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ON LEFT ¢-BIPROJECTIVITY AND LEFT ¢-BIFLATNESS OF
CERTAIN BANACH ALGEBRAS

A. Sahami!

In this paper, we study left ¢p-biflatness and left ¢p-biprojectivity of some Ba-
nach algebras, where ¢ is a non-zero multiplicative linear function. We show that if
the Banach algebra A** is left ¢-biprojective, then A is left ¢p-biflat. Using this tool we
study left ¢-biflatness of some matriz algebras. We also study left ¢-biflatness and left
@-biprojectivity of the projective temsor product of some Banach algebras related to a
locally compact group. We prove that for a locally compact group G, M(G) ®p A(G) is
left ¢ ® -biprojective if and only if G is finite. We show that M(G) ®p L(G) is left
@ ® Y-biprojective if and only if G is compact.
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1. Introduction and Preliminaries

Banach homology theory has two important notions, biflatness and biprojectivity
which these notions have key role in studying the structure of Banach algebras. A Banach
algebra A is called biflat (biprojective), if there exists a bounded A-bimodule morphism
p:A— (AR, A)** (p: A— A®, A) such that 7%" o p is the canonical embedding of A into
A** (p is a right inverse for m4), respectively. It is well-known that for a locally compact
group G, the group algebra L'(G) is biflat (biprojective) if and only if G is amenable
(compact), respectively. We have to mention that a biflat Banach algebra A with a bounded
approximate identity is amenable and vise versa, see [13].

A Banach algebra A is called left ¢-amenable, if there exists a bounded net (a,) in
A such that aas — ¢(a)a, — 0 and ¢(ay) — 1 for all a € A, where ¢ € A(A). For a locally
compact group G, the Fourier algebra A(G) is always left ¢-amenable. Also the group
algebra L!(G) is left ¢-amenable if and only if G is amenable, for further information see
[8] and [1].

Following this course, Essmaili et. al. in [3] introduced and studied a biflat-like
property related to a multiplicative linear functional, they called it condition W (which we
call it here right ¢-biflatness). The Banach algebra A is called left ¢-biflat, if there exists a
bounded linear map p: A — (A ®, A)** such that

plab) = ¢(b)p(a) = a - p(b)
and }
pomy opla) = ¢(a),
for each a,b € A. We followed their work and showed that the Segal algebra S(G) is left
¢-biflat if and only if G is amenable see [15]. Also we defined a notion of left ¢-biprojectivity
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for Banach algebras. In fact A Banach algebra is left ¢-biprojective if there exists a bounded
linear map p: A - A ®, A such that

plab) = a- p(b) = $(b)pla), domaop(a) =o(a), (a,b€ A).
We showed that the Lebesgue-Fourier algebra LA(G) is left ¢-biprojective if and only if G
is compact. Also the Fourier algebra A(G) is left ¢-biprojective if and only if G is discrete,
see [16].

In this paper, we show that if the Banach algebra A** is left ¢-biprojective, then
A is left ¢-biflat. Using this tool we study left ¢-biflatness of some matrix algebras. We
also study left ¢-biflatness and left ¢-biprojectivity of the projective tensor product of some
Banach algebras. We prove that for a locally compact group G, M (G) ®, A(G) is left ¢ ® -
biprojective if and only if G is finite. We show that M (G) ®, L' (G) is left ¢ ®y-biprojective
if and only if G is compact.

We remark some standard notations and definitions that we shall need in this paper.
Let A be a Banach algebra. If X is a Banach A-bimodule, then X* is also a Banach
A-bimodule via the following actions

(a-f)@)=f(x-a), (f-a)(@)=fla-2) (a€cAzeX feX)
Throughout, the character space of A is denoted by A(A), that is, all non-zero multi-
plicative linear functionals on A. Let ¢ € A(A). Then ¢ has a unique extension b€ A(A™)
which is defined by ¢(F) = F(¢) for every F € A**.
Let A be a Banach algebra. The projective tensor product A ®, A is a Banach
A-bimodule via the following actions

a-b®c)=ab®c, (bRc)-a=b®ca (a,b,ce A).

For Banach algebras A and B with ¢ € A(A) and ¢ € A(B), we denote ¢ ® ¢ for a
multiplicative linear functional on A ®, B given by ¢ ® ¥(a ® b) = ¢(a)(b) for each a € A
and b € B. The product morphism 74 : A®, A — A is given by w4(a ® b) = ab, for every
a,b € A. Let X and Y be Banach A-bimodules. The map 7' : X — Y is called A-bimodule
morphism, if

T(a-z)=a-T(x), T(x-a)=T(z)-a, (a€e Az € X).

For the Banach spaces E and F, the weak star operator topology on B(E, F*) (the set
of all bounded linear operators from F into F*) is the locally convex topology given by the
seminorms {|| - ||,y : e € E, f € F}, where ||T||e,;y =| < f,T(e) > | and T € B(E, F*). We
have to remind that the weak star operator topology on B(FE, F'*) is exactly the w*-topology
on B(E, F*) when identified with (E'®, F)*. Note that every bounded net in B(E, F*) has
a weak star operator topology-limit point in B(E, F**).

2. Some general properties

Let A be a Banach algebra and ¢ € A(A). A is called approximate left ¢-biprojective
if there exists a net of bounded linear maps from A into A ®, A, say (pa)acr, such that
. [l
(i) a-pa(b) — palab) — 0,

(i) pa(ba) — d(a)pa(d) 11 0,

(iii) ¢ oma 0 pa(a) — ¢(a) =0,
for every a,b € A, see [14].

Proposition 2.1. Let A be a left ¢-biflat Banach algebra. Then A is approzimate left
¢-biprojective.
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Proof. Since A is left ¢-biflat, there exists a bounded linear map p : A — (4 ®, A)** such
that p(ab) = a - p(b) = ¢(b)p(a) and ¢ o 74" o p(a) = ¢(a). Since p € B(A, (A ®, A)*),
there exists a net p, € B(A, A ®, A) such that p, wror, p. Thus for each a € A we have
Pala) v, p(a). Then

a-pa(b) = a-p(b) = p(ab), pa(ab) = p(ab), (b)pala) = ¢(b)p(a) = p(ab).

w*

On the other hand, the map 7%* is a w*-continuous map, so 74 o py(a) — 74" o p(a), for
each a € A. Then

$poma 0 pala) =domy o pala) =74 0 pala)(9) = 74 0 p(a)(d) = d oy o pla) = d(a).
Also for each a,b € A, we have
@ pald) Cra- p(b) = p(ab),  palab) > p(ab), G(b)pala) > G(b)pla).
So . i
a - pa(b) = palab) == 0,  &(b)pala) — d(b)pala) = 0.
Put F ={aj,as,....,a,} and G = {by,ba, ..., b, } for finite subsets of A. Define
M = {(a1 T(bl) 7T(a1b1)7 an T(bg) 7T(a2b2), ceey gy T(bn) 7T(anbn)) . T (S B(A, A®pA)}
It is easy to see that M is a convex subset of [[;_, (4 ®, 4) @1 [], C and (0,0,...,0) €
Y =30 1t follows that, there exists a net & po) € B(A, A®, A) such that
l|ai - §e,ray(bi) — Ee.ray(aibi)ll < e [, ra)aibi) — ¢(bi) e ra)(ai)ll < e
and |poma0f(c pa)(a;) —o(ai)| < e foreachi € {1,2,...,n}. It follow that the net ({ r)),
for each a,b € A, satisfies
a-§e.ra) —&era)(ab) =0, ¢b)Eecrac(a)—&eralab) =0
and
¢pomaolra)(a)—¢la) = 0.
Therefore A is approximately left ¢—biprojective. O
The converse of the above proposition is partially valid:
Lemma 2.1. If A is an approximately left ¢-biprojective with bounded net py, then A is left
¢-biflat.
Proof. Let A be approximately left ¢-biprojective with bounded net p,. So po € B(A, (A®,
A)*) =2 (AR, (A®, A)*)* has a w*-limit-point, say p. Since
a- pa(b) = palab) = 0, @(b)pa(a) — palab) =0, ¢omsopa(a)—¢(a) — 0.
Note that for each a € A, py(a) v, p(a). It follows that
a-p(b) = p(ab) = ¢(b)p(a), Gomy op(a) = ¢(a),
for each a € A. O

Example 2.1. We give a Banach algebra which is not left ¢-biflat but it is approximate left
@-biprojective. So the converse of Proposition 2.1 is not always true. Let denote (' for the
set of all sequences a = ((ay)) of complex numbers equipped with ||a|| = >_7 |an| < oo as
its norm. With the following product:

(% B)(m) {a(l)b(l) | if  n=1
a(1)b(n) + b(1)a(n) + a(n)b(n) if  n>1,
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A= (01 ]|-]]) becomes a Banach algebra. Clearly A(£Y) = {¢1, 1+ bn}, where ¢ (a) = a(n)
for every a € *. We claim that €* is not left ¢1-biflat but £* is approzimately left ¢ -
biprojective for some ¢ € A(F1). We assume conversely that £* is left ¢1-biflat. One can see
that (1,0,0,...) is a unit for £*. Therefore by [15, Lemma 2.1] left ¢1-biflatness of £* implies
that (1 is left ¢1-amenable. On the other hand by [9, Example 2.9] ¢! is not left ¢1-amenable
which is a contradiction.

Applying [9, Example 2.9], gives that (' is approximate left ¢1-amenable. So [14,
Proposition 2.4] follows that that ¢* is approzimate left ¢1-biprojective.

Proposition 2.2. Let A be a Banach algebra with an approzimate identity and let ¢ € A(A).
If A** is approzimately biflat, then A is left ¢-biflat.

Proof. Since A has an approximate identity Aker ¢ = ker ¢. Thus by [11, Theorem~3.3] Alis
left p—amenable. So there exists an element m € A** such that am = ¢(a)m and ¢(m) =
for every a € A. Define p: A — A** ®, A** by p(a) = ¢(a)m @ m. Clearly p is a bounded
linear map such that
a-p(b) = p(ab) = ¢(b)p(a), doma--opla) =¢(a), (a€A).

There exists a bounded linear map 9 : A** ®, A** — (A ®, A)** such that for a,b € A and
m € A** ®, A**, the following holds;
(i) v(e®b) =a®b,
(i) ( )ra=vP(m-a), a P(m)=1Y(a -m),

(iii) 74" (¢(m)) = 7a--(m),
see [4, Lemma 1.7]. Set n =9 op: A — (A®, A)**. It is easy to see that a-n(b) = n(ab) =

¢(b)n(a)

pomy on(a) =domas opopla) =dony opla) =¢(a), (a€ A).

So A is left ¢-biflat. O

Proposition 2.3. Suppose that A is a Banach algebra and ¢ € A(A). Let A** be left
¢-biprojective. Then A is left ¢-biflat.

Proof. Let A** be ¢- blpI‘OJeCthe So we have a bounded linear map p : A** — A™ ®, A**
such that p(ab) = a-p(b) = ¢(b)p(a) and dom 4= op(a) = ¢(a), for each a,b € A**. Let w be a
bounded linear map as in the proof of previous proposition. Set n = Yop|s : A — (AR®,A)**
Clearly n is a bounded linear map which satisfies

n(ab) = v o plaab) = ¥(a- pla(b)) = a- v o pla(b)
and
¢(b)n(a) = ¢(b)Y o plala) = P(4(b)p|a) = ¥ o pla(ab) = n(ab).
Also we have
ponyon(a)=don’ ooplala) =¢omam oplala) = ¢(a),
for each a € A. It follows that A is left ¢-biflat. |

Let A be a Banach algebra and I be a totally ordered set. By UP;(A) we denote the
set of I x I upper triangular matrices which its entries come from A and

(aig)igerll = Y llai;

i,j€1

| < oc.
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With matrix operations and || - || as a norm, UPr(A) becomes a Banach algebra. Let
¢ € A(A) and i be the greatest element of I. Define ©4(a; ;) = ¢(aiy,i,). Clearly ¢y is a
character on U Pr(A).

Proposition 2.4. Let I be a totally ordered set with the greatest element. Also let A be a
Banach algebra with left identity and ¢ € A(A). Then UPr(A)** is left 4-biflat if and only
if Il =1 and A is left ¢-biflat.

Proof. Suppose UPr(A)** is left ¢y-biflat. Let ig € I be the greatest element of I with
respect to >. Since A has a left unit, U Pr(A) has a left approximate identity. By [15, Lemma
2.1] left 14-amenability of UPr(A)** implies that UP;(A) is left 4-amenable. Define

J = {(ai,j)i,jel (S UP[(A)|ai’j =0 for ] 75 io}.

Clearly J is a closed ideal of UP;(A) with 14|; # 0. Applying [6, Lemma 3.1] gives that
J is left 14-amenable. So by [6, Theorem 1.4] there exists a bounded net (j,) in J which
satisfies

JJa — w¢(j)ja — 0, w¢(]o¢) =1 (] € J)' (1)
Suppose in contradiction that I has at least two elements. Let ag be an element in A such
0 -+ 0 ap
0 -+ 0 ap
that ¢(ag) = 1. Set j = : : : o . Clearly for each « the net j, has a
o0 0 ao
0
0 0 J
e 0 0 ---
form S , where (jf*), (ji') and (ji) are some nets in A. Put j and
e 0 0 gy

Ja in (1) we have jag — 0. Since ¢ is continuous, we have ¢(jfi) — 0. On the other
hand 9y (ja) = ¢(jf;) = 1 which is a contradiction. So I must be singleton and the proof is
complete. O

Corollary 2.1. Let I be a totally ordered set with the greatest element. Also let A be a
Banach algebra with left identity and ¢ € A(A). If UP;(A)** is approzimately biflat, then
[I| =1 and A is approximately biflat.

3. Left ¢-biprojectivity of the projective tensor product Banach algebras

Theorem 3.1. Let A and B be Banach algebras which ¢ € A(A) and i € A(B). Suppose
that A has a unit and B has an idempotent xo such that ¥ (xo) = 1. If A®, B is left
¢ ® p-biflat, then A is left ¢p-amenable.

Proof. Let p: A®, B — ((A®, B) ®, (A®, B))** be a bounded linear map such that
play) =z p(y) = 6B VY)p(a), SV oIy, p0p) =@ U(@) (.y€AD, B).
For idempotent xg € B and elements ay,as € A we have
a1as @ Tog = a1as @ Top = a1az @ xg = (a1 ® z0)(a2 @ x).
We denote e for the unit of A. So we have
plaraz ® o) = p((a1 ® zo)(az ® o)) = (a1 ® o) - p(az ® xo)
=a1(e ®x) - p(az ® xo)

— aipleaz ® 23),



102 A. Sahami

also

plarag ® o) = p((a1 ® zo)(az @ x9)) = ¢ @ (ag @ x)plar ® xo) = (az)p(ar @ xo)
and
0@ 0 Tia,p 0 plar @ 0) = 6 @ ¥ © 70) = Blan),
for each a1,as € A. Put £ : (A®, B) ®, (A®, B) = A®, A for a bounded linear map which
is given by £((a ® b) ® (¢ ® d) = ¥(bd)a ® ¢, for each a,c € A and b,d € B. Clearly
TR o™ = (ida ®¥) oy p-
Define 6 : A — (A®, A)** by 8(a) = £ o p(a® x(). Clearly 6 is a bounded linear map. We
have
a-0(b) = a-€" o p(b) = £ o plab) = H(D)E™ 0 pla) = S(D)A(a), (b € A).
Also

Gomy ob(a) = domy 0™ o pla® ) = do (ida ® %)™ 0wy 0 pla® o)
=@ oty 5o pla®)
= ¢ ®@(a® ) = ¢(a),
for each a € A. Tt follows that A is left ¢-biflat. Since A has a unit by [15, Lemma 2.1] A
is left ¢p-amenable. O

Note that the previous theorem is also valid in the left ¢-biprojective case. In fact we
have the following corollary which we omit its proof.

Corollary 3.1. Let A and B be Banach algebras which ¢ € A(A) and ¢ € A(B). Suppose
that A has a unit and B has an idempotent xo such that ¥(xo) = 1. If A®, B is left
¢ ® p-biprojective, then A is left ¢-contractible.

Theorem 3.2. Let A and B be Banach algebra with ¢ € A(A) and ¢ € A(B). If A left
@-biprojective and B is 1-biprojective, then A ®, B is left ¢ ® -biprojective.

Proof. Since A left ¢-biprojective and B is t-biprojective, there exist bounded linear map
pa:A— A®, Aand pp: B — B®, B such that

palaraz) = a1 - pa(az) = ¢(az)palar), ¢omaops=¢, (a1,a2 € A)
and
pB(b1b2) = b1 - pp(ba) = ¢(b2)pp(b1), Yompopp =1, (b1,b2 € B).

Let 0 be an isometrical isomorphism from (4 ®, 4) ®, (B ®, B) into (A ®, B) ®, (A®, B)
which is given by 8(a; ® az ® by ® ba) = a1 ® by ® as ® by for each ay,as € A and by, by € B.
Define p =00 (pa ® pg). So

p((ar ® by)(az ® by)) =

= (a1 ®b1)- 00 (pa® pp)(az @ ba),
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for each a1, a2 € A and by,by € B. It follows that p(xzy) = = - p(y) for each z,y € A ®, B.
Also we have

¢ ® (a1 ® b1)p(az ® ba) = ¢(a1)(b1)0 o (palaz) ® pp(b2))
=00 (¢(a1)palaz) @ (b1)pp(b2))
=00 (palazar) ® pp(b2d1))
= p((az @ b2)(a1 @ by),

for each a1, a2 € A and by, be € B. So for each z,y € A®, B, we have ¢ @ ¥(z)p(y) = p(yz).
Note that

Tag,B ©0(a1 ®az @b; ®by) = Tag,B(a1 @b ®az ®bz) = Ta(a1 ® az)Tp(br @ b2),
it implies that mag,p 00 = 74 ® 7. Then
(6 © 1) 0 Tam,50p(a®b) = ($® 1) 0 Tas,p 000 (94 ® pp)(a @ b)
=(p®Y)o(ra®mp)o(pa®pp)(a®b)
=¢omaopala)pompopg(d)
= ¢(a)y(b) = p @ Y(a@D),

for each a € A and b € B. Therefore (¢ ® 1) omag,pop(r) = ¢@vY(x) for every x € A®, B.
It follows that A ®, B is left ¢ ® 1-biprojective. O

Let G be the dual group of G which consists of all non-zero continuous homomorphism
p: G — T. It is well-known that every character (multiplicative linear functional) ¢ €
A(L*(@)) has the form ¢,(f) = [, p(x) f(x)dz, where dz is the normalized Haar measure
and p € G, for more details see [5, Theorem 23.7]. Note that, since L'(G) is a closed ideal of
the measure algebra M (G), each character on L!(G) can be extended to M (G). For a locally
compact group G, we denote A(G) for the Fourier algebra. The character space A(A(G))
consists of all point evaluations ¢, for each x € G, where

¢2(f) = flx), (f € A(G)),
see[6, Example 2.6].

Theorem 3.3. Let G be a locally compact group. Then M(G) ®, A(G) is left ¢ & -
biprojective if and only if G is finite, where ¢ € A(L*(G)) and ¢ € A(A(G)).

Proof. Let M(G) ®, A(G) be left ¢ @ 1-biprojective. Also let e be the unit of M(G) and
ag be the element of A(G) such that 1(ap) = 1. Put 9 = e ® ag. Clearly zxo = xox and
PR Y(xo) =1, for every x € M(G) ®, A(G). Now applying [16, Lemma 2.2] M (G) ®, A(G)
is left ¢ ® 1-contractible. Now using [10, Theorem 3.14] M (G) is left ¢-contractible, so by
[10, Theorem 6.2] G is compact. Also by [10, Theorem 3.14] A(G) is left -contractible.
Thus by [10, Proposition 6.6] G is discrete. Therefore G is finite.

Converse is clear. ]

Theorem 3.4. Let G be a locally compact group. Then M(G) ®, LY(G) is left ¢ @ -
biprojective if and only if G is compact, where ¢, € A(L*(G)).

Proof. Suppose that M (G)®, L' (G) is left ¢®@1)-biprojective. Let e be the unit of M(G) and
es be a bounded approximate identity of L!(G). Clearly e ® e, is a bounded approximate
identity. Thus by [16, Lemma 2.2] M (G)®, L' (G) is left ¢@1)-contractible. So [10, Theorem
3.14] LY(G) is left ¢-contractible. Then by [10, Theorem 6.2] G is compact.

For converse, suppose that G is compact. Then by [10, Theorem 3.14] M(G) is left ¢-
contractible and by [10, Theorem 3.14] L(G) is left -contractible. Applying [10, Theorem
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3.14] M(G) ®, LY(G) is left ¢ ® 1)-contractible. So by [16, Lemma 2.1] M(G) ®, L'(G) is
left ¢ ® 1-biprojective. O

A Banach algebra A is called left character biprojective (left character biflat) if A is
left ¢-biprojective (if A is left ¢-biflat) for each ¢ € A(A), respectively.

Theorem 3.5. Let G be a locally compact group. Then M(G) ®, L'(G) is left character
biprojective if and only if G is finite.

Proof. Let M(G) ®, L*(G) be left character biprojective. So M(G) @, L*(G) is left ¢ @ -
biprojective for each ¢ € A(M(G)) and ¥ € A(L'(G)). So by similar arguments as in
previous theorem, M (G) left ¢-contractible for each ¢ € A(M(G)). Since M(G) is unital,
by [10, Corollary 6.2] G is finite.

Converse is clear. O

A Banach algebra A is amenable if and only if A has a bounded virtual diagonal, that
is there exists a bounded net m, € (A®, A) such that a-mqy —mq-a — 0 and 74(Mma)a = a
for each a € A, see [13].

Theorem 3.6. Let G be a locally compact group. Then M(G) ®, L'(G) is left character
biflat if and only if G is a discrete amenable group.

Proof. Since M (G) is unital and L'(G) has a bounded approximate identity, M (G)®, L' (G)
has a bounded approximate identity. Thus by [15, Lemma 2.1] M(G) @, L*(G) is left ¢ @ 9-
amenable for each ¢ € A(M(G)) and ¥ € A(L'(G)). So by [6, Theorem 3.3] M(G) is
left ¢-amenable for each ¢ € A(M(G)). Since M (G) is unital, M(G) character amenable.
Therefore by the main result of [8], G is discrete and amenable.

For converse, let G be discrete and amenable. Then M (G)®, L' (G) = (*(G)®,0*(G).
Applying Johnson’s theorem (see [13, Theorem 2.1.18]) that £!}(G) is an amenable Banach
algebra. Then (!(G) ®, ¢*(G) is amenable. Therefore ¢! (G) @, ¢*(G) is left ¢-amenable for
all ¢ € A(M1(Q) ®, €*(G)). Using similar arguments as in the proof of [15, Theorem 2.2]
H(G) @, 11(G) is left ¢-biflat for every ¢ € A((H(G) ®, £1(G)). Then £1(G) ®, £*(G) is left
character biflat. O

Proposition 3.1. Let G be an amenable group. Then A(G)®,LY(G) is left p&1p-biprojective
if and only if G is finite.

Proof. Since G is amenable, Leptin’s Theorem [13, Theorem 7.1.3] gives that A(G) has a
bounded approximate identity. It is well-known that L'(G) has a bounded approximate
identity. So A(G) ®, L'(G) has a bounded approximate identity. Then by [16, Proposition
2.4], left ¢ ® y-biprojectivity of A(G) ®, L'(G) implies that A(G) @, L'(G) is left ¢ @ 1-
contractible. So using [10, Theorem 3.14] gives that A(G) is left ¢-contractible. Then by [10,
Proposition 6.6] G is discrete. Also [10, Theorem 3.14] gives that L!(G) is left ¢-contractible.
Then [10, Theorem 6.1] implies that G is compact. It follows that G is finite.

Converse is clear. ]

Proposition 3.2. Let G be a locally compact group. Then A(G) @1 L*(G) is left character
biprojective if and only if G is finite.

Proof. Suppose that A(G)®; L*(G) is left character biprojective. Let ¢ € A(A(G)). Choose
an element ag € A(G) such that ¢(ag) = 1. Clearly the element o = (ag,0) belongs to
A(G) @1 LY (G) which zzg = zox and ¢(x¢) = 1. Using [16, Lemma 2.2], left character
biprojectivity of A(G) @1 L'(G) implies that A(G) ®1 L'(G) is left ¢-contractible. Since
A(G) is a closed ideal in A(G) &1 L'(G) and ¢|ac) # 0, by [10, Proposition 3.8]A(G)
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is left ¢-contractible. So by [10, Proposition 6.6] G is discrete. Thus A(G) ®; L(G) =
A(G) @1 £1(G). We know that ¢1(G) has an identity e. Replacing e with ag and v with ¢
(for some ¢ € A(L'(G))) and following the same argument as above, we can see that £(G)
is left -contractible. Thus by [10, Theorem 6.1] G is compact. Therefore G must be finite.

Converse is clear. O

A linear subspace S(G) of L'(G) is said to be a Segal algebra on G if it satisfies the
following conditions

(i) S(G) is dense in L}(G),

(ii) S(G) with a norm || - |[s() is a Banach space and [|f|[z1(q) < ||flls(q) for every
feS(G),

(iii) for f € S(G) and y € G, we have L, (f) € S(G) the map y — Ly (f) from G into S(G)
is continuous, where Ly (f)(z) = f(y~'z),

(i) [[Ly(Nls@) = llflls(c) for every f € S(G) and y € G.

For various examples of Segal algebras, we refer the reader to [12].
A locally compact group G is called SIN, if it contains a fundamental family of
compact invariant neighborhoods of the identity, see [2, p. 86].

Proposition 3.3. Let G be a SIN group. Then S(G) ®, S(G) is left ¢ @ -biprojective if
and only if G is compact, for some ¢ € A(S(G)).

Proof. Let S(G) ®,S(G) be left ¢ ® ¢-biprojective. Since G is a SIN group, the main result
of [7] gives that S(G) has a central approximate identity. It follows that there exists an
element g € S(G) such that xxo = zoz and ¢(zg) = 1, for each z € S(G). Set ug = xo @ xo.
It is easy to see that uuy = uou and ¢ @ ¢(ug) = 1, for every u € S(G) ®, S(G). Using
[16, Lemma 2.2] left ¢ ® ¢-biprojectivity of S(G) ®, S(G) follows that S(G) ®, S(G) is left
¢ ® ¢-contractible. By [10, Theorem 3.14] S(G) is left ¢-contractible. Thus [1, Theorem 3.3]
gives that G is compact.

For converse, suppose that G is compact. Then by [1, Theorem 3.3] S(G) is left
¢-contractible. So by [10, Theorem 3.14] S(G) ®, S(G) be left ¢ @ ¢-contractible. Applying
[16, Lemma 2.1] finishes the proof. O
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