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TRAVELLING WAVES AND SHAPIRO STEPS IN A TUMOR-
GROWTH MODEL

Decebal VASINCU', Cilin Gheorghe BUZEA?, Maricel AGOP?, Daniel
TIMOFTE"*

In a simplified approach of Ivancevic cancer growth phzsical model, we
show that important features appear. A numerical analysis of this model is
performed, involving travelling wave solutions for some choices of parameters.
Moreover, a reduced travelling wave equations system results which exhibits an
amplitude dependence on the “pseudo-period”, indicating a strong nonlinearity and
an characteristic increase in Shapiro steps.
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1. Introduction

Distinct from simple genetic diseases where an inherited mutation in a
single gene is sufficient to determine the pathological phenotype, cancer, among
pathogenetic diseases, has the most complex mechanism where typically
numerous mutations are present. Current medical theory views the pathology of
cancer as an example of a complex adaptive system whose behavior expresses the
interplay between order and chaos. With some cancers, tumorigenesis is driven by
chaotic behavior, while other cancers show more order in their formation.
Accompanying the transformation from normal to neoplastic tissue is an overall
decrease in the complexity of the cell [1-5].

Invasion methodology - tumor invasion and metastases is a complex,
dynamic, multi-step process [6,7]: 1) initial invasion of tumor through basement
membrane; ii) movement into connective tissue surrounding tumor cells; iii)
invasion of tumor cells into blood vessels; iv) circulating tumor cells are arrested
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in blood vessels of a distant organ or tissue; tumor cells invade organ from blood
vessels; v) tumor cells then grow within tissue to form a metastatic tumor that
may become clinically evident; vi) process of tumor invasion and metastases
results from alterations in cell-to-cell and cell-to-matrix adhesion and increased
matrix degradation. Extracellular matrix degradation - Several stages during the
process of tumor invasion and metastases require increased degradation or
breakdown of extracellular matrix or connective tissue surrounding tumor cells.
The extracellular matrix is a complex mixture of proteins including different types
of collagen, elastin, fibronectin, and laminin. Digestion of extracellular matrix is
carried out by several groups of proteolytic enzymes [8]. Cell adhesion - Tumor
invasion and metastasis is also characterized by alterations in both cell-to-cell and
cell-to-matrix adhesion. Cellular adhesion both to adjacent cells and surrounding
extracellular matrix is mediated by a variety of molecules. Angiogenesis - New
blood vessel formation (angiogenesis) is an important factor for continued growth
and development of both malignant tumors and metastases. Development of new
blood vessels in tumors is stimulated by a wide variety of angiogenic factors
produced by both tumor cells and stromal cells. In addition, several naturally
occurring antiangiogenic factors have been identified, most notably angiostatin
and endostatin. Formation of metastases in specific tissues - Some tissues and
organs are more susceptible to the formation of metastases (e.g. liver, lung, and
bone), whereas metastases are relatively uncommon in other tissues (e.g. kidney
and heart). Several factors have been proposed to explain the formation of
metastases in particular tissues including the expression of specific cell adhesion
molecules in vascular endothelium of particular organs that are able to arrest
circulating tumor cells. Another feature of metastases is the phenomenon of
dormancy or latency of metastatic tumors such that many years can elapse
between the diagnosis and the apparent curative treatment of the primary tumor
and the clinical appearance of metastatic tumors. Dormancy appears to occur
when growth of the metastatic tumor is balanced by an equivalent or even higher
rate of tumor cell death by apoptosis.

The process of invasion of tissue by cancer cells is crucial for metastasis
(the formation of secondary tumors) which is the main cause of mortality in
patients with cancer. In the invasion process itself, adhesion, both cell-cell and
cell-matrix, plays an extremely important role.

The main aims of this paper are (i) to lay the foundation for developing a
new quantitative/qualitative theoretical model of tumor invasion; (ii) to
mathematically investigate the importance of ECM - matrix degradative enzymes
- tumor interactions in governing the migration of tumor cells [1,2]. Consequently,
we propose a simplified approach of the Ivancevic cancer growth model [9]. A
numerical analysis of this model is performed using computational routines for
solving non-linear PDEs in Wolfram Mathematica. These results first indicate that
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the model might exhibit travelling wave solutions for some choices of parameters
and then it is indisputably demonstrated numerically, in a subsequent section.
Finally, a reduced system of equations obtained from the above model provides
some remarkable features.

2. Numerical Analysis of the Cancer Evolution Model

We propose the following normalized one-dimensional nonlinear system
of PDEs to depict tumor progression, (Ivancevic cancer growth model [9] with
constant tumor cell density):
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It is focused on three key variables involved in tumor cell invasion,
namely MM (complex mixture of macromolecules — the extracellular material)
concentration (denoted by f), MDE (matrix-degradative enzymes) concentration
(denoted by m), and oxygen concentration (denoted by c). Each of the three
variables (f, m, c) is a function of the spatial variable x and time ¢. Here k, = an,

ky=v, ky,=0¢ where a, y, 6, ¢ Vv, n represents tumor cell volume

(proliferation/non-proliferation fraction), number of tumor cells, diffusion from
the surface (saturation level), natural decay of oxygen, production of oxygen by
MM, degradation of MM by MDE, respectively, d,, is the diffusion of MDE and
d. the diffusion of oxygen [9]. All these are non-dimensional parameters. Note,
that even if the cell density is being modelled as a constant in Ivancevic’s model,
it is reintroduced into the dynamics via the cell number, y [9]. This is a system of
three diffusion equations with nonlinear source terms and is considered to hold on
some spatial domain © (a region of tissue) with appropriate initial conditions for
each variable. We assume that the oxygen and MDEs remain within the domain of
tissue under consideration and therefore no-flux boundary conditions are imposed
on 0Q, the boundary of Q.

We assume the initial MDE concentration profile is proportional to the
initial tumor cell density by taking m(x,0) = exp(-&x’) ,where & is a positive
constant, the surrounding tissue was totally degraded by the tumor and the oxygen
is not present (f{x, 0) = 0, c(x, 0) = 0). Also we impose periodic boundary
conditions for the matrix degradative enzymes (the plasminogen activator (PA)
system and the large family of matrix metalloproteinases (MMPs) that have been
repeatedly implicated in all of the steps of tumor invasion and metastasis)
m(x,;,,t) =m(x,,.t). The following numerical results were obtained using

computational routines for solving non-linear PDEs in Wolfram Mathematica. In

min ?
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the next simulations, the parameter values used are as follows: k; = 0.3, d,, =
0.0005, y =26.5,d.=0.5, k3=0.5, k,= 1 and ¢= 10 (see the relationships with
the constant parameters that described the system in the cancer growth model [10]
and Ivancevic’s model [9]. We show in Figs. 1a-c the dependence of the fields f,
m and c¢ on the space coordinate x and time coordinate ¢, in surface plot
representations. Furthermore, Figs. 2a-c show the same above mentioned fields
dependence on the coordinate x, this time for discrete values of ¢ = 10, 15, 20, 25,
30.

¢)
Figs. 1. 3D plot of the solution of (1a-c) for a) MM concentration f{x,?) b) MDE concentration
m(x,t) and ¢) oxygen concentration c(x,?).
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Figs. 2. Plot of the solution of (1a-c) for a) MM concentration f{x,z) b) MDE concentration m(x,?)
and c¢) oxygen concentration c(x,?) for different values of time (¢ = 10-30), clearly showing the
presence of a traveling wave.

The followings result: i) both fields f(x, #) and m(x, ¢) present similar
dependence on coordinates x and ¢ — it is normal since there is a direct relationship
between f, that represents the MM concentration and m , the MDE concentration —
the later acts upon the former by degrading it; ii) since the fields f{x, ¢) and m(x, ?)
“bifurcate” (like in the case of Ivancevic’s model [9]), it reinforces the fact that
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tumors are composed of two states (i.e. proliferating (P) and quiescent (or non-
proliferating) (Q) cells - tumor cells, pendulating from class P to class O, as some
parameters vary, possibly when tumor grows, or proliferation/non-proliferation
fraction « (a.k.a. parameter k;), changes); iii) exhibits travelling wave solutions,
i.e. a malignant invasion of ECM by tumor released MDE occurs, for some choice
of parameters.

Furthermore, if we drastically decrease the values of &k, and &, (i.e. the
diffusion from the surface, 6 and the number of tumor cells,y) in equation (la, c)
we can see that for a reduced k; (i.e. proliferation/non-proliferation factor, «) a
bifurcation occurs in the f{x, ¢) field (see Fig. 3).

fix.t)

Time t ) Distance x .
Distance x

mix ) mix )

1)

Time t ; Distance x R

Distance x

. et el

a

Time t ) Distance x

Distance x

Fig. 3. Density plot of the solution of (1a-c) for a) MM concentration f{x,#) b) MDE concentration
m(x,t) and c¢) oxygen concentration c(x,?) for low gamma and delta, and decreased value of k;
(proliferating/non-proliferating factor) shows a bifurcation occurrence in the evolution of f{x,?).

3. Travelling wave analysis of the cancer evolution model

The numerical simulations of the previous section indicate that the system
of equations (la-c) exhibits travelling wave solutions for some choice of
parameters. Two of the main approaches for establishing travelling-wave
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solutions for systems of PDEs are: (a) the geometric treatment of an appropriate
phase space, where one essentially is interested in intersections between unstable
and stable manifolds and (b) the Leray—Schauder (degree-theoretic) method,
which employs homotopy techniques (see e.g. [11,12]). From a numerical analysis
point of view, the former approach is used either in conjunction with a shooting
method over a truncated domain or by trying to identify a “trivial” heteroclinic
connection for some choice of parameters and then follow its deformation as the
parameters are changing using numerical continuation.

In all cases the main purpose is to establish the existence of a travelling-
wave solution without any available information concerning its nature. Our
approach, however, is going to be “computer-assisted” in the sense that we are
going to make use of the information that the numerics of the previous section can
provide us.

Since we are interested in waves travelling from the left part of the domain
to the right, we specify a traveling coordinate = x — ¢¢, where ¢ > 0 and we let:
F(¢)= f(x,0), M(¢)=m(x,1), C(¢)=c(x,f). We note that we assign the same

wave velocity ¢ to each variable, as suggested by the numerical simulations. By
substituting F, M and C into the system of equations la-c we get the travelling
wave system of equations:

2
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Our intention is to profit from the phase-space methods and thus we
formulate the system of equations (2a-c) as a dynamical system in % °. In
particular, by defining the new variables M, =dM /d{, C,=dC/d{ the system

of equations (2a-c) can be formulated as:
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Since the wave velocity ¢ is unknown, system (3) can be regarded as a
nonlinear eigenvalue problem. Several analytical methods have been developed
for estimating ¢ in this framework [13]. However, the numerical solutions of
equations (la-c) readily yield a value of ¢~ 240. In the analysis that follows, we
therefore use this numerical estimate for ¢ to fix the wave speed at the constant
(normalized) value of 240 and hence take ¢ as a fixed parameter.

The steady states of system (3) can be found by solving the (nonlinear)
equation f(X) = 0. For the purposes of the travelling-wave analysis, the numerical
simulations of the previous section indicate that we should identify a heteroclinic
connection between x* and x' (the trivial solution), where (substituting the values
of the constants k; - k, from the previous section):

0
P AT 0 0
ky i\/ﬁ 0
X = 0 S x'=| 0 (4a,b)
k,—1 255 0
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We are interested in the existence of an orbit X.on(4) of (3) that satisfies:

glim X, (&) = x* and }im X, (&) = X! (5a,b)
We consider the linearizations

X _ Df(x*)x and X _ Df (x")x (6a,b)

d¢ d¢

of the vector field f at equilibria x* and X', respectively. It is a straightforward
task to determine the spectrum of the Jacobian matrices Df(xio) and Df(xl ).
Indeed, there are three real and two complex conjugate eigenvalues of Df(x”) (we
kept only the positive of the two x* steady states, since we got the same
eigenvalues for both Df(x™)), among the real ones, one is positive and two
negative, with the positive eigenvalue implying the existence of a three-
dimensional wunstable manifold W*(x"). Furthermore, there are five real
eigenvalues of Df(x’), two positive and three negative, with the negative ones
implying the existence of a three-dimensional stable manifold W*(x’). We note
that

dim(7* (x°))+ dim(* (x' )= dim %° +1 (7)



Travelling waves and shapiro steps in a tumor-growth model 217

Equation (7) suggests that W*x”) and W'x') probably intersect
transversally along a one-dimensional curve in the five-dimensional phase-space
[14,15]. If this is the case then this curve would define a (generic) heteroclinic
connection.

Now, if from (2a) we separate M to get

M=r-2% (®)
k, dg

we reduce the system of equations (2a-c) to
3 2 2
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The numerical results were obtained using computational routines for
solving non-linear PDEs in Wolfram Mathematica.

Fig. 4a shows the dependence of the field F' (the MM concentration) on the
travelling coordinate £ It can be seen an overall increase of F' with the increase of
¢ and moreover, an increase of the amplitude of F with the decrease of the
“pseudo-period” of £. The amplitude dependence of the “pseudo-period” indicates
that we deal with a strongly nonlinear system, characteized by by multiple stable
and/or unstable states, similar with [16].

In Fig. 4b we show the dependence of the field C (oxygen concentration)
on the coordinate ¢ It results an increase of C with the increase of ¢ and

moreover, an interesting increase in Shapiro steps can be detected in the dynamics
of this field.
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Figs. 4. Plot of the solution (9a,b) for a) MM concentration F({) and b) oxygen concentration C(4).
Note the Shapiro steps occurring in the oxygen concentration dependence on the travelling
coordinate ¢
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The dependences illustrated in Figs.4 are useful in practical applications
because they offer important information in controlling the tumor grows dynamics
or in chaos inhibition [17]. Moreover, the identification of the critical parameter
for a specific dynamics is an important step in the construction of the
characteristic time-series for further proccesing and data analysis using new
methods of investigation, as those in [18,19].

4. Conclusions

We introduce a simplified approach of Ivancevic cancer growth model
with constant tumor cell density which includes some interesting features.

From the numerical analysis performed on the newly introduced model the
followings results can be detailed. First, both fields f{x, #) and m(x, ?) present
similar dependence on coordinates x and ¢ Second, since the fields f{x, #) and m(x,
t) “bifurcate”, it may be reinforced the fact that tumors are composed of a
proliferating (P) and a quiescent (or non-proliferating) (Q) state, pendulating from
class P to class O, as some parameters vary. Third, the solutions exhibit travelling
wave behaviors, for some choice of parameters. Moreover, if we drastically
decrease the values of &k, and k; (i.e. the diffusion from the surface, ¢ and the
number of tumor cells, ») in equation (la,c) we can see that for a reduced 4, (i.e.
proliferation/non-proliferation factor, &) a bifurcation occurs in the f(x, ¢ field
(Fig. 3). A travelling wave analysis of the new cancer growth model established
the existence of a travelling-wave solution without any available information
concerning its nature.

Furthermore, after working out a reduced travelling wave equations
system (9a,b), from (2a-c), an amplitude dependence of the “pseudo-period”
indicating a strongly nonlinear system and an interesting increase in Shapiro steps
(appearing in voltage-current characteristics ac-driven Josephson junctions,
superconducting nanowires etc.) can be detected in the dynamics.

In order to develop theoretical models we must admit that the biological
system that displays chaotic behaviour are recognized to acquire self-similarity
(space-time structures seem to appear) in association with strong fluctuations at all
possible space-time scales. Then, for temporal scales that are large with respect to
the inverse of the highest Lyapunov exponent, the deterministic trajectories are
replaced by a collection of potential trajectories and the concept of definite
positions by that of probability density. Therefore a complete analysis could
implies the non-differentiable formalism of the scale relativity theory [20,21] as in
[22].
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