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ON A CUBICAL SUBDIVISION OF THE SIMPLICIAL COMPLEX

 Sarfraz Ahmad1, Muhammad Kamran Siddiqui2, Juan L.G. Guirao3 and Muhammad Arfan Ali4

For a simplicial complex ∆ we study a particular case of the subdivision ∆sub

of ∆ defined in [3]. We find the transformation maps sending the f- and h- vectors

of ∆ to the f- and h- vectors of ∆sub along with some properties of the corresponding

transformation matrices.
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1. Introduction

Motivated from [2] and [1], this article is about the study of the barycentric subdivision
∆sub of the cubical complex ∆c associated to a simplicial compelx ∆. A cubical complex
is a union of unit cubes i.e. points, line segments, squares, cubes, and their n-dimensional
counterparts [5]. They are used analogously to simplicial complexes and CW complexes in
the computation of the homology of topological spaces.

A simplicial complex ∆ on the ground set [n]={1, 2, . . . , n} is a collection of subsets
of [n] such that if F ∈ ∆ and G ⊂ F then G ∈ ∆. An element F of ∆ is called a face
and inclusion wise maximal faces are called facets. The dimension of a face F is defined by
dim(F ) = |F | − 1, where |F | is the cardinality of F . The dimension of a simplicial complex
∆ is defined as

dim ∆ = max{dim(F ) : F ∈ ∆}.
Let fk be the number of k-dimensional faces of ∆. We set f−1 = 1 corresponding to the
empty set φ ∈ ∆. For a (d−1)-dimensional simplicial complex ∆, the vector (f−1, f0, f1, . . . ,
fd−1) is called the f -vector of ∆. The h-vector (h0, h1, . . . , hd) of ∆ is defined by the relations

hk =

k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1.

The h-vector of ∆ plays an important role in studying the algebraic properties of the Stanley
Resiner ideal R/I∆ associated to ∆. Here R = k[x1, . . . , xn] is the polynomial ring in n
variables over the field k and I∆ is defined as

I∆ = (xi1 · · ·xir |{i1, . . . , ir} 6∈ ∆).

For more details about algebraic applications we refer the reader to [4].
A n-dimensional polytope which is the convex hull of the n + 1 vertices is called a

n-simplex. For example a 3-simplex is a tetrahedron. We denote a n-simplex by σn. Each
k-dimensional face of a simplicial complex ∆ is a k-simplex. Let F(∆) = {F1, . . . , Ft} be set
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Fig. 1. 2-dimensional cubi-cal 
complex

Fig. 2. 2-dimensional sub-
divided complex

of facets of ∆. Then we write ∆ =< F1, . . . , Ft > and say ∆ is generated by F(∆). Thus
to define a subdivision of a simplicial complex ∆, it is enough to consider the subdivision of
its facets.

The subdivision ∆sub studied in this article is a particular case of the subdivision
defined in [3]. We define the subdivision ∆sub of a simplicial complex ∆ by defining subdi-
visions of the facets of ∆ generically realized as standard simplices. Let

σn = {(x0, . . . , xn) ∈ Rn+1|xi ≥ 0 for all i and x0 + · · ·+ xn = 1}
be the geometric realization of a standard n-simplex. For j = 0, . . . , n we define

Cj = {(x0, . . . , xn) ∈ σn|xj ≥ xi for all i}.
Clearly, Cj is a polytope. For i = 0, . . . , n and i 6= j, its facets are given by

{(x0, . . . , xn) ∈ σn | xi = 0} and {(x0, . . . , xn) ∈ σn | xj ≥ xi}. The vertices of Cj are
1
|A|
∑

i∈A ei for subsets A ⊆ {0, . . . , n} where j ∈ A. This identifies Cj as a polytope combi-

natorially isomorphic to an n-dimensional cube. For B ⊆ {0, . . . , n} we have that
⋂

j∈B Cj

is the face of the Cj , which is given by setting the coordinates in B equal. Thus the Cj are
cubical complex subdividing the simplex σn (see Figure 1).

Now we form the barycentric subdivision of this cubical complex. This defines a
simplicial complex subdividing σn. One checks that this procedure applied to all facets of
∆ is compatible and defines a simplicial subdivision ∆sub of ∆ (see Figure 2). Note that
the cubical complex ∆c is not a simplicial complex rather it is collection of hypercubes
the way we have simplicies in a simplicial complex. Thus an i-dimensional face F c of ∆c

is an i-cube with dimension dim(F c) = |F c| − 1. The dimension of ∆c is defined to be
max{dim(F c) | F c ∈ ∆c}. We denote by f ci the number of i-dimensional faces in ∆c. For
example in Figure 1, f c0 = 7, f c1 = 9 and f c2 = 3.

We organize this manuscript as follows. The second section contains results related
to the f - and h-vectors transformations. Proposition 1 counts number of i-dimensional faces
of the cubical complex ∆c while Theorem 1 provides relations to compute f sub

j in term of
f ck . Corollary 1 is the f -vector transformation sending the f -vector of ∆ to the f -vector of
∆sub. Proposition 2 deals with the h-vector transformation. In Section 3, we study some
properties of the transformation matrices obtained from transformation maps of Section
2. Proposition 2 states that the transformation matrices Fd−1 and Hd−1 are similar and
diagonizable. Proposition 3 gives some information about the eigen vectors of Fd−1. The
main result of this section, Theorem 2, gives a nice formula to compute determinant of Fd−1.

2. The f- and h- vectors transformations

First we define some terminologies. Let σi be an i-simplex and σc
i be its cubical

simplex consisting of i + 1 number of i-cubes. These i-cubes share a common vertex. We
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call this common vertex as inner vertex. Any face (of cube) of σc
i which contains the inner

vertex is called an inner face (of cube). Any other face (of cube) of σc
i lies on the boundary

of σc
i .

Proposition 1. Let ∆ be a (d − 1)-dimensional simplicial complex and ∆c be the cubical
complex. Then for 0 ≤ i ≤ d − 1, the number of i-dimensional faces of ∆c is given by

f ci =
∑d−1

j=i

(
j+1
i

)
fj, where f = (f0, . . . , fd−1) be the f -vector of the simplicial complex ∆.

Proof. Firstly, note that each i-dimensional face F c
i of ∆c can be obtained from a face Fj

of dimension j of ∆ for i ≤ j ≤ d− 1. This fix the range of j in the required formula.
Secondly, it enough to consider a standard j-simplex σj . We are interested to calculate

the number of k-dimensional cubes which lie inside the subdivided cubical j-simplex σc
j for

0 ≤ k ≤ j. By the geometric definition, the inner vertex share an edge with each inner vertex
of (j − 1)-dimensional simplicies lies the boundary of σc

j . Since there are j+1 such simplies

we count these number of edges as
(
j+1

1

)
. Now each pair of inner edges of σc

j contribute to

an inner 2-cube, hence number of 2-cubes is
(
j+1

2

)
and so on. Finally, each combination of j

inner edges contribute to a j-dimensional inner cube and hence, the number of such j-cubes
is given by

(
j+1
j

)
.

Since these calculations take into account only the inner cubes of ∆c, if we consider
each j-dimensional face of ∆ as an j-simplex, it follows that the total numbers of i-faces of

∆c is given by
(
i+1
i

)
fi +

(
i+2
i

)
fi+1 + . . .+

(
d
i

)
fd−1 =

∑d−1
j=i

(
j+1
i

)
fj . �

To prove the remaining results of this section we need following combinatorial result.

Lemma 1. Let C(n, i) be the number of i-dimensional faces of a n-cube. Then

ni−1∑
ni−1=i

{· · · {
n1−1∑
n0=1

{
n0−1∑
j0=0

C(n0, j0)}C(n1, n0)} · · · }C(ni, ni−1) = H(n, i), (2.1)

where ni = n and

H(n, i) =

i+1∑
j=0

(−1)j
(
i+ 1

j

)
(2(i− j) + 3)n. (2.2)

Proof. We prove it by using induction on i. It is well known that C(n, i) = 2n−i
(
n
i

)
. For i = 0,

we have n0 = n and
∑n−1

j0=0 C(n, j0) =
∑n−1

j0=0 2n−j0
(
n
j0

)
= (2 + 1)n − 1 = 3n − 1 = H(n, 0).

Suppose Equation (1) is true for i. Now, for i+ 1 we have that ni+1 = n and

(n=ni+1)−1∑
ni=i+1

{. . . {
n1−1∑
n0=1

{
n0−1∑
j0=0

C(n0, j0)}C(n1, n0)} . . .}C(ni+1, ni)

=

n−1∑
ni=i+1

{
i+1∑
j=0

(−1)j
(
i+ 1

j

)
(2(i− j) + 3)ni}C(n, ni)

=

n−1∑
ni=i+1

{
i+1∑
j=0

(−1)j
(
i+ 1

j

)
(2(i− j) + 3)ni}2n−ni

(
n

ni

)
.

Using binomial theorem and simplification we get

=

i+2∑
j=0

(−1)j
(
i+ 2

j

)
(2(i− j + 1) + 3)n.

Hence Equation (1) is true by mathematical induction. �
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We use factor H(n, i) defined in above lemma in the remaining part of this section.
Note that H(n, i) < H(n+ 1, i).

Lemma 2. Let ∆ be a (d − 1)-dimensional simplicial complex. For 0 ≤ j ≤ d − 1, the
number of j-dimensional faces of the subdivided simplicial complex ∆sub is given by

f sub
j =

d−1∑
k=j

H(k, j − 1)f ck ,

where f ck be the number of k-dimensional faces of the cubical complex ∆c.

Proof. By definition, the barycentric subdivision of ∆c is a simplicial complex ∆sub on the
ground set ∆c \ {∅}. The j-dimensional faces of ∆sub are the strictly increasing chains
F c

0 ⊂ F c
1 ⊂ · · · ⊂ F c

j (of length j) of faces in ∆c \ {∅}. We fix j and some k-dimensional face
F c
j and count the chains of length j whose top element is F c

j . If j = 0 then by definition

fsub0 =

d−1∑
k=0

f cj =

d−1∑
k=0

H(k,−1) f cj .

Assume j > 0. The dimensions k0 of F c
0 , . . ., kj−1 of F c

j−1 are a strictly increasing sequence
of numbers 0 ≤ k0 < · · · < kj−1 < k ≤ d− 1. Fixing these numbers there C(k, kj−1) choices
for F c

j−1, C(kj−1, kj−2) choices for F c
j−2, . . ., C(k1, k0) choices for F c

0 . Summing up over the
choices we get

k−1∑
kj−1=j−1

· · ·
k2−1∑
k1=1

k1−1∑
k0=0

C(k1, k0)C(k2, k1) · · ·C(kj , kj−1) = H(kj , j − 1).

Now there are f cj choices for F c
j and its dimension k must be at least j. This yields fsubj =∑d−1

k=j H(k, j − 1)f ck . �

On combining the results of Proposition 1 and Lemma 2, we get the following corollary.

Theorem 1. Let ∆ be a (d − 1)-dimensional simplicial complex and ∆sub be the subdi-
vided simplicial complex. The number of i-dimensional faces of ∆sub is given by f sub

i =∑d−1
j=i

∑d−1
k=j H(j, i− 1)

(
k+1
j

)
fk, where fj is the number of j-dimensional faces of ∆.

Note that fi < f sub
i , for any 0 ≤ i ≤ d − 1. Now extending these results to h-vector

transformation, we give the following proposition.

Corollary 1. Let ∆ be a (d− 1)-dimensional simplicial complex and ∆sub be the subdivided
simiplicial complex. The h-vector of ∆sub is given by hsub

i =

(−1)i
(
d

i

)
h0 +

i∑
j=1

d−1∑
k=j−1

d−1∑
l=k

l+1∑
m=0

(−1)i−j
(
d− j
i− j

)(
l + 1

k

)(
d−m
d− l − 1

)
H(k, j − 2)hm,

where h = (h0, h1, . . . , hd−1) is the h-vector of ∆.

Proof. From the definition of the h-vector of ∆ , we have

hsub
i =

i∑
j=0

(−1)i−j
(
d− j
i− j

)
f sub
j−1 = (−1)i

(
d

i

)
f sub
−1 +

i∑
j=1

(−1)i−j
(
d− j
i− j

)
f sub
j−1.

As f sub
−1 = hsub

0 = h0 = 1, we have

hsub
i = (−1)i

(
d

i

)
ho +

i∑
j=1

(−1)i−j
(
d− j
i− j

)
f sub
j−1 (2.3)
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If we substitute the expression of f sub
j−1 from Lemma 2 in Equation 2.3, we get

hsub
i = (−1)i

(
d

i

)
h0 +

i∑
j=1

d−1∑
k=j−1

(−1)i−j
(
d− j
i− j

)
H(k, j − 2)f ck . (2.4)

Using the expression of f ck given in Proposition 1 in Equation 2.4, we have

hsub
i = (−1)i

(
d

i

)
h0 +

i∑
j=1

d−1∑
k=j−1

d−1∑
l=k

(−1)i−j
(
d− j
i− j

)(
l + 1

k

)
H(k, j − 2)fl. (2.5)

Since for any 0 ≤ k ≤ d− 1, fk−1 =
∑k

i=0

(
d−i
d−k
)
hi, so by Equation 2.5 we have the required

result. �

3. Transformation Matrices

For a (d − 1)-dimensional simplicial complex ∆ we denote by Fd−1 = (fij)0≤i,j≤d ∈
R(d+1)×(d+1) and Hd−1 = (hij)0≤i,j≤d ∈ R(d+1)×(d+1) the matrices of transformations
that send f - and h-vectors of ∆ to f - and h-vectors of ∆sub, respectively. Thus f sub

i−1 =∑d
j=0 fijfj−1 and hsub

i =
∑d

j=0 hijhj , where 0 ≤ i ≤ d. Note that entries of the matrices
Fd−1 and Hd−1 can be computed from Theorem 1 and Corollary 1. For example for d = 3
we obtained following matrices.

F2 =


1 0 0 0
0 1 3 7
0 0 4 30
0 0 0 24

 ,H2 =


1 0 0 0
16 14 10 7
7 10 14 16
0 0 0 1

 .

Proposition 2. For a (d− 1)-dimensional simplicial complex ∆:
(a) The matrices Fd−1 and Hd−1 are similar.
(b) The matrices Fd−1 and Hd−1 are diagonizable and have the eigenvalue 1 of multiplicity

2 and eigenvalues λk = (k + 1)!2k of multiplicity 1 for each k = 1, . . . , d− 1.

Proof. (a) Since the transformation sending f -vector of ∆ to h-vector of ∆ is an invertible
linear transformation, thus by Theorem 1 and Corollary 1 the matrices Fd−1 and Hd−1

are similar.
(b) Consider Fd−1. Clearly Fd−1 is an upper triangular matrix with diagonal entries

1, 1, 4, 24, . . . , d!2d−1. Since the matrices Fd−1 and Hd−1 are similar, thus the result
follows.

�

Proposition 3. Let d ≥ 3 and r1(d), r∗1(d), r2(d), . . . , rd(d) be some eigenvectors of the ma-
trix Fd−1, where r1(d), r∗1(d) are eigenvectors for the eigenvalue 1 and rk(d) is an eigenvector
for the eigenvalue k!2k−1, 2 ≤ k ≤ d. Then the vectors r1(d + 1) = (r1(d), 0), r∗1(d + 1) =
(r∗1(d), 0) and rk(d+1) = (rk(d), 0) are eigenvectors of Fd for the eigenvalues 1, 1, 4, 24, . . . , d!2d−1.

Proof. Since by Theorem 1, for a (d− 1)-dimensional simplicial complexes ∆ and its subdi-

vided simplicial complex ∆sub, we have f sub
i =

∑d−1
j=i

∑d−1
k=j H(j, i− 1)

(
k+1
j

)
fk. Thus clearly

Fd−1 and Fd are upper triangular matrices. Moreover, coefficients fij of fj−1 are same for
0 ≤ i ≤ d, 0 ≤ j ≤ d in both matrices Fd−1 and Fd. Thus

Fd =

 Fd−1

f1(d+1)

...
fd(d+1)

0 . . . 0 f(d+1)(d+1)


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Hence the result follows.
�

Theorem 2. Let Fd−1 be the matrix of transformation sending the f -vector of ∆ to the

f -vector of ∆sub. Then determinant of Fd−1 is | Fd−1 |=
∏d−1

i=0 (i+ 1)!2i.

Proof. The number of k-dimensional faces of the subdivided simplicial complex ∆sub is
calculated using l dimensional faces of the given simplicial complex ∆, where k ≤ l ≤ d− 1.
So Fd−1 is an upper triangular matrix and hence its determinant | Fd−1 | is given by the
product of its diagonal entries. By Theorem 1, the diagonal entries of Fd−1 are given by

(i+1)H(i, i−1) for 0 ≤ i ≤ d−1. From Equation 2.2, H(i, i−1) = 2i
∑i

j=0(−1)j
(
i
j

)
(i−j+ 1

2 )i.

Thus it remains to prove
∑i

j=0(−1)j
(
i
j

)
(i− j+ 1

2 )i = i!. For this we proceed as follows. The

ith derivative of a function f(x) is defined by

f (i)(x) = lim
h→0

∆i
hf(x)

hi
, (3.1)

where ∆i
hf(x) =

∑i
j=0(−1)j

(
i
j

)
f(x + (i − j)h) is the ith forward difference of f(x). Now

applying Equation 3.1 on f(x) = xi, we get

f (i)(x) = i! = lim
h→0

∑i
j=0(−1)j

(
i
j

)
(x+ (i− j)h)i

hi
. (3.2)

Obviously Equation 3.2 is true for any value of x. In particular for x = 1
2h, we have

i! = lim
h→0

∑i
j=0(−1)j

(
i
j

)
( 1

2h+ (i− j)h)i

hi
=

i∑
j=0

(−1)j
(
i

j

)
(
1

2
+ i− j)i,

as required. �
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