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1. Introduction

Let G be a compact and Hausdorff group on which the left (and right)
Haar measure is denoted by µ. Let ξ be an irreducible and unitary represen-
tation of G on a complex and separable Hilbert space Xξ. Since G is compact,
it is well known that Xξ is finite-dimensional. We let dξ be the dimension of
Xξ. The number dξ is also known as the degree of the representation ξ of G

on Xξ. Let Ĝ be the set of all (equivalent classes) of irreducible and unitary
representations of G, which is usually referred to as the dual group of G.
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Let f ∈ Lp(G), p ≥ 1. Then we define the Fourier transform f̂ , also
denoted by FGf , of f by

f̂(ξ) =

∫
G

f(x)ξ(x)∗dx, ξ ∈ Ĝ.

It is also well known that the Fourier inversion formula states that for a good
class of functions in Lp(G), p ≥ 1,

f(x) =
∑
ξ∈Ĝ

dξtr(ξ(x)f̂(ξ)), x ∈ G.

The Fourier inversion formula can be looked at as a formula for the identity
operator on Lp(G), p ≥ 1, and as such, is a perfect symmetry that gives us the
identity operator on a suitable class of functions on G.

Good referenced for abstract harmonic analysis abound. See, for in-
stance, [12], [10] and [4] for abstract harmonic analysis in general and group
representations, dual group and the Fourier inversion formula in particular.

In order to obtain more interesting operators than the identity operator,
we need to break the symmetry using symbols σ defined on the phase space
G × Ĝ. To wit, let σ be a suitable function defined on G × Ĝ. Then for
every point (x, ξ) ∈ G× Ĝ, σ(x, ξ) is a dξ × dξ matrix. We define the pseudo-
differential operator Tσ on G with symbol σ by

(Tσf)(x) =
∑
ξ∈Ĝ

dξtr(ξ(x)σ(x, ξ)f̂(ξ)), x ∈ G.

The aim of this paper is to give characterizations of nuclear pseudo-
differential operators on compact and Hausdorff groups with applications to
products and adjoints of nuclear pseudo-differential operators on these topo-
logical groups, thus extending the results in [6] from the unit circle at the
origin to compact and Hausdorff groups.

In Section 2 of the paper, we recall the definitions and properties of
nuclear operators on Banach spaces as generalizations of trace class operators
on Hilbert spaces [3, 8, 9]. In Section 2 we give characterizations of nuclear
pseudo-differential operators on compact and Hausdorff groups. Adjoints and
products of nuclear pseudo-differential operators on compact and Hausdorff
groups are given in, respectively, Section 3 and Section 4. Of particular note
is that we can give explicit formulas for the adjoints in terms of the symbols,
thus improving the corresponding results for S1 in [6].

While the focus of this paper is on exact formulas, we end this section
by mentioning a related paper [5] on compact Lie groups giving sufficient
conditions on the symbols to insure the desired mapping properties of the
corresponding pseudo-differential operators. A point worth emphasizing is that
the results in this paper are true for compact and Hausdorff groups instead of
compact Lie groups. A recent paper [11] is devoted to the study of trace class
pseudo-differential operators on compact and Hausdorff groups.
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2. Nuclear Pseudo-Differential Operators on Lp(G)

We first recall the basic notions of nuclear operators on Banach spaces.
Let T be a bounded linear operator from a complex Banach space X into
another complex Banach space Y such that there exist sequences {x′

n}∞n=1 in
the dual space X ′ of X and {yn}∞n=1 in Y such that

∞∑
n=1

∥x′
n∥X′∥yn∥Y < ∞

and

Tx =
∞∑
n=1

x′
n(x)yn, x ∈ X.

Then we call T : X → Y a nuclear operator and if X = Y , then its trace tr(T )
is defined by

tr(T ) =
∞∑
n=1

x′
n(yn).

It can be proved that the definition of a nuclear operator and the definition of
the trace of a nuclear operator are independent of the choices of the sequences
{x′

n}∞n=1 and {yn}∞n=1. A good reference is the book [7].
The main tool that we use is the following result in [1, 2, 3].

Theorem 2.1. Let (X1, µ1) and (X2, µ2) be σ-finite measure spaces. Then a
bounded linear operator T : Lp1(X1, µ1) → Lp2(X2, µ2), 1 ≤ p1, p2 < ∞, is
nuclear if and only if there exist sequences {gn}∞n=1 in Lp′1(X1, µ1) and {hn}∞n=1

in Lp2(X2, µ2) such that for all f ∈ Lp1(X1, µ1),

(Tf)(x) =

∫
X1

K(x, y)f(y) dµ1(y), x ∈ X2,

where

K(x, y) =
∞∑
n=1

hn(x)gn(y), x ∈ X2, y ∈ X1,

and
∞∑
n=1

∥gn∥Lp′1 (X1,µ1)
∥hn∥Lp2 (X2,µ2) < ∞.

The function K on X2 × X1 in Theorem 2.1 is called the kernel of the
nuclear operator T : Lp1(X1, µ1) → Lp2(X2, µ2).

Let (X,µ) be a σ-finite measure space. Let T : Lp(X,µ) → Lp(X,µ),
1 ≤ p < ∞, be a nuclear operator. Then by Theorem 2.1, we can find sequences
{gn}∞n=1 in Lp′(X,µ) and {hn}∞n=1 in Lp(X,µ) such that

∞∑
n=1

∥gn∥Lp′ (X,µ)∥hn∥Lp(X,µ) < ∞
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and for all f ∈ Lp(X,µ),

(Tf)(x) =

∫
X

K(x, y)f(y) dµ(y), x ∈ X,

where

K(x, y) =
∞∑
n=1

hn(x)gn(y), x, y ∈ X.

The trace tr(T ) of T : Lp(X,µ) → Lp(X,µ) is given by

tr(T ) =

∫
X

K(x, x) dµ(x). (1)

We can now give a characterization of nuclear pseudo-differential opera-
tors from Lp1(G) into Lp2(G), where G is a compact and Hausdorff group.

Theorem 2.2. Let σ be a function on G×Ĝ, where G is a compact and Haus-
dorff group. Then the pseudo-differential operator Tσ : Lp1(G) → Lp2(G), 1 ≤
p1, p2 < ∞, is nuclear if and only if there exist sequences {gk}∞k=1 ∈ Lp′1(G)
and {hk}∞k=1 ∈ Lp2(G) such that

∞∑
k=1

∥gk∥Lp′1 (G)
∥hk∥Lp2 (G) < ∞

and

σ(x, ξ) = ξ(x)∗
∞∑
k=1

hk(x)ĝk(ξ)
∗, (x, ξ) ∈ G× Ĝ.

Proof. Suppose that Tσ : Lp1(G) → Lp2(G) is nuclear, where 1 ≤ p1, p2 < ∞.
Then by Theorem 2.1, there exist sequences {gk}∞k=1 in Lp′1(G) and {hk}∞k=1 in
Lp2(G) such that

∞∑
k=1

∥hk∥Lp2 (G)∥gk∥Lp′1 (G)
< ∞

and for all f ∈ Lp1(G),

(Tσf)(x) =
∑
η∈Ĝ

dη∑
i,j=1

dη(η(x)σ(x, η))ij f̂(η)ji

=

∫
G

∑
η∈Ĝ

dη∑
i,j=1

dη((η(x)σ(x, η))ijη(y)ijf(y) dµ(y)

=

∫
G

(
∞∑
k=1

hk(x)gk(y)

)
f(y) dµ(y) (2)
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for all x ∈ G. Let ξ be a fixed but arbitrary element in Ĝ. Then for 1 ≤
m,n ≤ dξ, we define the function f on G by

f(y) = ξ(y)nm, y ∈ G.

Since ∫
G

ξ(y)nmη(y)ijdµ(y) =
1

dξ

if and only if ξ = η and n = i and m = j, and is zero otherwise, it follows from
(2) that

(ξ(x)σ(x, ξ))nm =
∞∑
k=1

hk(x)(ĝk(ξ))mn, (x, ξ) ∈ G× Ĝ.

Thus,

σ(x, ξ) = ξ(x)∗
∞∑
k=1

hk(x)ĝk(ξ)
∗, (x, ξ) ∈ G× Ĝ.

Conversely, suppose that there exist sequences {gk}∞k=1 in Lp′1(G) and {hk}∞k=1

in Lp2(G) such that

∞∑
k=1

∥hk∥Lp2 (G)∥gk∥Lp′1 (G)
< ∞

and

σ(x, ξ) = ξ(x)∗
∞∑
k=1

hk(x)ĝk(ξ)
∗, (x, ξ) ∈ G× Ĝ.

Then for all f ∈ Lp1(G),

(Tσf)(x) =
∑
ξ∈Ĝ

dξtr(ξ(x)σ(x, ξ)f̂(ξ))

=
∑
ξ∈Ĝ

dξ∑
n,m=1

dξ

∞∑
k=1

hk(x)ĝk(ξ)
∗
nmf̂(ξ)mn

=
∑
ξ∈Ĝ

dξ∑
n,m=1

dξ

∞∑
k=1

hk(x)ĝk(ξ)mnf̂(ξ)mn
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for all x ∈ G. Using the Fourier transform of f , we obtain for all f ∈ Lp1(G),

(Tσf)(x) =

∫
G

∑
ξ∈Ĝ

dξ∑
n,m=1

dξξ(y)nmf̂(ξ)mn

∞∑
k=1

hk(x)gk(y) dµ(y)

=

∫
G

∑
ξ∈Ĝ

dξtr(ξ(y)f̂(ξ))
∞∑
k=1

hk(x)gk(y) dµ(y)

=

∫
G

(
∞∑
k=1

hk(x)gk(y)

)
f(y) dµ(y)

for all x in G. Therefore by Theorem 2.1, Tσ : Lp1(G) → Lp2(G) is nuclear. �

The following theorem is another characterization of nuclear pseudo-
differential operators from Lp1(G) into Lp2(G), where G is a compact and
Hausdorff group. In the proof given below, we use the fact that a compact and
Hausdorff group is unimodular and hence the left Haar measure and the right
Haar measure coincide. See [13].

Theorem 2.3. Let σ be a function on G × Ĝ, where G is a compact and
Hausdorff group. Then the pseudo-differential operator Tσ : Lp1(G) → Lp2(G)
is a nuclear operator for 1 ≤ p1, p2 < ∞ if and only if there exist sequences
{gk}∞k=1 in Lp′1(G) and {hk}∞k=1 in Lp2(G) such that

∞∑
k=1

∥hk∥Lp2 (G)∥gk∥Lp′1 (G)
< ∞

and for all x and y in G,∑
ξ∈G

dξtr(ξ(x)σ(x, ξ)ξ(y)
∗) =

∞∑
k=1

hk(x)gk(y).

Proof. Suppose that Tσ : Lp1(G) → Lp2(G) is a nuclear operator. Then by
Theorem 2.2, there exist sequences {gk}∞k=1 in Lp′1(G) and {hk}∞k=1 in Lp2(G)
such that

∞∑
k=1

∥hk∥Lp2 (G)∥gk∥Lp′1 (G)
< ∞

and

(ξ(x)σ(x, ξ))nm =
∞∑
k=1

hk(x)(ĝk(ξ))mn, (x, ξ) ∈ G× Ĝ,

for all n and m with 1 ≤ n,m ≤ dξ. Let y ∈ G. Then

(ξ(x)σ(x, ξ))nmξ(y)nm =

∫
G

ξ(z)nmξ(y)nm

∞∑
k=1

hk(x)gk(z) dµ(z)
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and hence

dξ∑
n,m=1

dξ(ξ(x)σ(x, ξ))nmξ(y)nm

=

∫
G

dξ∑
n,m=1

dξξ(z)nmξ(y)nm

∞∑
k=1

hk(x)gk(z) dµ(z), (x, ξ) ∈ G× Ĝ.

So, for all x and y in G,

∑
ξ∈Ĝ

dξtr(ξ(x)σ(x, ξ)ξ(y)
∗) =

∫
G

∑
ξ∈Ĝ

dξtr(ξ(z)ξ(y)
∗)

∞∑
k=1

hk(x)gk(z) dµ(z).

Since ∑
ξ∈Ĝ

dξtr(ξ(z)ξ(y)
∗) =

∑
ξ∈Ĝ

dξtr(ξ(z · y−1)

= δ(z · y−1), z, y ∈ G,

where δ and · are, respectively, the Dirac delta and the binary operation on
the group G, it follows that

∑
ξ∈Ĝ

dξtr(ξ(x)σ(x, ξ)ξ(y)
∗) =

∫
G

δ(z · y−1)
∞∑
k=1

hk(x)gk(z) dµ(z)

=

∫
G

δ(w)
∞∑
k=1

hk(x)gk(w · y) dµ(w)

=
∞∑
k=1

hk(x)gk(y)

for all x and y in G. Conversely, let {gk}∞k=1 and {hk}∞k=1 be sequences in,
respectively, Lp′1(G) and Lp2(G) such that

∞∑
k=1

∥hk∥Lp2 (G)∥gk∥Lp′1 (G)
< ∞

and for all x and y in G,

∑
ξ∈Ĝ

dξtr(ξ(x)σ(x, ξ)ξ(y)
∗) =

∞∑
k=1

hk(x)gk(y).
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Then for all f ∈ Lp1(G),

(Tσf)(x) =
∑
ξ∈Ĝ

dξtr(ξ(x)σ(x, ξ)f̂(ξ))

=
∑
ξ∈Ĝ

dξ∑
m,n=1

dξ(ξ(x)σ(x, ξ))mnf̂(ξ)nm

=

∫
G

∑
ξ∈Ĝ

dξ∑
m,n=1

dξ(ξ(x)σ(x, ξ)mnξ(y)mnf(y) dµ(y)

=

∫
G

∑
ξ∈Ĝ

dξtr(ξ(x)σ(x, ξ)ξ(y)
∗)f(y) dµ(y)

=

∫
G

(
∞∑
k=1

hk(x)gk(y)

)
f(y) dµ(y)

for all x ∈ G. This completes the proof. �

Theorem 2.3 gives the trace of a nuclear pseudo-differential operator from
Lp(G) for 1 ≤ p < ∞. Indeed, we have the following well-known fact.

Corollary 2.4. Let Tσ : Lp(G) → Lp(G) be a nuclear operator for 1 ≤ p < ∞.
Then the trace tr(Tσ) of Tσ is given by

tr(Tσ) =

∫
G

∑
ξ∈Ĝ

dξtr(σ(x, ξ)) dµ(x).

Proof. By the trace formula (1) and Theorem 2.3,

tr(Tσ) =

∫
G

∞∑
k=1

hk(x)gk(x) dµ(x)

=

∫
G

∑
ξ∈Ĝ

dξtr(ξ(x)σ(x, ξ)ξ(x)
∗) dµ(x)

So,

tr(Tσ) =

∫
G

∑
ξ∈Ĝ

dξtr(ξ(x)ξ(x)
−1σ(x, ξ)) dµ(x)

=

∫
G

∑
ξ∈Ĝ

dξtr(σ(x, ξ)) dµ(x).

�
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3. Adjoints

We give in this section a formula for the symbols of the adjoints of nuclear
pseudo-differential operators from Lp1(G) into Lp2(G) for 1 ≤ p1, p2 < ∞,
where G is a compact and Hausdorff group.

Theorem 3.1. Let σ be a function on G× Ĝ such that Tσ : Lp1(G) → Lp2(G)
is a nuclear operator for 1 ≤ p1, p2 < ∞. Then the adjoint T ∗

σ of Tσ is a
nuclear operator from Lp′2(G) into Lp′1(G) with symbol τ given by

τ(x, ξ) = ξ(x)∗
∞∑
k=1

ĥk(ξ)
∗gk(x), (x, ξ) ∈ G× Ĝ.

Proof. Let f ∈ Lp1(G) and g ∈ Lp′2(G). Then∫
G

(Tσf)(x)g(x) dµ(x) =

∫
G

f(x)(T ∗
σg)(x)dµ(x).

So, ∫
G

∫
G

∑
ξ∈Ĝ

dξ∑
i,j=1

dξ(ξ(x)σ(x, ξ))ijξ(y)ijf(y) dµ(y)

 g(x) dµ(x)

=

∫
G

f(x)

∫
G

∑
ξ∈Ĝ

dξ∑
i,j=1

dξ(ξ(x)τ(x, ξ))ijξ(y)ijg(y) dµ(y)

 dµ(x).

(1)

Now, let γ and η be elements in Ĝ. Then for 1 ≤ t,m ≤ dγ and 1 ≤ n, l ≤ dη,
we let f and g be functions on G be defined by

f(x) = γ(x)tm, x ∈ G,

and

g(x) = η(x)nl, x ∈ G.

Therefore by (1),∫
G

(γ(x)σ(x, γ))tmη(x)nldµ(x) =

∫
G

γ(x)tm(η(x)τ(x, η))nldµ(x)

and we get∫
G

(γ(x)σ(x, γ))tmη(x)nldµ(x) =

∫
G

(η(x)τ(x, η))nlγ(x)tmdµ(x).

Thus,

((γ(·)σ(·, γ))tm)∧(η)ln = ((η(·)τ(·, η))nl)∧(γ)mt (2)
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for 1 ≤ t,m ≤ dγ, 1 ≤ n, l ≤ dη and all γ and η in Ĝ. Since Tσ is a nuclear
operator, it follows that there exist sequences {gk}∞k=1 in Lp′1(G) and {hk}∞k=1

in Lp2(G) such that

∞∑
k=1

∥hk∥Lp2 (G)∥gk∥Lp′1 (G)
< ∞

and for all (y, γ) in G× Ĝ,

(γ(y)σ(y, γ))tm =
∞∑
k=1

hk(y)(ĝk(γ))mt, 1 ≤ m, t ≤ dγ.

So, for all (x, η) ∈ G× Ĝ,

((η(x)τ(x, η))nl =
∑
γ∈Ĝ

dγtr[γ(x)((η(·)τ(·, η))nl)∧(γ)]

=
∑
γ∈Ĝ

dγ∑
t,m=1

dγγ(x)tm(((η(·)τ(·, η))nl)∧(γ))mt

Hence for all (x, η) ∈ G× Ĝ, we get by (2)

((η(x)τ(x, η)))nl =
∑
γ∈Ĝ

dγ∑
t,m=1

dγγ(x)tm(((γ(·)σ(·, γ))tm)∧(η))ln.

=
∑
γ∈Ĝ

dγ∑
m,t=1

dγγ(x)tm

∫
G

((γ(y)σ(y, γ))tm)η(y)nldµ(y)

=
∑
γ∈Ĝ

dγ∑
m,t=1

dγγ(x)tm

∫
G

∞∑
k=1

(hk(y)(ĝk(γ))mtη(y)nldµ(y)

=
∞∑
k=1

ĥk(η)ln
∑
γ∈Ĝ

dγtr(γ(x)ĝk(γ))

=
∞∑
k=1

ĥk(η)lngk(x)

=
∞∑
k=1

ĥk(η)
∗
nlgk(x)

for 1 ≤ n, l ≤ dη. Thus, for all (x, η) ∈ G× Ĝ, we get

η(x)τ(x, η) =
∞∑
k=1

ĥk(η)
∗gk(x)
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and hence

τ(x, η) = η(x)∗
∞∑
k=1

ĥk(η)
∗gk(x).

�
As an application of Theorem 2.2 and Theorem 3.1, we give a criterion

for the self-adjointness of nuclear pseudo-differential operators.

Corollary 3.2. Let σ be a function on G× Ĝ such that Tσ : L2(G) → L2(G)
is nuclear. Then Tσ : L2(G) → L2(G) is self-adjoint if and only if there exist
sequences {gk}∞k=1 and {hk}∞k=1 in L2(G) such that

∞∑
k=1

∥hk∥L2(G)∥gk∥L2(G) < ∞,

∞∑
k=1

hk(x)ĝk(ξ)
∗ =

∞∑
k=1

ĥk(ξ)
∗gk(x), (x, ξ) ∈ G× Ĝ,

and

σ(x, ξ) = ξ(x)∗
∞∑
k=1

hk(x)ĝk(ξ)
∗, (x, ξ) ∈ G× Ĝ.

We can give another formula for the adjoints of nuclear operators and
another criterion for the self-adjointness of nuclear operators in terms of sym-
bols.

Theorem 3.2. Let σ be a function on G× Ĝ such that Tσ : Lp1(G) → Lp2(G)
is nuclear for 1 ≤ p1, p2 < ∞. Then the symbol τ of the adjoint T ∗

σ : Lp′2(G) →
Lp′1(G) is given by

τ(x, ξ) = ξ(x)∗
∑
η∈Ĝ

dη

∫
G

tr[(η(y)σ(y, η))∗η(x)]ξ(y) dµ(y),

which is the same as

τ(x, ξ) = ξ(x)∗
∑
η∈Ĝ

dηtr(σ(·, η)∗η(·)∗η(x))
∧
(ξ)

for all (x, ξ) ∈ G× Ĝ.

Proof. Let Tσ : Lp1(G) → Lp2(G) be a nuclear operator for 1 ≤ p1, p2 < ∞.
Then there exist sequences {gk}∞k=1 in Lp′1(G) and {hk}∞k=1 in Lp2(G) such that

∞∑
k=1

∥hk∥Lp2 (G)∥gk∥Lp′1 (G)
< ∞

and for all (y, η) ∈ G× Ĝ,

η(y)σ(y, η) =
∞∑
k=1

hk(y)ĝk(η)
∗
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or equivalently

(η(y)σ(y, η))∗ =
∞∑
k=1

hk(y)ĝk(η).

Let (x, ξ) ∈ G× Ĝ. Then

tr[(η(y)σ(y, η))∗η(x)]ξ(y) =
∞∑
k=1

hk(y)ξ(y)tr[ĝk(η)η(x)].

So, for all (x, ξ) ∈ G× Ĝ,∫
G

tr[(η(y)σ(y, η))∗η(x)]ξ(y) dµ(y) =
∞∑
k=1

tr[ĝk(η)η(x)]

∫
G

hk(y)ξ(y) dµ(y)

=
∞∑
k=1

ĥk(ξ)
∗tr[ĝk(η)η(x)].

Therefore by Theorem 3.1,∑
η∈Ĝ

dη

∫
G

tr[(η(y)σ(y, η))∗η(x)]ξ(y) dµ(y)

=
∞∑
k=1

ĥk(ξ)
∗
∑
η∈Ĝ

dηtr[ĝk(η)η(x)]

=
∞∑
k=1

ĥk(ξ)
∗gk(x)

= ξ(x)τ(x, ξ)

for all (x, ξ) ∈ G× Ĝ. �
We can also give another criterion for the self-adjointness of nuclear

pseudo-differential operators on compact and Hausdorff groups.

Corollary 3.4. Let σ be a function on G×Ĝ be such that Tσ : L2(G) → L2(G)
is a nuclear pseudo-differential operator. Then Tσ : L2(G) → L2(G) is self-
adjoint if and only if

σ(x, ξ) = ξ(x)∗
∑
η∈Ĝ

dη((tr(σ(·, η)∗η(·)∗η(x)))
∧
(ξ)

for all (x, ξ) ∈ G× Ĝ.

4. Products

The following theorem shows that the product of two nuclear pseudo-
differential operators on Lp(G) is a nuclear pseudo-differential operator on
Lp(G) for 1 ≤ p < ∞.



Pseudo-Differential Operators on Compact and Hausdorff Groups 219

Theorem 4.1. Let Tσ : Lp(G) → Lp(G) be a nuclear pseudo-differential oper-
ator, i.e., there exist by Theorem 2.2 sequences {gk}∞k=1 in Lp′(G) and {hk}∞k=1

in Lp(G) such that
∞∑
k=1

∥hk∥Lp(G)∥gk∥Lp′ (G) < ∞

and

σ(x, ξ) = ξ(x)∗
∞∑
k=1

hk(x)ĝk(ξ)
∗, (x, ξ) ∈ G× Ĝ.

Let Tτ : Lp(G) → Lp(G) be a bounded linear operator. Then TτTσ : Lp(G) →
Lp(G) is a nuclear pseudo-differential operator Tλ : Lp(G) → Lp(G), where

λ(x, ξ) = ξ(x)∗
∞∑
k=1

h′
k(x)ĝk(ξ)

∗

for all (x, ξ) ∈ G× Ĝ, where

h′
k(x) =

∑
η∈Ĝ

tr[η(x)τ(x, η)ĥk(η)], x ∈ G,

for all positive integers k.

Proof. Let f ∈ Lp(G). Then

(TτTσf)(x)

=
∑
η∈Ĝ

dηtr[η(x)τ(x, η)T̂σf(η)]

=
∑
η∈Ĝ

dηtr

η(x)τ(x, η)∫
G

∑
ξ∈Ĝ

dξtr(ξ(y)σ(y, ξ)f̂(ξ)η(y)
∗ dµ(y)


for all x ∈ G. Therefore using the nuclearity of Tσ,

(TτTσf)(x)

=
∑
η∈Ĝ

dηtr

η(x)τ(x, η)∫
G

∑
ξ∈Ĝ

dξtr

(
∞∑
k=1

hk(y)ĝk(ξ)
∗f̂(ξ)

)
η(y)∗ dµ(y)


=

∑
η∈Ĝ

dηtr

η(x)τ(x, η)∑
ξ∈Ĝ

∞∑
k=1

ĥk(η)dξtr(ĝk(ξ)
∗f̂(ξ))


=

∑
ξ∈Ĝ

∞∑
k=1

∑
η∈Ĝ

dξdηtr[η(x)τ(x, η)ĥk(η)]tr(ĝk(ξ)
∗f̂(ξ))

=
∑
ξ∈Ĝ

dξtr(ξ(x)λ(x, ξ)f̂(ξ)), x ∈ G,
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where

λ(x, ξ) = ξ(x)∗
∞∑
k=1

∑
η∈Ĝ

dηtr[η(x)τ(x, η)ĥk(η)]ĝk(ξ)
∗

= ξ(x)∗
∞∑
k=1

h′
k(x)ĝk(ξ)

∗

for all (x, ξ) ∈ G× Ĝ. This completes the proof. �
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[8] A. Grothendieck, Produits Tensoriels Toplogiques et Espaces Nucléaires, Memoirs
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