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ON UNCERTAINTY PRINCIPLE OF ORTHONORMAL SEQUENCES

FOR THE q-DUNKL TRANSFORM

Kamel Brahim1, Bsaissa Anis 2

In this work, using some elements of the q-harmonic analysis and the q-Dunkl
transform, for fixed q ∈]0, 1[, we establish a q-analogue of uncertainty inequalities for

orthonormal sequences and prove a quantitative version of Shapiro’s uncertainty princi-
ple for the q-Dunkl transform. As a side results, we prove a variation of Donoho-Stark’s
uncertainty inequality, in particular, if f is ϵS-concentrated on S and Fα,q

D (f) is ϵΣ-

concentrated on Σ with ∥f∥2,q = 1 and ϵS + ϵΣ < 1, then |S||Σ| ≥ (1 − (ϵS + ϵΣ))
2

.

1. Notations and preliminaries

A Fourier uncertainty principle is an inequality or uniqueness theorem concerning
the joint localization of a function f and its Fourier transform F(f). Every discussion of
the uncertainty principle must necessarily begin with the classical uncertainty principle,
called the Heisenberg-Pauli-Weil inequality in which concentration is measured in terms of
dispersions. It states that for f ∈ L2(Rd)

∥|x|f∥2L2(Rd)∥|ξ|F(f)∥2L2(Rd) ≥
d

2
∥f∥2L2(Rd), (1.1)

with equality if and only if f is a multiple of a suitable Gaussian function, where F is the
classical Fourier transform defined by

F(f)(ξ) = (2π)−d/2

∫
Rd

e−i⟨x,ξ⟩f(x)dx,

and ⟨·, ·⟩, | · | are the usual inner product and norm on Rd.
Generalizations of this result in both classical and quantum analysis have been treated and
many versions of Heisenberg-Pauli-Weil type uncertainty inequalities have been obtained for
several generalized Fourier transforms.
Recently, considerable attention has been devoted to proving new mathematical formulations
and new contexts for the uncertainty principle.
In [18], H. Shapiro proved a number of uncertainty inequalities for orthonormal sequences
that are stronger than corresponding inequalities for a single function . More precisely, if
(φn)

∞
n=1 is an orthonormal sequence in L2(Rd), then

sup
n

(
∥|x|φn∥2L2(Rd) + ∥|ξ|F(φn)∥2L2(Rd)

)
= ∞. (1.2)

A quantitative version of Shapiro’s result (1.2) has been proved by Jaming and Powell [11]
and then by Malinnikova [14],

∀s > 0, ∀N ≥ 1,
N∑

n=1

(
∥|x|sφn∥2L2(Rd) + ∥|ξ|sF(φn)∥2L2(Rd)

)
≥ C N1+s/d. (1.3)
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In [5, 8], the authors established a Heisenberg uncertainty inequality for the q-Dunkl trans-
form. In particular we have

∥|x|sf∥22,q + ∥|λ|sFα,q
D (f)∥22,q ≥ c1(s, q)∥f∥22,q, (1.4)

or equivalently

∥|x|sf∥2,q∥|λ|
s
Fα,q
D (f)∥2,q ≥ c2(s, q)∥f∥22,q. (1.5)

Motivated by these results, our purpose in this paper is to prove a quantitative version of
Shapiro’s mean dispersion theorem for the q-Dunkl Rubin transform. Also, the Donoho-
Stark’s uncertainty principle for the q-Dunkl transform is proved.
This paper is organized as follows: in this section, we present some notations and results
used in q-theory and useful in the sequel. Also, we recall some basic properties of the q-
Dunkl operator and the q-Dunkl transform introduced in [3]. In Section 2, we prove some
Donoho-Stark’s inequalities and finally in Section 3, we prove a q-analogue of uncertainty
inequalities for orthonormal sequences and show a quantitative version of Shapiro’s uncer-
tainty principle for the q-Dunkl transform.

For the convenience of the reader, we collect here some usual notions and notations
used in the q-theory and useful in the sequel. For more information on the q-theory we refer

the reader to [10, 12, 17]. Throughout this paper, we will fix q ∈]0, 1[ such that Ln(1−q)
Ln(q) ∈ 2Z.

We note
Rq = {±qn;n ∈ Z}, Rq,+ = {qn;n ∈ Z} and R̃q = Rq ∪ {0}.

For a ∈ C; the q-shifted factorials are defined by

(a, q)0 = 1; (a, q)n =
n−1∏
k=0

(1− aqn); (a, q)∞ =
∞∏

n=0

(1− aqn).

We also denote for all x ∈ C and n ∈ N

[x]q =
1− qx

1− q
; [n]q! =

(q, q)n
(1− q)n

.

In [16], Rubin defined a q-analogue differential operator by

∂q(f)(z) =
f(q−1z) + f(−q−1z)− f(qz) + f(−qz)− 2f(z)

2(1− q)z
. (1.6)

The q-Jackson integrals are defined by [10]∫ a

0

f(x)dqx = (1− q)a
∑
k∈Z

f(aqn)qn,

∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx

and ∫ ∞

−∞
f(x)dqx = (1− q)

∑
n∈Z

qn(f(qn) + f(−qn))

provided the sums converge absolutely.
Using the q-Jackson integrals, we denote by:

• Lp
α,q(Rq) = {f : ∥f∥p,q = (

∫∞
−∞ |f(x)|p|x|2α+1

dqx)
1
p <∞}.

• L∞
α,q(Rq) = {f : ∥f∥∞,q = sup{|f(x)| : x ∈ Rq} <∞}.

For the particular case p = 2, we denote by ⟨., .⟩ the inner product of the Hilbert space
L2
α,q(Rq) as

⟨f, g⟩ =
∫ +∞

−∞
f(x)g(x)|x|2α+1

dqx.
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In the following, we recall some basic properties of the q-Dunkl operator and the q-Dunkl
transform introduced in [1].
For α ≥ − 1

2 , the q-Dunkl operator is defined by

Λα,q(f)(x) = ∂q[Hα,q(f)](x) + [2α+ 1]q
f(x)− f(−x)

2x
,

where

Hα,q : f = fe + fo → fe + q2α+1fo,

fe and fo are the even and odd parts respectively of the function f .
It was shown in [1] that for each λ ∈ C, the function

ψα,q
λ : x→ jα(λx, q

2) +
iλx

[2α+ 2]q
jα+1(λx, q

2)

is the unique solution of the q-differential-difference equation

Λα,q(f) = iλf, f(0) = 1

where jα(x, q
2) is the normalized third Jackson´s q-Bessel function given by

jα(x, q
2) =

∞∑
n=0

(−1)n
qn(n+1)

(q2, q2)n(q2(α+1), q2)n
((1− q)x)2n. (1.7)

The q-Dunkl transform Fα,q
D is defined on L1

α,q(Rq) by (see [1])

Fα,q
D (f)(λ) =

cα,q
2

∫ ∞

−∞
f(x)ψα,q

−λ (x)|x|
2α+1

dqx (1.8)

for all λ ∈ Rq where cα,q = (1+q)−α

Γq2 (α+1) .

This transform satisfies the following properties(see [17]):

• For f ∈ L1
α,q(Rq):

||Fα,q
D (f)||∞,q ≤ 2cα,q

(q, q)∞
||f ||1,q. (1.9)

• For all f ∈ L1
α,q(Rq) such that xf ∈ L1

α,q(Rq)

Fα,q
D (Λα,q(f)) = iλFα,q

D (f)(λ), Λα,q(F
α,q
D (f)) = −iFα,q

D (xf). (1.10)

• The q-Dunkl transform Fα,q
D is an isomorphism from L2

α,q(Rq) onto itself and satisfies
the following Plancherel formula:

∥Fα,q
D (f)∥2,q = ∥f∥2,q. (1.11)

• ∀x ∈ Rq, (Fα,q
D )−1(Fα,q

D (f))(x) = f(x) =
cα,q

2

∫∞
−∞ Fα,q

D (f)(λ)ψα,q
x (λ)|λ|2α+1

dqλ.

The q-analogue of the Heisenberg uncertainly principle is given by (see [5])

Theorem 1.1. Let s > 0, α ≥ − 1
2 and f ∈ L2

α,q(Rq) then

∥|x|sf∥2,q∥|λ|
s
Fα,q
D (f)∥2,q ≥ c(s, q)∥f∥2,q (1.12)

where c(s, q) is a constant which depends on s and q.
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2. An L2
α,q(Rq) Donoho-Stark´s uncertainty principle

In this section we will prove a q-analogue of the variation on Donoho-Stark´s uncer-
tainty principle for L2

α,q(Rq).
A subset T ⊂ Rq is said to be measurable subset of Rq if

|T | =
∫ ∞

−∞
χT (x)|x|2α+1

dqx <∞,

where χT is the characteristic function of T .
The time-limiting and the frequency-limiting operators on L2

α,q(Rq) are defined by

ESf = χSf ; FΣf = (Fα,q
D )−1[χΣF

α,q
D (f)]

where S and Σ are measurable subsets of Rq.

Definition 2.1. Let 0 < ϵ < 1 and f ∈ L2
α,q(Rq) then

(1) A function f is said to be ϵ-concentrated on S if: ∥EScf∥2,q ≤ ϵ∥f∥2,q.
(2) Fα,q

D (f) is said to be ϵ-concentrated on Σ if: ∥FΣcf∥2,q ≤ ϵ∥f∥2,q.

Lemma 2.1. FΣES is a Hilbert-Schmidt operator with the kernel:

k(t, λ) =
cα,q
2
χS(t)

∫
Σ

ψα,q
λ (x)ψα,q

−x (t)|x|
2α+1

dqx (2.13)

∥FΣES∥2HS =

∫ +∞

−∞

∫ +∞

−∞
|k(t, x)|2|t|2α+1|x|2α+1

dqtdqx ≤
4c2α,q
(q, q)2∞

|S||Σ|. (2.14)

Proof. We have

(FΣESf)(λ) =
cα,q
2

∫
Σ

ψα,q
λ (x)(Fα,q

D (ESf))(x)|x|2α+1
dqx

=
c2α,q
4

∫
Σ

ψα,q
λ (x)(

∫
S

ψα,q
−x (t)f(t)|t|

2α+1
dqt)|x|2α+1

dqx.

By Fubini’s theorem we obtain

(FΣESf)(λ) =
c2α,q
4

∫
S

f(t)(

∫
Σ

ψα,q
λ (x)ψα,q

−x (t)|x|
2α+1

dqx)|t|2α+1
dqt (2.15)

so that

(FΣESf)(λ) =

∫ ∞

−∞
f(t)k(t, λ)|t|2α+1

dqt (2.16)

where

k(t, λ) =
c2α,q
4
χS(t)

∫
Σ

ψα,q
λ (x)ψα,q

−x (t)|x|
2α+1

dqx. (2.17)

Let gt(λ) = k(t, λ) then the inversion formula shows that

Fα,q
D (gt)(λ) =

cα,q
2
χS(t)χΣ(λ)ψ

α,q
−λ (t). (2.18)

By the Plancherel formula it follows∫ ∞

−∞
|gt(s)|2|s|2α+1

dqs =

∫ ∞

−∞
|Fα,q

D (gt)(λ)|
2|λ|2α+1

dqλ ≤
4c2α,q
(q, q)2∞

|Σ|. (2.19)

Hence, integrating over t ∈ S, we obtain the desired result. �
Theorem 2.1. Let S and Σ be a q-mesurable sets such that f is ϵS-concentrated on S and
Fα,q
D (f) is ϵΣ-concentrated on Σ and suppose that ∥f∥2,q = 1 and ϵS + ϵΣ < 1. Then

|S||Σ| ≥ (1− (ϵS + ϵΣ))
2.
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Proof. The norm of an operator Q is defined by:

|∥Q∥| = sup
g∈L2

α,q(Rq)

∥Q(g)∥2,q
∥g∥2,q

.

By the triangle inequality we have

∥f − FΣESf∥2,q ≤ ∥f − FΣf∥2,q + ∥FΣf − FΣESf∥2,q
≤ ϵΣ + ∥|FΣ|∥∥f − ESf∥2,q ≤ ϵΣ + ϵS

then
∥FΣESf∥2,q ≥ 1− (ϵΣ + ϵS).

Therefore
∥|FΣES |∥q ≥ 1− (ϵΣ + ϵS).

Using Holder’s inequality, we obtain

∥FΣESf∥22,q =

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
f(t)k(t, ξ)|t|2α+1

dqt

∣∣∣∣2|ξ|2α+1
dqξ

≤ ∥f∥22,q
∫ +∞

−∞

∫
T

|K(t, ξ)|2|t|2α+1
dqt|ξ|2α+1

dqξ.

By Fubini-Tonnelli’s theorem and Lemma 2.1

∥FΣESf∥2,q ≤ ∥f∥2,q∥FΣES∥HS ≤
2cα,q∥f∥2,q
(q, q)∞

√
|S||Σ|.

Thus, the proof is complete. �

Definition 2.2. For f ∈ L1
α,q(Rq) ∩ L2

α,q(Rq). We say that

(1) f is ϵ-timelimited on S if:

∥fχSc∥1,q ≤ ϵ∥f∥1,q.

(2) f is ϵ-bandlimited on Σ if

||Fα,q
D (f)χΣc ||2,q ≤ ϵ||f ||2,q. (2.20)

Theorem 2.2. Let 0 < ϵ1, ϵ2 < 1, S,Σ be a pair of q-measurable subsets of Rq and f ∈
L1
α,q(Rq) ∩ L2

α,q(Rq). If f is ϵ1-time limited on S and ϵ2 -bandlimited on Σ then :

|S||Σ| ≥ (1− ϵ1)
2(1− ϵ22)(q, q)

2
∞.

Proof. We have
||fχS ||1,q = ||f ||1,q − ||fχSc ||1,q

hence

||fχS ||1,q ≥ (1− ϵ1)||f ||1,q.
Using the Cauchy-Schwarz inequality, we obtain

||fχS ||21,q ≤ |S|||f ||22,q.
So

|S|||f ||22,q ≥ (1− ϵ1)
2||f ||21,q. (2.21)

On the other hand, we have

∥Fα,q
D (f)χΣ∥

2

2,q = ∥Fα,q
D (f)∥22,q − ∥Fα,q

D (f)χΣc∥22,q
From (1.11) and (2.20) we get

∥Fα,q
D (f)χΣ∥

2

2,q ≥ (1− ϵ22)||f ||22,q
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Then

∥Fα,q
D (f)χΣ∥

2

2,q ≤ |Σ|||Fα,q
D (f)||2∞,q ≤

4c2α,q|Σ|
(q, q)2∞

||f ||21,q.

Consequently

4c2α,q|Σ|
(q, q)2∞

||f ||21,q ≥ (1− ϵ22)||f ||22,q.

By (2.21) we obtain:

|Σ||S| ≥ (q, q)2∞
4c2α,q

(1− ϵ1)
2(1− ϵ22).

�

3. Uncertainty principle for orthonormal bases

In this section we will prove an uncertainty principle for orthonormal bases for
L2
α,q(Rq).

Theorem 3.1. Let (φn)
N
n=1 be an orthonormal system in L2

α,q(Rq) and let S and Σ be two
measurable subsets of Rq. Assume that

∥EScφn∥2,q ≤ an ; ∥FΣcφn∥2,q ≤ bn

then
N∑

n=1

(1− 3

2
an − 3

2
bn) ≤

4c2α,q
(q, q)2∞

|S||Σ|.

Proof. We consider the corresponding self-adjoint operator

Q = (FΣES)
∗(FΣES) = ESFΣES .

Since

tr(Q) = ∥FΣES∥2HS ≤
4c2α,q
(q, q)2∞

|S||Σ|

we have
N∑

n=1

⟨Qφn, φn⟩ ≤ tr(Q) = ∥FΣES∥2HS ≤
4c2α,q
(q, q)2∞

|S||Σ|.

On the other hand,

⟨Qφn, φn⟩ = ⟨FΣESφn, ESφn⟩
= ⟨φn, φn⟩ − ⟨φn − ESφn, φn⟩

− ⟨ESφn, φn − FΣφn⟩ − ⟨FΣESφn, φn − ESφn⟩ .
It follows that

⟨Qφn, φn⟩ ≥ 1− 2an − bn

and
N∑

n=1

(1− 2an − bn) ≤
4c2q

(q, q)2∞
|S||Σ|. (3.22)

Now, if we consider the operator

Q̃ = (ESFΣ)
∗(ESFΣ)

we get similarly
N∑

n=1

(1− an − 2bn) ≤
4c2q

(q, q)2∞
|S||Σ|. (3.23)
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The desired result follows by combining (3.22) and (3.23).
�

The following corollary is an immediate consequence of Theorem 3.1

Corollary 3.1. Let r0, r1 > 0 and let 0 < ϵ1, ϵ2 < 1 such that ϵ1+ ϵ2 <
2
3 , let (φn)

N
n=1 be an

orthonormal system in L2
α,q(Rq) such that φn is ϵ1-concentrated on a set Br0 = Rq∩]−r0, r0[

and Fα,q
D (φn) is ϵ2-concentrated on a set Br1 = Rq∩]− r1, r1[ for each n = 1, ..., N , i.e.∫
Br0

|φn(t)|2|t|2α+1
dqt ≥ 1− ϵ21 ;

∫
Br1

|Fα,q
D (φn)(w)|

2|w|2α+1
dqw ≥ 1− ϵ22. (3.24)

Then

N ≤
16c2α,q(r0r1)

2α+2

(1− 3 ϵ1+ϵ2
2 )(q, q)2∞[2α+ 2]2q

. (3.25)

Another immediate application of the localization inequality is the q-analogue quan-
titative version of Shapiro Umbrella Theorem.

Corollary 3.2. let A,B > 0 and {φn}Nn=1 be an orthonormal system in L2
α,q(Rq) such that

∥|x|sφn∥2,q ≤ As and ∥|ξ|sFα,q
D (φn)∥2,q ≤ Bs.

Then
N ≤ c(s, q)(AB)2α+2,

where c(s, q) = 64
c2α,q

(q,q)2∞[2α+2]2q
4

4(α+1)
s .

Proof. Let r0 = 4
1
sA and r1 = 4

1
sB, we have∫

Bc
r0

|φn(x)|2|x|2α+1
dqx

=

∫
Bc

r0

|x|−2s|x|2s|φn(x)|2|x|2α+1
dqx ≤ 1

16

1

A2s
∥|x|sφn∥

2
2,q ≤ 1

16

so φn is 1
4 -concentrated on Br0 and in the same way we prove that Fα,q

D is 1
4 -concentrated

on Br1 . The desired result follows from Corollary 3.1. �
Theorem 3.2. Let s be a positive real and (φn)n be an orthonormal sequence in L2

α,q(Rq).
Then there exists a constant C(α, s, q) such that

N∑
n=1

(∥|x|sφn∥
2
2,q + ∥|λ|sFα,q

D (φn)∥
2

2,q) ≥ C(α, s, q)N1+ s
2(α+1) . (3.26)

This theorem implies in particular that, if the elements of an orthonormal sequence
and their q-Dunkl-Fourier transforms have uniformly bounded dispersions then the sequence
is finite.

Proof. Let (φn)n be an orthonormal sequence in Lα,q(Rq). For each k ∈ Z we define

Pk =
{
n : max

{
∥|x|sφn∥2,q, ∥|λ|

s
Fα,q
D (φn)∥2,q

}
∈ (2s(k−1), 2sk]

}
.

then
∥|x|sφn∥2,q ≤ 2sk and ∥|λ|sFα,q

D (φn)∥2,q ≤ 2sk

whenever n ∈ Pk. From Corollary 3.2, deduce that the number of elements in
∪k

j=−∞ Pj

is less than c1(α, s, q)4
2k(α+1) where c1(α, s, q) is a constant that does not depend on k.

This shows that when c1(α, s, q)4
2k(α+1) < 1, the number of elements in

∪k
j=−∞ Pj is null.
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Consequently, there exists k0 such that Pk is empty for all k < k0.
For given N > 2c1(α, s, q) choose k such that
2c1(α, s, q)4

2k(α+1) ≥ N > 2c1(α, s, q)4
2(k−1)(α+1). Then at least half of {1, ..., N} . does not

belong to
∪k−1

j=1 Pj and we obtain

N∑
n=0

(∥|x|sφn∥
2
2,q +

∥∥∥|λ|2α+1
Fα,q
D (φn)

∥∥∥2
2,q

) ≥ N

2
4s(k−1) ≥ a(α, s, q)N1+ s

2(α+1)

For N ≤ 2c1(α, s, q) we have

N∑
n=1

(∥|x|sφn∥
2
2,q +

∥∥∥|λ|2α+1
Fα,q
D (φn)

∥∥∥2
2,q

) ≥ N4s(k0−1) ≥ 4s(k0−1)

(2c1(α, s, q))
s

2(α+1)

N1+ s
2(α+1)

this achieve the proof. �
We deduce the following result

Corollary 3.3. Let (φn)n≥1 be an orthonormal sequence in L2
α,q(Rq), then

sup
n

(
∥|x|sφn∥2,q + ∥|ξ|sFα,q

D (φn)∥2,q
)
= ∞. (3.27)
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