), we have Q(ax+ by) +Q(ax− by)− 2a2Q(x)− 2b2Q(y) = 0
for all x ∈ X. By Lemma 3.1, the mapping Q : X → Υ is quadratic.

Next, let (37) holds for some positive δ and α. And we can put m = 0 and
α = 1− ε in (45) for all x ∈ X, we get

ν(f(anx)− a2nf(x))(δ) ≥ α

for all positive integers n ≥ n0. Thus for large enough n, we have

ν(f(x)−Q(x))(δa−2n−2φ(anx, 0)) ≥
ΠM{ν(f(x)− a−2nf(anx)), ν(a−2nf(anx)−Q(x))}(δa−2n−2φ(anx, 0)) ≥ α,

therefore

ν(Q(x)− f(x))(δφ̃n(x, 0)) ≥ α.

The existence of uniform limit (39) immediately follows from the proof of the
first part of Theorem 3.1. It remains to prove the uniqueness assertion. Let Q′ be
another quadratic mapping satisfying (2) and (39). Fix c > 0. Given ε > 0, by (39)
for Q and Q′, we can choose some t0 such that

ν(f(x)−Q(x))(tφ̃n(x, 0)) ≥ 1− ε, ν(f(x)−Q′(x))(tφ̃n(x, 0)) ≥ 1− ε

for all x ∈ X and t ≥ 2t0. Fix some x ∈ X and find some integer n0 such that

t0a
−2nφ(anx, 0) < c,

for all n ≥ n0. Thus we have

ν(Q(x)−Q′(x))(c) ≥ ΠM{ν(a−2nf(anx)−Q′(x)), ν(Q(x)− a−2nf(anx))}(c)
= ΠM{ν(f(anx)−Q′(anx)), ν(Q(anx)− f(anx))}(a2nc)
≥ ΠM{ν(f(anx)−Q′(anx)), ν(Q(anx)− f(anx))}(t0φ(anx, 0))
≥ 1− ε.
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It follows that ν(Q(x) − Q′(x))(c) = 1 for all c > 0. Thus Q(x) = Q′(x) for all
x ∈ X. �
Corollary 3.1. Let X be a linear normed space and (Υ, ν,ΠM) be a Šerstnev MPB
space. Let θ ≥ 0 and let p be a real number with 0 ≤ p < 2 if |a| > 1. Suppose that
f : X → Υ is a mapping with f(0) = 0 such that

lim
t→∞

ν(f(ax+ by) + f(ax− by)− 2a2f(x)− 2b2f(y))(tθ(∥x∥p + ∥y∥p)) = 1 (48)

uniformly on X ×X. Then Q(x) := limn→∞ a−2nf(anx) exists for each x ∈ X and
defines a quadratic mapping Q : X → Υ such that if for some δ > 0, α > 0

ν(f(ax+ by) + f(ax− by)− 2a2f(x)− 2b2f(y))(δθ(∥x∥p + ∥y∥p)) ≥ α (49)

for all x, y ∈ X, then

ν(Q(x)− f(x))(
an(p−2)

a2
δθ∥x∥p) ≥ α (50)

for all x, y ∈ X. Furthermore, the quadratic mapping Q : X → Υ is the unique
mapping such that

lim
t→∞

ν(Q(x)− f(x))(
an(p−2)

a2
tθ∥x∥p) = 1 (51)

uniformly on X.

Proof. Define φ(x, y) := θ(∥x∥p + ∥y∥p) and apply Theorem 3.1 to get the
result. �

We are ready to give our nonuniform version of the Hyers-Ulam-Rassias the-
orem for equation (2) in Šerstnev MPB space.

Theorem 3.2. Let X be a linear space and (Z, ω,ΠM) be a Šerstnev MPN space.
Let ψ : X2 → Z be a function such that for some 0 < α < a2

ω(ψ(ax, ay))(t) ≥ ω(αψ(x, y))(t) (52)

for all x, y ∈ X and t > 0. Let (Υ, ν,ΠM) be a Šerstnev MPB space and let f : X →
Υ be a quadratic mapping with f(0) = 0 such that

ν(f(ax+ by) + f(ax− by)− 2a2f(x)− 2b2f(y))(t) ≥ ω(ψ(x, y))(t) (53)

for all x, y ∈ X and t > 0. Then there exists unique quadratic mapping Q : X → Υ
such that

ν(f(x)−Q(x))(t) ≥ ω(
1

a2
ψ(x, 0))(2t) (54)

for all x ∈ X and t > 0.

Proof. Putting y = 0 in (53), we obtain

ν(2f(ax)− 2a2f(x))(t) ≥ ω(ψ(x, 0))(t) (55)

for all x ∈ X and t > 0. Using (52) and induction on n, one can verify that

ω(ψ(anx, 0))(t) ≥ ω(αnψ(x, 0))(t) (56)

for all x ∈ X and t > 0. It follows from (55) and (56) that

ν(a−2nf(anx)− a−2n+2f(an−1x))((
αn

a2n
)t) ≥ ω((

1

α
)ψ(x, 0))(2t). (57)
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Thus for all n ≥ m ≥ 0, x ∈ X and t > 0, we have

ν(a−2nf(anx)− a−2mf(amx))((
αm+1

a2m+2
)t)

= ν(
n∑

k=m+1

a−2kf(akx)− a−2k+2f(ak−1x))((
αm+1

a2m+2
)t)

≥ ω((
1

α
)ψ(x, 0))(2t). (58)

So we get

ν(a−2nf(anx)− a−2mf(amx))(t) ≥ ω((
1

α
)ψ(x, 0))((

a2m+2

αm+1
)2t). (59)

Fix x ∈ X. Thanks to the fact that lim
s→∞

ω(( 1α)ψ(x, 0))(s) = 1, we deduce that

{f(anx)
a2n

} is a Cauchy sequence in Υ. Since (Υ, ν,ΠM) is complete, this sequence
converges to some point Q(x) ∈ Υ. Using (59) with m = 0, we obtain

ν(Q(x)− f(x))(t) ≥ ΠM{ν(Q(x)− a−2nf(anx)), ν(a−2nf(anx)− f(x))}(t)

≥ ΠM{ν(Q(x)− a−2nf(anx))(t), ω(
1

a2
ψ(x, 0))(2t)}. (60)

Hence

ν(Q(x)− f(x))(t) ≥ ΠM{ lim
n→∞

ν(Q(x)− a−2nf(anx))(t), ω(
1

a2
ψ(x, 0))(2t)}

= ω(
1

a2
ψ(x, 0))(2t).

The rest of this proof can be proved in a similar fashion as in the proof of Theo-
rems 2.2 and 3.1. �
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