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EFFECTS OF DILUTION ON WELD OVERLAYS REALIZED 

WITH FLUX-CORED ARC WELDING (FCAW) PROCESS 

USING 309LV FILLER METAL ON THE S235JR STEEL  

Mihail M. BESLIU1, Ionelia VOICULESCU2, Gheorghe SOLOMON3 

The paper presents the dilution effects that appear in the weld overlays 

realized in horizontal and vertical uphill position, using flux-cored arc welding 

(FCAW) process. Two shielding gases (99,95% pure argon and 100% carbon 

dioxide) were used for welding and their influence on the microstructure has been 

studied. In order to evaluate the dilution effects the welded overlays were 

successively removed, each removed layer having 1 mm thickness, and then the 

chemical composition of the subsequent surfaces has been analyzed by 

spectrometry. Optical metalography was performed to reveal the microstructural 

features and imperfections generated by the shielding gazes. One can conclude 

that the use as shielding gas of 100% CO2 is not beneficial for 309LV stainless 

steel cladding on structural S235JR steel backing material. 
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1. Introduction 

 

Cladding process aims to create a composite product consisting of a layer 

of stainless steel integrally bonded to the surfaces of substrate. The objective of 

such a technology is to combine, at low cost, the required properties of the 

stainless steel and the backing material, for applications where stainless steel full-

wall construction is not necessarily. Nowadays overlaying is directly applied to 

the completed vessel shell, or to vessel dished ends, vessel cylinders or individual 

strakes. Stainless steel clad plates are widely used in chemical and nuclear 

industries in order to take advantage of the corrosion resistance and reduce the 

cost.  

The various applications of weld cladding include the internal surfaces of 

carbon and low alloy steel pressure vessels, paper digesters, urea reactors, tube 

sheets, nuclear reactor containment vessels, and hydro-crackers [1-5].  
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While the stainless cladding furnishes the resistance to corrosion, abrasion, 

or oxidation, the backing material contributes to the structural strength and 

improves the workability and thermal conductivity of the composite For several 

decades, it has been known that nickel-based alloys suffer from stress corrosion 

cracking (SCC) in the primary water of pressurized water reactors (PWRs), while 

austenitic stainless steels have proven almost immune, with the exception of 

irradiated or oxygenated conditions [2, 3].  

The interface between the austenitic deposit and the low carbon steel is 

complex. Depending upon the exact composition of the joined materials, a range 

of microstructures can be formed in the diluted zone and often there is potential to 

form a martensite phase, whose hardness, to a large extent, will be dictated by the 

carbon content diffusing from the base steel. These high hardness zones may 

evidently be present in the heat affected zone (HAZ) of most weld overlays and 

also in the HAZ of austenitic weld deposits on low carbon steels such as welds in 

clad and lined pipelines. [4-9].  

A major concern in an arc welding based overlay is dilution or the extent 

of change in the chemistry of the deposited metal by mixing with the base metal. 

Even though some generic information concerning the extent of dilution 

associated with common arc welding processes is available, the actual dilution 

with a particular process itself can vary over a wide range, based on the welding 

parameters employed. In most cases of overlaying, it is necessary to control the 

dilution within close limits as an inhomogeneous chemical composition can 

reduce the service life of the part [5-8]. 

There are a number of variables which affect dilution such as the welding 

current, the arc voltage, current polarity, electrode diameter, electrode extension, 

weld-bead separation, welding speed, electrode grinding angle, welding position, 

shielding gas composition, etc. O-1 shielding gas (99% argon/1% oxygen) is often 

used for stainless steels welding, due the oxygen action to stabilize the electric 

arc. CO2 shielding gas is common used for carbon and low alloy steels, providing 

a good weld penetration. It is necessary to control each of these variables within 

limits to get the desired properties on the overlay, for which it is necessary to have 

a clear understanding of the influence of each of these variables on dilution [6-

16].  

In this paper are presented some investigations related to the changes in 

chemical composition and microstructure in overlay welds realized with FCAW 

process using 309LV filler metal on the mild steel S235JR backing material. In 

order to study the evolution of chemical composition at different distance from the 

welding line, the clad material was successively removed by grinding. Five 

different layers were removed, having 1 mm thickness each, and then chemical 

composition has been measured. The microstructure has revealed influence of 

shielding gas on integrity of the welding zone and compounds formation.  
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2. Experimental details 

2.1. Materials 

A INOXCORED 309LV stainless steel was used as a filler material because this 

material has a good corrosion resistance and a very low carbon content. The 

structural S235JR steel was used as a base material because it is widely used in 

industries. The chemical composition of S335JR (EN 10025-2:2004) base 

material according to the material certificate was [6] as follows, (wt%): C=0.125; 

Si=0.195; Mn=0.67; P=0.011; S=0.013; N=0.0052; Al=0.039; Cr=0.0183; 

Ni=0.0153; Cu=0.0155; Ti=0.001; Mo=0.005; Nb=0.001; V=0.001; As=0.003.  

The filler metal used in the experimental research has the average 

chemical composition (%wt) in accordance with the filler metal certificate, that 

contains the minimal values guaranteed for the weld metal [6]: C=0.04; Si=0.65; 

Mn=0.6; P=0.019; S=0.009; N=0.0266; Cr=22.85; Ni=12.54; Cu=0.133; 

Mo=0.162; Nb=0.025 and ferrite number FN=11.2. Schaeffler/DeLong is a 

constitutional diagram that shows the different microstructures in welds [20]. 

According this diagram, Crequiv value in welding consumable is 24% and Niequiv 

value is 14.04%. Considering a dilution value of 30% with base material, the 

values for Crequiv and Niequiv result to be respectively, 16.85% Cre and 10.44Nie. 

This composition corresponds to austenitic microstructure and 1.92% Ferrite 

content. 

 

2.2. Welding procedure 

MIG/MAG welding machine was used to conduct the experiments and two 

type of shielding gases: 99.95% pure Argon and 100% Carbon dioxide have been 

tested, in order to establish the compatibility with the stainless steel overlays. The 

welding process has been conducted manually, in two different welding positions: 

PA – horizontal and PF – vertical uphill. The dimensions of cladded sample were: 

thickness of 15mm, length of 60mm and width of 60mm (Fig. 1).  
 

 
a)                                  b)                                 c)                              d) 

Fig. 1.  Samples welded using FCAW process: a) Horizontal (PA) / Sample A1-PA; b) Uphill (PF) 

/Sample A1-PF; c) (PA) /Sample AC-PA; d) (PF) /Sample AC-PF. 
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The welding parameters values are shown in Table 1, for the two different 

welding positions (horizontal and vertical uphill) and for the two different 

shielding gases. For the horizontal position 2 successive layers have been 

deposited and for vertical uphill one layer has been deposited. Heat input during 

welding was calculated using the relation: 

Hi = 
wv

IsUa
 , J/s             (1) 

where  is the electric arc efficiency for FCAW process (0.8), Is the welding 

current, in A, Ua is the voltage during welding, in V and Vw is the welding speed 

in mm/min.  
Table 1  

FCAW welding parameters for each position and gas 

Welding 

parameters 

values 

Samples overlays using  

99,95% pure Ar 

Samples overlays using  

100% carbon dioxide 

Horizontal  

(PA) /  

Sample A1-PA  

Vertical Uphill 

(PF) / 

Sample A1-PF 

Horizontal 

(PA) / 

Sample AC-PA 

Vertical Uphill 

(PF) / 

Sample AC-PF 

Rows no. 1-20 1-8 1-26 1-8 

Is (A) 180 160 180 160 

Ua (V) 33 27 33 27 

Gas type Argon 99.95% Argon 99.95% CO2 100% CO2 100% 

Gas flow 

(l/min) 

18 18 18 18 

Tinitial (0C) 75 75 75 75 

Heat imput 

(kJ/mm) 

0.91 0,95 0.91 0,95 

Velocity Vw 

(mm/min 

310 230 310 230 

  
3. Result and discussion 

3.1. Chemical composition analysis 

The chemical composition was established using a Foundry-Master high-

performing optical emission spectrometer. For each sample 4 layers successively 

were removed by machining (Fig. 2) and then the chemical composition was 

measured in three different points.  
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Fig. 2. The surfaces and layers prepared by grinding for chemical analysis and micro-hardness. 

Points 1, 2, 3, 4 and 5 represent levels of the surfaces on which chemical analysis and micro-

hardness measurement have been carried out.  
 

Analyzing the evolution of the chemical composition was found, as 

expected, that the most important alloying elements Cr and Ni, show an obvious 

tendency to decrease as approaching the fusion line. The amplitude of content 

decrease for Cr and Ni in clad, for each sample, is represented in Fig. 3. 
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              c) Horizontal                                           d) Vertical uphill 

Fig. 3. Chromium and Nickel evolution as function of welding position and shielding gas: A1 – 

99,95%Ar; AC – 100%CO2. 
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As shown in Fig. 3 (a and b), for the uphill vertical welding position, the 

downward trend of the chromium content is most obvious comparative with the 

horizontal welding position. From the mean values expressed, it is found that in 

samples AC-PF, the chromium content decrease below the value prescribed by the 

filler material manufacturer (Cr = 22.85wt%), at the distance of 5mm from the 

welding interface with the structural backing material. This situation represents a 

risk in terms of corrosion resistance, mainly in the first welding layer. For the 

horizontal position, the situation becomes critical at 3 mm from the base material 

interface. 

In the case of nickel content, concentrations decrease below the amount 

prescribed by the manufacturer (Ni = 12.54wt%) even more drastic for vertical 

uphill position, both for inert shielding gas (A1-PF) and for the active shielding 

gas (AC-BP) (Fig. 3d). This means that, for this welding position, at least 2 layers 

must be overlayed, required to avoid the risk of falling below the required Ni 

content. For the horizontal position, the situation is critical only at 3mm distance 

form the weld interface. 

Dilution variation can be calculated, in relation to the minimal value 

predicted by the filler material manufacturer, with the simple relation: 
 

Dv = 
A

BA 100*)( 
 %                                                     (3) 

where: Dv is dilution variation for the main elements (Cr and Ni), A is the 

prescription value for element in weld metal and B is the value of element in clad 

layer. Using the relation 3, we can estimate the variation of Cr and Ni 

concentration in the critical zones, near the clad interface (at 1 mm from the 

welding line) (Fig. 4). 
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Fig. 4. Level of chromium and nickel at 1 mm from the welding interface 

  

By analyzing the effects of the two protective gases it become obvious 

that, for using of 100% CO2 as shielding gas, the decreasing concentration of the 

alloying elements is more pronounced, as a result of the heat developed by the 
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electric arc in the active medium and by the effect of oxidation in the melting 

zone. 
 

3.2. Microstructure 

 For microstructural analysis, the base material (S 235JR) samples were 

etched using a 2% Nital reagent, while the weld deposit 309LV was 

electrolytically etched in 10% H2C2O4 + 90% H2O. Then specimens were 

observed by optical microscopy, using an Olympus GX51 microscope equipped 

with software for image processing (AnalySIS) (Fig. 5 and 6). As result from 

optical microstructures, when 100% CO2 is used as shielding gas, the risk to form 

cracks appears, especially in the heat affected zones of S235JR structural steel 

(Fig. 5b and Fig. 6). 

 

  
a) 200x                                                              b) 200x 

 

 
c) 500x 

Fig. 5. The aspect of cladding zone of AC-PA sample: a) Base material (S235JR) – ferrite and 

pearlite; b) Heat affected zone - Widmanstätten structure with discontinuous fracture line located 

near the welding zone, that follows the fusion line; c) Welding zone (stainless steel 309LV) with 

fine biphasic microstructure: ferrite (white grains) and austenite (black dendritic grains). 
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a) 200x                                             b) 500x 

Fig. 6. Heat affected zone for sample AC-PF: micro-crack developed near the welding line, into 

235JR steel. 

 Near the welding line the microstructure of HAZ has changed from ferrite 

and pearlite to Widmanstätten structure composed of acicular and allotriomorphic 

ferrite and fine pearlite, leaving the large inclusions of oxides inside the grains 

and accumulating the structural stress that can stimulate the nucleation of acicular 

ferrite [17-19]. Moreover, some mixing zones containing ferrite amounts less 

alloyed with Cr and Ni are visible in the cladding layer, which is emphasized by 

the chemical attack like islands located near the fusion line (Fig. 6b). 

3. Conclusions 

 Although the wire producer allows the use of CO2 as shielding gas, in the 

case of the uphill cladding in was observed that there is a tendency of a 

higher quantitative loss of the alloying elements Ni and Cr in comparison 

with the horizontal welding position, because of a more powerful 

oxidation effect and lack of protection with shielding gas.  

 The aspect of the welding beams is better when 100% CO2 is used as 

shielding gas, the welding pool is hotter and more fluid (Fig. 1c). Using 

99.95% Ar as shielding gas, the contraction effects of the welding pool 

appears and the viscosity of the molted metal is higher, as a characteristic 

of rutilic wires (Fig. 1a). Therefore, for stainless steel welding or 

overlapping the best option is the use of 99% argon/1% oxygen as 

shielding gas. 

 Using 100% CO2 as shielding gas promote the risk to form cracks and 

overheating, especially in the heat affected zones of S235JR structural 

steel. For 100% CO2 shielding gas, the decreasing concentration of the 
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main alloying elements (Cr and Ni) is more pronounced, as a result of the 

heat developed by the electric arc in the active medium and by the effect 

of oxidation in the melting zone. This situation represents a risk in terms of 

corrosion resistance, mainly in the first welding layer. For the horizontal position, 

the situation becomes critical at 3 mm from the base material interface. 
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