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HEIGHT OF HYPERIDEALS IN NOETHERIAN KRASNER
HYPERRINGS

Hashem Bordbar!, Irina Cristea?, Michal Novak®

Inspired by the classical concept of height of a prime ideal in a Ting, we proposed
in a precedent paper the notion of height of a prime hyperideal in a Krasner hyperring.
In this note we first generalize some results concerning the height of a prime hyperideal
in a Noetherian Krasner hyperring, with the intent to extend this definition to the case
of a general hyperideal in a such hyperring. The main results in this note show that, in
a commutative Noetherian Krasner hyperring, the height of a minimal prime hyperideal
over a proper hyperideal generated by n elements is less than or equal to n, the converse
of this claim being also true. Based on this result, it can be proved that the height of
such a prime hyperideal is limited by the height of a corresponding quotient hyperideal.
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1. Introduction

Krasner hyperrings [7], introduced as a tool in the approximation of valued fields, are
the most studied types of hyperrings with applications not just in hyperstructure theory (for
example concerning homomorphisms [13], fundamental relations [11], (m, n)-hyperrings [10],
composition hyperoperation [3], etc.), but also in number theory [2] or algebraic geometry
[15].

Motivated by one of the central theorem in commutative algebra, namely Krull’s
principal ideal theorem, and its generalization, known as Krull’s height theorem [5, 6],
we have started the study of their application in the framework of Krasner hyperrings.
We first defined [1] the notion of height of a prime hyperideal in a commutative Krasner
hyperring, linking it to the notion of dimension of such a hyperring. In the same paper
[1], we investigated the properties of these two notions in a Noetherian Krasner hyperring,
concluding with the extension of Krull’s principal ideal theorem to the case of hyperrings.
To be more precise, we showed that if R is a commutative Noetherian Krasner hyperring
and [ is a proper principal hyperideal of R, then the height of a minimal prime hyperideal
of R over I is at most one.

In this article, we focus on the generalization of this result, i.e. the similar result of
Krull’s height theorem, which says that: In a commutative Noetherian Krasner hyperring
R, the height of a minimal prime hyperideal over a proper hyperideal of R generated by n
elements is at most n (see Theorem 3.3). The other main objective of our note is expressed by
Theorem 4.1, that is a converse result of Theorem 3.3, since it shows that, in a commutative
Noetherian Krasner hyperring R having a prime hyperideal P of height n, there always
exists a proper hyperideal I included in P and generated by n elements, with height equal
to n. Some ideas to continue our study in future are mentioned in the concluding section of
the paper.
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2. Preliminaries

In this section, we gather some results and definitions related to hyperideals of hy-
perrings, which will be used in the next sections. For more details regarding this topic, the
readers are refereed to the book [4] and to the PhD thesis defended in 2013 by N. Ramaruban
[14] at the University of Cincinnati. The expository papers of Nakassis [12] or Massouros
[9], dedicated to a survey of hyperring and hyperfield theory till 1990’s, are another sources
for the basic theory of hyperrings.

Throughtout this paper, unless otherwise stated, R denotes a Krasner hyperring, first
introduced in [7], called here, by short, hyperring.

Definition 2.1. A (Krasner) hyperring is a hyperstructure (R,+,-) where

(1) (R,+) is a canonical hypergroup;
(2) (R,-) is a semigroup endowed with a two-sided absorbing element 0;
(3) the product distributes from both sides over the sum.

Definition 2.2. [4] A subhyperring I of a hyperring R is a left (respectively right) hyperideal
of R, ifr-a €1 (respectively a-r € I), for allr € R and a € 1. It is called a hyperideal of
R if it is both a left and a right hyperideal of R.

A proper hyperideal M of R is called a maximal hyperideal of R if the only hyperideals
of R that contain M are M itself and R.

A hyperideal P of a hyperring R is called a prime hyperideal of R if, for every pair
of elements a and b of R, whenever ab € P, either a € P orb € P.

It is well known that, in a commutative unitary hyperring R, for any proper hyperideal
I of R, there exists a maximal hyperideal containing I. Moreover, in such a hyperring, each
maximal hyperideal is a prime hyperideal, so there exists at least one prime hyperideal in

A nonzero hyperring R having a unique maximal hyperideal is called a local hyperring.

Definition 2.3. [14] A prime hyperideal P of R is called a minimal prime hyperideal over a
hyperideal I of R if it is minimal (with respect to inclusion) among all prime hyperideals of
R containing I. A prime hyperideal P is called a minimal prime hyperideal if it is a minimal
prime hyperideal over the zero hyperideal of R.

Definition 2.4. [14] A hyperring R is called Noetherian if it satisfies the ascending chain
condition on hyperideals of R: for every ascending chain of hyperideals Iy C I C I3 C ...
there exists N € N such that I,, = I, for every natural number n > N (this is equivalent
with saying that, every ascending chain of hyperideals has a mazimal element).

A hyperring R is called Artinian if it satisfies the descending chain condition on
hyperideals of R: for every descending chain of hyperideals Iy O I, D I3 O ... there exists
N € N such that I, = Iy, for every natural number n > N (this is equivalent with saying
that, every descending chain of hyperideals has a minimal element).

Remark 2.1. [t is obvious that any finite hyperring is both Noetherian and Artinian, since
it contains just finite ascending (descending) chains of hyperideals.

Corollary 2.1. [14] Let R be a hyperring in which the zero hyperideal is a product My Ms ... M,
of (not necessarily distinct) mazimal hyperideals. Then R is Noetherian if and only if it is
Artinian.

A general method to obtain a Krasner hyperring was proposed by Krasner [8], starting
from a ring S and a group G, where G C S. Here we use it in a particular case.

Example 2.1. Suppose the set of all congruence classes of integers modulo 12, i.e. Z12 =
{0,1,2,...,11} and its multiplicative subgroup of units G = {1,5,7,11} and construct R as
Zlg/G, i.e.

R={FG|T€Zi3} ={T|T € Z12}.
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There is: 0 = {0}, 1 = {1,5,7,11}, 2 = {2,710} = 10, 3 = {3,9} = 9, 4 = {4,8} = 3§,
6= {6}. Now on R define the hyperaddition & and multiplication - by
r@s—{t\m( +3) # 0}
-3 =Ts.
When computing e.g. 2@4 we have to consider that 2 +
when computing 1 ® 3 we have to consider that 1+ 3 =
The hyperaddition @ is shown in Table 1:

ofo] T [2]3]7[6]
010 1 2 3 4 16
1 0,2,4,6 1,324 |1,3|1
2 0,4 1 |2,6/1
3 0,6 1|3
1 0,42
6 0

TABLE 1. The hyperaddition &

Then R = {0G,1G,2G, ..., 11G} = {0,1,2,3,4,6} is a Krasner hyperring (by Kras-

ner’s construction) with zero dwzsors 3 and 1 since 3G - 4G = 0G. Since R is a finite
hyperring, it is both Noetherian and Artinian.

Denotel—{036} J ={0,2,4,6}, K = {0,6}, L = {0,4} andZ—{O} Then
I and J are both prime and mazximal hyperideals, the zero hyperideal Z is not prime while
hyperideals K and L are neither prime nor mazximal. Also, I and J are minimal prime
hyperideals (over the zero hyperideal Z ). The minimal prime hyperideal over L is J.

The radical of a hyperideal I of a hyperring R, denoted by r(I), is defined as
r(I)={x|a" €I, forsome n e N}.

It can be proved that the radical of I is the intersection of all prime hyperideals of R
containing I.

An element x of a hyperring R is called nilpotent, if ™ = 0, for some n > 0. The
set of all nilpotent elements of R is called the nilradical of R and denoted by N(R). It is
clear that N(R) = r(0), the radical of the zero hyperideal. Thus, the nilradical N(R) of
a commutative hyperring R is the intersection of all prime hyperideals of R. Moreover, in
any Artinian hyperring R, every prime hyperideal is maximal, while the nilradical N(R) is
nilpotent. This means there exists ¢ € N such that N(R)! = 0; in other notation, r(0)! = 0.

Example 2.2. If we continue with Example 2.1 and use its notation, then e.g. r(L) = J.
Also, N(R)=INnJ =K = {O 6} The nilpotent elements of R are 0 and 6, since there is
6 =0.
Proposition 2.1. [14] Let I be a hyperideal of R and & = {r +1 | r € R}. Defining the
hyperoperations & and ® on = as follows:
(a+1)@ (b—|—1) =a+b+1 and (a+DH@b+I)=a-b+1,

we get that (?, @, ®) is a hyperring, too.

We call the above hyperring (%, @, ®) the quotient hyperring. The following proposi-
tion is known in literature as Lattice Isomorphism Theorem.
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Proposition 2.2. [14] There is a one-to-one, order-preserving correspondence between the
hyperideals I of the hyperring R that contain J and the hyperideals I of g, given by I =
@~ Y(I), where ¢ : R — ? is defined by p(r) =1+ J.

Proposition 2.3. [14] The hyperideal P is a prime hyperideal of R if and only if % s a
hyperdomain, i.e. a hyperring with no zero divisors.

Proposition 2.4. Let I and J be hyperideals of a commutative hyperring R, such that
I C J. Then the hyperideal % of the quotient hyperring % is prime if and only if J is a
prime hyperideal of R.

Proof. The statement follows from the third isomorphism theorem for hyperrings, saying

that
R

jv
and from Proposition 2.3. (]

(o

~ls|

In the following we recall the concepts of extension and contraction of hyperideals
and some of their properties.

Definition 2.5. [14] Let f : R — S be a hyperring homomorphism, I be a hyperideal of R
and J be a hyperideal of S.
(7) The hyperideal (f(I)) of S generated by the set f(I) is called the extension of I and
it is denoted by I¢. Explicitly, we have

(f)y={xeS|xe Zf(ai)bi, where a; € I; b; € S; n € N}
i=1
(ii) The hyperideal f~1(J) = {a € R | f(a) € J} is called the contraction of J and it is

denoted by J¢. It is known that, if J is a prime hyperideal in S, then J¢ is a prime
hyperideal in R.

Further on we use the above notation in an intuitive way without brackets, i.e. we
write 1¢¢ instead of (I€)°.

Proposition 2.5. [14] Let f : R — S be a hyperring homomorphism, I and J be hyperideals
of R and S, respectively. Then it follows that:

(i) I C I andJ D Je.

(i) J¢ = Jec¢ and I¢ = I°*“.
(#i1) If I is a prime hyperideal of R, then it is the contraction of a prime hyperideal of S if
and only if 1°¢ = 1.

In the following theorem notice that the Jacobson radical of a hyperring R is defined
to be the intersection of all maximal hyperideals of R.

Theorem 2.1. [14] (Nakayama’s Lemma) Let M be a finitely generated R-hypermodule and
I a hyperideal of R contained in the Jacobson radical of R. Then M = IM implies that
M ={0}.

We continue with some results regarding the hyperrings/hypermodules of fractions.
Let R be any hyperring and let S be any multiplicatively closed subset of R, with 1 € S.
Define a relation = on R x S by (a, s) = (b,t) if and only if 0 € (at — bs)u, for some u € S.
Denote the equivalence class of (a, s) with ¢ and let S™!'R denote the set of all equivalence
classes. We endow the set S™'R with a hyperring structure, by defining the addition and

the multiplication between fractions as follows:
a b at+bs a b ab

S

-4+ - = and = —.
s+t st . t st

We know that S~!R forms a hyperring under these operations [14].
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Remark 2.2. If P is a prime hyperideal of a hyperring R, then S = R\ P is a multiplicatively
closed subset of R. In this case, we denote ST'R = Rp. As proved in [14], the elements
a

<, with a € P, form a hyperideal M in Rp, which is the only mazimal hyperideal of Rp.
Therefore, Rp is a local hyperring.

Proposition 2.6. [14] Let S be a multiplicatively closed subset of a hyperring R.

i) Every hyperideal in ST'R is an extended hyperideal.
ii) If I is a hyperideal in R, then I¢ = ST R if and only if INS = ).
1i1) A hyperideal I is a contracted hyperideal of R if and only if no element of S is a zero
divisor in R/I.
iv) The prime hyperideals of ST'R are in one-to-one correspondence with the prime hy-
perideals of R that do not meet S, with the correspondence given by P + S~ P.

Similarly, one constructs the hypermodule of fractions. Let M be an R-hypermodule
and S be a multiplicatively closed subset of R. Define a relation = on M x S by (m,s) =
(mq,s1) if and only if there exists ¢ € S such that 0 € t(ms; — mys), that is msit = mqst.
This is clearly an equivalence relation. Let “* denote the equivalence class of the pair (m, s),
and let S~'M denote the set of all such fractions. Then S~!M is an S~!R-hypermodule.

If P is a prime hyperideal of R and M is an R-hypermodule, then the Rp-hypermodule
(R\ P)~'M is simply denoted by Mp.

Definition 2.6. [14] A hyperideal Q in a hyperring R is called primary if Q # R and if
whenever xy € Q either x € Q or y™ € Q, for somen € N. If P =r(Q), then Q is called a
P-primary hyperideal of R.

It is obvious that every prime hyperideal is also primary.

Definition 2.7. [14] A primary decomposition of a hyperideal I in the hyperring R is an
expression of I as a finite intersection of primary hyperideals, say I = (i_, Q;, where each
Q; is primary. If, moreover

i) the radicals r(Q;) are all distinct, and

i) Qi 22 Qj, 1<i<m,
then the primary decomposition is called minimal. We say that a hyperideal I of R is
decomposable, if it has a primary decomposition.

Theorem 2.2. [14] In a Noetherian hyperring R, every hyperideal has a primary decompo-
sition.

Denote by (I : ) the quotient hyperideal {a € R | ax C I}.

Theorem 2.3. [14] (First Uniqueness Theorem) Let I be a decomposable hyperideal of R
and let I = (N, Q; be a minimal primary decomposition of I. Let P; = r(Q;), 1 <1i < n.
Then P; are precisely the prime hyperideals which occur in the set of hyperideals r(I : x),
x € R, and hence are independent of the particular decomposition of I.

Definition 2.8. [14] The prime hyperideals P; in Theorem 2.3 are said to belong to I.
The minimal elements of the set {Py, Py,...,P,} are called the minimal or isolated prime
hyperideals of I. The others are called embedded prime hyperideals.

Lemma 2.1. [1] Let I be a decomposable hyperideal of a commutative hyperring R and P
be a prime hyperideal of R. Then I C P and P is a prime hyperideal, which is a minimal
(with respect to inclusion) prime hyperideal containing I among all prime hyperideals of R
if and only if P is a minimal prime hyperideal over I. In particular, the minimal prime
hyperideal P, which contains I, belongs to I.

Example 2.3. If we continue with Example 2.1 and use its notation, then I and J are
primary hyperideals of R (since they are prime), L = {0 4} is a primary hyperideal of R

since2-2=4€ L and 2 €L, i.e. n=2. On contrary, nezther the zero hypemdea,l Z mnor
the hyperideal K = {0 6} are primary as 3-4 =0 € Z but 3 ¢ Z and 1 & 7 for every
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n € N (for the case of Z) and (for the case ofK)ii:%eK butingK and§n¢Kfor
every n € N.

Example 2.4. If we continue with Example 2.1 and use its notation, then a primary de-
composition of K is K = INJ. In this respect notice that r(I) =1 #r(J)=J and I 2 J,
J 2 I, so the decomposition is minimal. Moreover, I and J are hyperideals that belong to
K. Thus they are minimal prime hyperideals of K. Further, a primary decomposition of L
is L=JNL. Since r(L) = J =r(J), this decomposition is not minimal.

Example 2.5. If we continue with Example 2.1 and use its notation, then (K : I) = {a €

R|al c K} ={0,2,4,6} = J.

3. Height of prime hyperideals

In this section, we first recall the definition of the height of a prime hyperideal of
a hyperring, introduced in [1], together with the main results obtained in a Noetherian
hyperring. In [1], the first two authors have proved that, in such a hyperring, the height
of a minimal prime hyperideal P over a principal hyperideal I generated by one element is
always less than or equal to 1. Here we extend this result to the case of a minimal prime
hyperideal P over a hyperideal I generated by n elements, showing that its height is less
than or equal to n.

Definition 3.1. [14] Let R be a non-trivial commutative hyperring.
(1) An expression of the type
PhCcPC...CP,

(note the strict inclusions), where Py, ..., P, are prime hyperideals of R, is called a
chain of prime hyperideals of R; the length of such a chain is the number of the ”links”
between the terms of the chain, that is, 1 less than the number of prime hyperideals
in the sequence. Thus the above displayed chain has length n. Note that, for a prime
hyperideal P, we consider

P

to be a chain, with just one prime hyperideal of R, of length 0. Since R is non-trivial,
it contains at least one prime hyperideal, so there certainly exists at least one chain
of prime hyperideals of R of length 0.
The supremum of the lengths of all chains of prime hyperideals of R is called the
dimension of R, denoted by dim(R).
(#1) A chain of the type
PPbCPC...CP,
of prime hyperideals of R is called saturated when, for every i € N, with 1 < i < n,
there is no prime hyperideal P such that P,y C P C P;, that is, if and only if we
cannot make a chain of length n 4+ 1 by inserting an additional prime hyperideal of R
between two terms in the chain.
(#it) A chain of the type
PhCcPC...CP,
of prime hyperideals of R is called mazimal, when it is saturated, P, is a maximal
prime hyperideal of R and Py is a minimal prime hyperideal of R.

Example 3.1. [1] The dimension of a hyperfield, or of a non-trivial Artinian hyperring, is
0, while the dimension of the hyperring %, where G = {—1, 1} is the multiplicative subgroup
of Z, is 1. This is another example of a hyperring obtained with Krasner’s construction [8].

Definition 3.2. [1] Let P be a prime hyperideal of a non-trivial commutative hyperring R.
The height of P, denoted by htgr P, is defined to be the supremum of the lengths of all chains

PhCcP C...CP,

of prime hyperideals of R, for which P, = P (if this supremum exists). If the supremum
does not exist, we define htr P to be oc.
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In the following, for the sake of completeness of this paper, we recall some fundamental
results obtained in [1].

Lemma 3.1. [1] Let P be a prime hyperideal of the commutative hyperring R and I be a
hyperideal of R such that I C P. Then the set

© = {P'| P'is a prime hyperideal and I C P' C P}
has a minimal element with respect to the inclusion.

Lemma 3.2. [1] Let R be a commutative Noetherian hyperring and let P be a minimal
prime hyperideal over a proper hyperideal I of R. Let S be a multiplicatively closed subset
of R such that PN S = (. Then S™'P is a minimal prime hyperideal over the hyperideal
S~ of STIR.

Theorem 3.1. [1] Let R be a commutative Noetherian hyperring in which every prime
hyperideal is mazimal. Then

i) R contains finitely many mazimal hyperideals.
i) R is an Artinian hyperring.

Theorem 3.2. [1] Let R be a commutative Noetherian hyperring and let a € R be a non-
unit element. Let P be a minimal prime hyperideal over the principal hyperideal {a) of R.
Then htrP < 1.

Now we can extend Theorem 3.2 to the case when P is a minimal prime hyperideal
over a hyperideal I generated not by one element but by n elements.

Theorem 3.3. Let R be a commutative Noetherian hyperring. Suppose that I is a proper
hyperideal of R generated by n elements and P is a minimal prime hyperideal over I. Then
htRP S n.

Proof. We prove the result by induction on n. If n = 0, then obviously I = 0 and P is
a minimal prime hyperideal of R, hence htgP = 0. If n = 1, then I = (a) is a principal
hyperideal of R generated by one element and the claim follows immediately from Theorem
3.2.

Assume now that n > 1 and that the result is true for smaller values of n. Since P
is a prime hyperideal of R, it follows that S = R\ P is a multiplicatively closed subset of
R. By Lemma 3.2, we know that S~'I = Ip is a proper hyperideal of ST'R = Rp and
S~!P = PRp is a minimal prime hyperideal over S~'I. Moreover, by Remark 2.2, Rp is a
local hyperring having S~ P as a unique maximal hyperideal and htg P = htg, PRp. Thus
we can assume the additional hypothesis that R is a local hyperring with M = P its unique
maximal ideal.

Suppose that I = {ay,as,...,a,). For every non maximal prime hyperideal P’ of R,
there exists a non maximal prime hyperideal P” of R, such that P’ C P”, and the chain
P"” C M of prime hyperideals is saturated. Indeed, defining

A ={P; | P, is a non maximal prime hyperideal of R, P’ C P},

then A # () and A has a maximal element P”, because R is a Noetherian hyperring and
it is clear now that P” C M is a saturated chain. Therefore, there exists a non maximal
prime hyperideal @, such that the chain Q C M is saturated, and since M is a minimal
prime hyperideal over I, it results that I ¢ Q. Thus there exists ¢ € {1,2,...,n}, such that
a; ¢ Q. Let suppose that a,, ¢ Q. Then, it is enough to show that htp@ < n — 1, implying
that htrp M < n and this completes the proof.

Since M is the only prime hyperideal of R containing Q + (a,), it results that the

hyperring ﬁ is a local and Noetherian hyperring with the unique maximal hyperideal
%. Besides this, every prime hyperideal of ﬁ is clearly maximal. Therefore, by

using Theorem 3.1, ﬁ is also an Artinian local hyperring. According to the properties of

the Artinian hyperrings grouped in Section 2, in any Artinian local hyperring, the maximal
hyperideal is nilpotent. Hence # is nilpotent. Therefore, there exists ¢ € N such that
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(Q+1\</Ian) )t = Q%:zm =0 and so M* C Q + {(a,). On the other hand, since a1, az,...,a, 1 €

M, we have also o} € M, ..., al,_; € M*'. Thus, there exist dy,ds,...,d,—1 in Q and
T1,72y ..., Tn—1 in R such that a! = d; + a,r; and Z?;ll (d;) € Q.

If we show that @ is a minimal prime hyperideal over Z;:ll (d;), then by using the
inductive hypothesis, we have that htr@Q < n — 1.

Let R = % and nat : R — R be the natural hyperring homomorphism such that
i=1 z

nat(r) =r+ Z;:ll (d;). Since a} = d; + a,r;, each prime hyperideal P’ of R which contains
di,ds,...,d,_1,a,, must contain also a,as, ..., a,. Indeed, if d; € P’, then d; +a,r; € P/,
thus af € P’, where P’ is a prime hyperideal. So a; € P’. Now, since M is a minimal prime
hyperideal containing ai,as, ..., a,, it results that M is the only one prime hyperideal of
R which contains di,ds,...,d,—1,a,. By using Proposition 2.4, it follows that % is
o i=1 (@i

a prime hyperideal of R and, moreover, it is a minimal prime hyperideal over the principal
hyperideal < @, >= %, because otherwise there would exist a prime hyperideal

i=1 z
%M) which would be minimal and would contain < @,, >. Thus @ C M and @ contains
i=1 \%i
dy,da,...,dy_1,an, which is a contradiction. Now, according to Theorem 3.2, it follows that

M <1

hte 1,7 <
o)

)

because otherwise, the chain
Q M

—1 C n—1
Z:‘L:1 <dl> 21:1 <d1>

of prime hyperideals of R could be extended from the left side and this would again be a

contradiction with the fact that hiz % < 1. Using the inductive hypothesis, we
i=1 K
conclude that htr@ < n — 1, implying that htgM < n, which completes the proof. |

Lemma 3.3. A hyperring R with the multiplicative identity 1 is an R-hypermodule.

Proof. Since R is a hyperring, its additive part is a canonical hypergroup. Thus, it is enough
to define a map ¢ : Rx R — R, given by ¢(r,m) = r-m, to endow R with a multiplicative
operation, that confers to the hyperring R also the role of R-hypermodule. |

Remark 3.1. Suppose that R is a commutative hyperring; then, by Lemma 3.3, R is an R-
hypermodule and therefore every hyperideal of R is a subhypermodule of the R-hypermodule
R and viceversa.

Proposition 3.1. A commutative hyperring R is Noetherian if and only if every hyperideal
of R is finitely generated.

Proof. By using Remark 3.1 and Proposition 9.2 [14], stating that an R-hypermodule is
Noetherian if and only if each of its subhypermodules is finitely generated, the proof is
straightforward. O

Theorem 3.4. Any prime hyperideal of a commutative Noetherian hyperring has a finite
height.

Proof. Let R be a Noetherian hyperring and P a prime hyperideal of R. According to
Proposition 3.1, P is finitely generated. Suppose that P = (p1,pa,...,ps). Besides, P is
a minimal prime hyperideal which contains P. Therefore, by Theorem 3.3, it follows that
htrP < n. |

Proposition 3.2. Let R be a commutative Noetherian hyperring and Py, P, two prime
hyperideals of R such that Py C Py. Then htrP, < htgrPs.
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Proof. By using Theorem 3.4, htgr P, and htr P, are finite. Now suppose that htgP; = n
and Qg € @1 C ... € Q, = P, is a chain of prime hyperideals of R. Then obviously
Qo C Q1 C ... C Q, € P, is also a chain of prime hyperideals of R, meaning that
htrP> > n + 1. Therefore htgrP; < htgPs. O

Example 3.2. If we continue with Example 2.1 and use its notation, then we see that

I=3),J=(2), K=(6), L= 4), Z=/{0) and there are no more hyperideals in R, which
s obviously commutative. Moreover, e.g. htgrl = htrJ = 0.

4. Height of hyperideals in Noetherian hyperrings

The aim of this section is to introduce and characterize the notion of height of a
hyperideal (so not necessarly a prime one) in Noetherian hyperrings. Based on it, we prove
that the converse of Theorem 3.3 is also true.

Definition 4.1. Let R be a commutative Noetherian hyperring and I a proper hyperideal of
R. Then define the height of I as follows:

htgI = min{htgP | P is a prime hyperideal of R and I C P}.

For a proper hyperideal I of R, there clearly exists at least one prime hyperideal P of R such
that I C P.

Remark 4.1. According to Lemma 3.1, in a commutative hyperring R, every prime hy-
perideal which contains I, contains also a minimal prime hyperideal of R. Moreover, by
Definition 2.7 and Definition 2.8, it follows that we can redefine the height of a hyperideal
I in a Noetherian hyperring R in the following ways:

htgl = min{htgP | P is a minimal prime hyperideal of R and I C P}

and
htrI = min{htgP | P is an isolated prime hyperideal of I}.

Based on Proposition 3.2, the following lemma is obvious.

Lemma 4.1. Let I and J be two hyperideals in a commutative Noetherian hyperring R,
such that I C J. Then htrl < htgrJ.

Proposition 4.1. Let R be a commutative Noetherian hyperring and I a proper hyperideal
of R generated by n elements. Then htrl < n.

Proof. Since I is a proper hyperideal of R, there exists a minimal prime hyperideal P of
R, such that I C P. Thus, by using Lemma 4.1 and Theorem 3.3, htgl < htgrP, while
htrP < n. Therefore htrl < n. O

Lemma 4.2. In a commutative Noetherian hyperring R, let I be a hyperideal and P a prime
hyperideal of R, such that I C P and htgl = htrP. Then P is a minimal prime hyperideal
of I.

Proof. Suppose that P is not a minimal prime hyperideal of I. Then, by Lemma 3.1, there
exists a prime hyperideal () of R which is minimal and I C @ C P. Using Lemma 4.1,
we find that htgl < htr@ < higpP, obtaining a contradiction. So P is a minimal prime
hyperideal of I. O

Remark 4.2. According to Theorem 2.2, every proper hyperideal of a commutative Noe-
therian hyperring R has a primary decomposition. Suppose that {Py, P, ..., P,} is a set of
prime hyperideals of R which belong to I (see Definition 2.8). This set is finite and its min-
imal elements are precisely the minimal prime hyperideals of I (see Lemma 2.1). Therefore,
I has finitely many minimal prime hyperideals.
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Proposition 4.2. Let R be a commutative hyperring and Py, Pa, ..., P,, wheren > 2, prime
hyperideals of R. Assume that I is a hyperideal of R such that
n
IC U P..
i=1

Then I C Pj, for some j, with 1 < j <n.

Proof. We prove the theorem by induction on n. For n = 2, we have I C P, U P, with P,
and P, prime hyperideals of R. Assume that I ¢ P; and I ¢ P,. Thus there exist a; € I\ P
and as € I\ Py, implying that a; € P» and as € P;. Therefore a1 +a9 C I C P;UP,. Hence
ay + ag is a subset of either Py or Py. If a1 + ag C Py, then a; € (a1 + a2) —az C Py, which
is a contradiction. Similarly, if a; + as C P», then we get again a contradiction. Thereby
we must have I C P; or I C P.

Suppose that the result has been proved for any n < k, where & > 2, and assume
now that n = k + 1. So we have I C Ufill P;. Suppose that, for any j = 1,2,... ., k+ 1, it

happens that I ¢ Ul€+1 P;. Thus, for each 5 =1,2,...,k+ 1, there exists

i=1,i#j
k+1
ael\ |J P
i=1,i#j
The inductive hypothesis implies that a; € P;, for any j = 1,2,...,k+1 and moreover, since

P11 is a prime hyperideal, it follows that aq - - - ax ¢ Pi41. Hence ay ---ay, € ﬂle P\ Pt

and ag+1 € Prya \Uf:1 P;. Now consider an element b € ay - --ay + ag+1. Then b ¢ Py,
because otherwise we would get that

aj...ag Eb—akJrl ngH,

which is a contradiction. Besides, b ¢ P;, for some j = 1,2,...,k, because otherwise it
would result that

ag1 € b—ay...ar C Pj,
that is again a contradiction. But clearly b € I, obtaining a contradiction to the assumption
that I C UfillPi. Thereby there exists at least one j € N, with 1 < j < k 4 1, for which

IcC Ufill)i ;P Applying the inductive hypothesis for n = k, it results that I C P;, for

some i € N, with 1 <i < k + 1, and the proof is now complete. O
Now we have all elements to prove that the converse of Theorem 3.3 is also true.

Theorem 4.1. Let R be a commutative Noetherian hyperring and P a prime hyperideal
of R, with htrP = n. Then there exists a proper hyperideal I of R having the following
properties:

(i) IC P,

(i) I is generated by n elements,

(#i1) hitgl =n.

Proof. We prove the theorem by induction on n. If n = 0, then htg P = 0 and in this case
it is sufficient to take I = 0 the zero hyperideal. Thus, I = 0 C P, [ is generated by 0
elements and htpl = 0. Moreover, P is a minimal prime hyperideal over 0.

Now suppose that n > 0 and the theorem has been proved for smaller value of n.
Assume that htg P = n, thus there exists a chain of prime hyperideals P, C P, C ... C P, C
P,+1 = P. It results that htg P, = n — 1. Indeed, since P, C P,4+1 = P, by using Lemma
4.1, it follows that hirP, < htgP,4+1 = n, while having the chain of prime hyperideals
P, Cc P, C...C P, it means that htgP, > n — 1. Therefore, htrP,, = n — 1. Based on the
inductive hypothesis for the prime hyperideal P,, there exists a proper hyperideal J of R
generated by n — 1 elements, such that J C P, and htgJ =n — 1.

Consider J = (ay,as,...,a,). Since htgJ = htgP, and J C P,, by Lemma 4.2 it
follows that P, is a minimal prime hyperideal of J. According to Remark 4.2, J has finitely
many minimal prime hyperideals, for example the set {P,, Q1,Q2, ..., Qr}. We claim that
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there exists ¢ € N, 1 < ¢ < k, such that htgr@; = n — 1. Indeed, because ); is a minimal
prime hyperideal of J and J is generated by n— 1 elements, based on Theorem 3.3, it results
that htgQ; < n—1. On the other hand, J C @; leads to the fact that htgJ = n—1 < htrQ;.
Thus htr@; =n — 1.

Besides, we have P = P,11 € P, U Q1 U Q2 U ... U Qg, because otherwise, by
Proposition 4.2, P would have to be a subset of P, or Q;, where 1 < i <k, and htgr P = m,
while htr@; = htr P, = n — 1, which would be a contradiction. So

PZPnJrlSZPnUQlUQQU...UQk.

Let apy1 € Popy1 \(P,UQ1UQ2U. . .UQy) and define I = JU < ap1 >=< a1,a2,...,0n41 >.
Then clearly, I C P and I is generated by n elements. It remains to show that htrl = n.
We know that J C I C P. Thus n — 1 = htgJ < hitrl < htgP = n. Therefore
htrl = n or htrl = n—1. Suppose that htgl = n—1 and P’ is a minimal prime hyperideal
of R, such that I € P’. Then, by Theorem 3.3, it results that htgP’ = n — 1. Hence
htrP’ = htrJ and, by Lemma 4.2, P’ must be a minimal prime hyperideal of J. Thus

P’ must be one of the hyperideals Q1,Q>, ..., Qx or P,, which is a contradiction, because
an+1 € P’ and a,41 does not belong to any @; or P,. So the only possibility is to have
htrI = n. Now the proof is complete. O

Based on Theorem 3.3 and its converse, Theorem 4.1, we establish a relation between
the height of a minimal prime hyperideal P over a proper hyperideal I of R and the height
of the quotient hyperideal ? in the quotient hyperring %

Theorem 4.2. Let R be a commutative Noetherian hyperring, P a prime hyperideal of R
and I a proper hyperideal of R generated by n elements, such that I C P. Then:

P P
ht§7 < htRPSht§7 +n.

Proof. Suppose that ht5§ = m. Then there exists a chain of prime hyperideals of %
I
denoted % C % C...C % = ?, such that P is a minimal prime hyperideal over I and

P,, = P, leading to the following chain of prime hyperideals of R
PhCcP, C...CP,=P.
Hence m < htr P and thus htg ? < htgP.
Consider I = (aj,as,...,a,). Since ht$§ = m, by using Theorem 4.1, there exists
a proper hyperideal % of ? such that % - % % is generated by m elements, for example
ay +L,as +1,...,0p, + 1 and htg% = m. Since I =< ay,a9,...,a, >C P and J =

(a1,0a9,...,a;,) € P, we have the inclusion (a1,as,...,an, a1, Q2,..., ) C P. It follows
that P is a minimal prime hyperideal over the principal hyperideal (a1, aa, ..., an, a1, @2, .., Qn),
because otherwise, there would exist a hyperideal @) of R such that
(a1,a2,...,4n, 01,00, .., 00) € QG P.
So we have
Q - P
(ay+Las+1,...;an +T,on + oo+ 1,...;c+1)C T S T

Since a; € I, it results that a; + I = I. So we must have

J _Q - P
(o +Tao+1,....,0a;m+ 1) = 7 C 7 ; 7
Since § is a minimal prime hyperideal over %, we clearly have P = @), which is a contradic-
tion. Therefore, P is a minimal prime hyperideal over (a1, as,...,an, a1, Q2,. .., Q).

Finally, according to Theorem 3.3, we conclude that

P
htRPSm—i-n:ht%T—i—n.
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5. Conclusions and future work

In this note we have investigated the possibility to extend the Krull’s principal ideal
theorem and the Krull’s height theorem to the hyperstructure theory, in particular to Noe-
therian Krasner hyperrings. After defining and studying the main properties of the central
notion of this theory, namely the height of a prime hyperideal in a commutative Noetherian
Krasner hyperring, we have proved that the above mentioned theorems are valid also in
these kind of hyperstructures.

In future we intend to extend these results also in other classes of hyperrings, in-
vestigating their similarities/differences with the classical results obtained for commutative
rings.
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