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CONVERGENCE OF AN IMPLICIT NET FOR SOLVING EQUILIBRIUM
PROBLEMS AND QUASI-VARIATIONAL INCLUSIONS

Lu Zheng!, Youli Yu?, Tzu-Chien Yin®

In this article, we discuss iterative methods for finding a common solution of
equilibrium problems and quasi-variational inclusion problems in Hilbert spaces. We
introduce an implicit method which defines a net consisting of projection method and
resolvent method. Convergence result of the proposed net is proved provided some addi-
tional conditions are fulfilled.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and induced norm || - ||. Let C
a nonempty closed convex subset of H. Let ¢: € x € — R be a bifunction. In this article,
we concern the following equilibrium problem which aims to find a point ut € € such that

o(ut,u) >0, Yu € €. (1)

Let the solution set of the equilibrium problem (1) be denoted by Sol(C, ¢).

As a powerful tool, the equilibrium problem has been continuously concerned and
studied by many scholars, see e.g. [3, 5, 14, 15, 24]). Now, it is well-known ([2, 17]) that the
formulation (1) includes variational inequality problems ([32, 34, 37]), optimization problems
([12, 21, 22)), split problems ([8]), as well as fixed point problems ([1, 9, 11, 23, 26-30, 33, 38]).

Note that solving equilibrium problem (1) can be translated into a fixed point problem
by using the resolvent technique. In fact, the resolvent of a bifunction ¢: € x € — R is the
set-valued operator ([2])

F(ul) .= {wl € €: p(w',v") + (v —wl,wh —ul) >0, Vol € €}.

Under some conditions, we have Sol(C, ¢) = Fix(F'), where Fix(F') stands for the set of fixed
points of F. By utilizing the resolvent method, Combettes and Hirstoaga [6] proposed an
iterative algorithm of finding a point in Sol(€, ).

Now, we consider the following generalized equilibrium problem of finding a point
u' € € such that

p(ul,u) + (f(ul),u—ul) >0, Vu € €. (2)
Let the solution set of the generalized equilibrium problem (2) be denoted by Sol(C, ¢, f).
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With the help of the resolvent technique, Takahashi and Takahashi [25] introduced
the following iterative algorithm for finding a common point in Sol(C, ¢, f) N Fix(T')

QD(Un,U) + é<u — Un, Up — (xn - §nf(xn))> Z 07 Vu € ea
Tpt1 = Tn@n + (1 — 7)) Tt + (1 — pn)uy], Vo >0,

where T : € — C is a nonexpansive operator.

Consequently, various methods and techniques are proposed for solving a common
problem associated with equilibrium problems, please see [4, 13, 18, 19] and the references
therein. Let ¢: € — H and ¥: 3 = 27 be two nonlinear operators. In this article, we
investigate the following quasi-variational inclusion problem of finding a point u € 3 such
that

0 € W(ul) +(ul). (3)
The solution set of (3) is denoted by Sol(C, ¥, ).

The quasi-variational inclusion and the relevant iterative algorithms have been inves-
tigated and proposed in the literature, see [7, 20, 31, 35, 36]. A basic algorithm for finding
a point in Sol(C, ¥, ) is the following resolvent algorithm which generates a sequence {z,,}
iteratively by

20 €C, xpy1 = + T\I/)gl(a:n —71Y(xy)), Vn > 0.

In this paper, our main purpose is to investigate the common problem of the generalized
equilibrium problem (2) and the quasi-variational inclusion (3). We construct an implicit
algorithm which defines a net for finding a common solution of the generalized equilibrium
problem (2) and the quasi-variational inclusion (3). Under some conditions, we show that
the proposed net converges weakly to a point in Sol(C, ¢, f) N Sol(C, ¥, ).

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space J{. Recall that an
operator g : € — H is said to be k-Lipschitz continuous if there is a positive constant x such
that

lg(u®) = g(w) < kllz - yll, Yul,ue €.

(i) g is said to be nonexpansive if k = 1.
(ii) g is said to be contractive if k < 1.

An operator g : € — H is said to be firmly nonexpansive if

lg(w) = g(uh)|? < (u—u', g(u) — g(uh))

for all u,u’ € €.
An operator f: € — JH is said to be a-inverse strongly monotone if for some o > 0,
the following inequality holds

(f(ul) = fw),ul —u) > ol f(uh) = f(u)]?, Vul,uee.

In this case, we call f a-inverse strongly monotone. It is easy to show that a-inverse-strongly
monotone operator f is i-LipschitZ continuous.
Let ¢ : € x € — R be a bifunction. Suppose that the following four conditions are
fulfilled
(1) : p(ul,ul) =0, vut € €
(©2) : p(ul,vh) + (! ul) <0, Vub, vl € ¢
(¢3) : limgjo p(twl + (1 — t)uJr vT) < p(uf, vT) vul, ot wl € €
(p4) :

@4) : for each ut € €, vT + p(uf,vT) is convex and lower semicontinuous.
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Recall that a linear bounded operator ¢ : H — X is said to be ¢ strongly positive if
there exists a constant ¢ > 0 such that

(d)(uT),uT) > a||a?H2, vul e H.

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that the
well-known metric projection proje : H — € is defined by

proje(u') := argmin ||u — u'|], u' € K.
u€eC

proje is firmly nonexpansive and satisfies
ut € K, (u' — proje(u'),u — proje(u’)) <0, Yu € €. (4)

Assume that ¥: H = 27 is a multi-valued operator. Write dom(¥) = {ul € 3 : ¥(ul) # 0}
and U~1(0) := {uf € H:0 € U(ul)}.
Recall that an operator ¥: H = 27 is said to be monotone if and only if

(u—ul,p—q) >0, Yu,u" € dom(¥)

where p € ¥(u) and ¢ € ¥(u').

A monotone operator ¥: H = 27 is maximal monotone if and only if the graph of
¥ is not strictly contained in the graph of any other monotone operator.

Assume that ¥: H = 2% is a maximal monotone operator. Define an operator
JY . H — dom(¥) by the following way

JY = (I +70)7!
where 7 > 0 is a constant.
JY is said to be the resolvent of ¢, which has the following properties
(i) JY is single-valued and firmly nonexpansive.

(i) For any 7 > 0, U~=1(0) = Fix(JY) := {uf € 3 : J¥Y (u) = u'}.

Lemma 2.1 ([6]). Let € be a nonempty closed convex subset of a real Hilbert space H. Let
p: CxC — R be a bifunction fulfilling conditions (p1)-(p4) above. Then, for ¢ > 0 and
ul € @, there exists a point w' € C satisfying

1
o, vl + = —wh w' —ul) >0,v0' € e,
S

Write

1
E.(u") :={w' €€:pw’ o)+ =@ —whw —u) >0, vol €}
S

Then, we have
(i) Ft is single-valued and firmly nonexpansive;

(if) Sol(C, ) is closed convex and Sol(C, v) = Fix(F;).

Lemma 2.2 ([16]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
f:C—= X be an a-inverse strongly monotone operator. Then, the following result holds

I = <fut = (I = <full® < flu’ —ul? +<(c = 20) || f (u") = f()]?, Vul,u e e,

where < is a positive constant.
It is obviously that I — ¢ f is nonexpansive if 0 < ¢ < 2a.

Lemma 2.3 ([10]). Let € be a nonempty closed convex subset of a real Hilbert space H. Let
T : € — 3 be a nonexpansive operator. Let {u,} C C be a sequence. If u,, — u' € C and
Up, — Ty, — 4, then we have (I — T)u® = 4.
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3. Main results

In this section, we propose an implicit net and show that it converges weakly to
a common solution of the generalized equilibrium problem (2) and the quasi-variational
inclusion (3).

Let € be a nonempty closed convex subset of a real Hilbert space . Let ¢ : Cx€C — R
be a bifunction satisfying conditions (¢1)-(¢4). Let g : € — H be a k contractive operator.
Let ¥: H = 27 be a maximal monotone operator fulfilling dom(¥) C C. Let f : € — 3 be
an a-inverse strongly monotone operator and ¢: € — H be a S-inverse strongly monotone
operator. Let ¢ : H — H be a o strongly positive bounded linear operator. Let 7, 7, ¢ and
p be four constants such that ¢ € (0,2a), 7 € (0,28), v € (0,2) and u € (0,1).

'K

Algorithm 3.1. For each t € (0, WM), define a net {x;} by the following implicit
manner

{sowt,:c) + Lo — up,up — proje(tyg(ze) + (I — ) (w1 — < f (z))]) > 0, Va € €, )

Ty = /,LJ;II(I - T@D)xt + (1 - u)ut, Vit € (0, m)

Theorem 3.1. Suppose that T := Sol(C, ¢, f) N Sol(C, ¥, ) # . Then, as t — 0+, the net
{z+} defined by Algorithm 3.1 converges weakly to a point in T.

Proof. We divide our proof into several steps.
Step 1. The net {x:} defined by Algorithm 3.1 is well-defined.
For each ¢t > 0, set

@, = Feprojeltyg + (I —to)(I —<f)]
and
Gi = pJY (I —71¢) + (1 — p)®,.

Based on Lemma 2.1, we have u; = ®,(z;) and F is firmly nonexpansive. By Lemma 2.2,
I — ¢f is nonexpansive for all ¢ € (0,2«). Then, for any z,y € C, we have

[@:(z) — @u(y)|| = [ Feprojeltyg + (I — to)(I — < f)]x — Feprojeltyg
+ I = to)( =<yl
< tyllg(@) — gl + I = tll[(I = sflz — (I —<f)yll (6)
< tykllz =yl + (1 = at)||lz — y||
=1~ (o —yR)tlllz —yl.

Since JY (I — 7)) is nonexpansive, from (6), we obtain

|Gix — Guyl| = | (I = m)z + (1 — )@y (x) — pJ X (I — 1)y — (1 — )@ ()|
S pll YT =)o — JXI = 1)yl + (1= w)|@e(z) — Do)
<pllr —yll+ (1 =l = (o =)tz -y

=[1= (1= p)(o—yr)t]llz -yl
Ift € (0, m), then G is a contractive operator. Hence, for each t € (0, m%
G has a unique fixed point in €, denoted by x;. Namely, z; = G¢(z:). Therefore, (5) is
well-defined.
Step 2. The net {x;} generated by (5) is bounded.
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Let pt € . Then, we have JY (p' — 7¢(p")) = F.proje[p’ — <f(p")] = p'. Hence,
S

lue = p'|| = | Foprojeltyg(ae) + (I — tg) (x — s f (24))] — Feprojel(p! — < f ()]l
< Nltvg(ze) + (I = td) (w1 — < f (x0)) — (' — < ()|
= [lty(g(xe) — g(p") + (I — td)[we — s f () — (' — < (p1))]
+tlyg(p") — o' — <f (M) (7)
<tyllg(ze) — g + |1 = tolllwe — s f (@) — (p" = < (D))l
+tlvg(p") — (" —<f (")l
<1 = (o =)tz — p'l| + tllvg (") — (0" = <M.
According to (5) and (7), we have
e = ptl| = ¥ (I = 7p)ze + (1 = p)ug — p'|
< pl| XTI = ) — JF (pF = 7oo(p") | + (1 = p)|Jug — ']
< pllwe = p' + (1= p)llue = p-
It follows that

lze =PIl < flue = p'l

8
< 1= (o —w)tllze — Y| + tlvg(0") — 60" —<f (")), )
which implies that
lze — pt < lvg(p") —Ucb(plﬂ— SFENI
So, {x:} is bounded.
Step 3. {x;} is relatively norm compact as t — 0+.
Taking into account (7) and Lemma 2.2, we obtain
lue = pY* < [lt(rg (@) — 60" —<f (1)) + (I = 1) [ — < f (22) — (0" — <f P
< [tllvg(z:) = ¢0" = <f PN + 1T = tolllze — <f(ze) — (0T = <f ("))
< [tollvg(z) = o' = <f /o + (1 = at) |z — < f (z:) — (= <F(pD)]? o)
< tllyg(ze) — 60" = <fPIP /o + (L = at)llze — < f(ze) — (0" = <f ()|
< tllyg(z:) — 60" = <fP)P /o + (1 = ot)[||z; — pT|1?
—s(2a = Q)| f(z:) = F(NIP]-
Combining (8) and (9), we receive
[z = p1* < lus = p|
< tllvg(z:) = ¢0" = <fFP)IP /o + (1 = ot)[[lz; — pT||?
— (20 = )| f () = FNI?).
It follows that
(1= ot)s(2a = Q)| f(z:) = F(PNI? < thvg(z:) — ¢(p" =< F PP /o —= 0 (¢ = 0+4).
Therefore,
lim [|f(ze) ~ fhHl=o. (10)

t—0
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Owing to (5) and Lemma 2.1, we achieve
1 IP = |Ewrojelirg(an) + (I — 1) x — o/ (x)] ~ Feprojel(w! — sf (oI
< (ivglee) + (T ~ 16) (e — sf(@)] - [ — o' »1 —el
= S (lrg(z) + (7~ 19) e — S @] - [ — I ()
e = p1? ~ [[r9(a) + (7~ 1) — sF (@)
— (0"~ <] = e 1),

(|t

So,

lue = pHI < [[[tvg () + (I =) (xe — s f(20))] = (0" — £ D))"
— |ltrg (o) + (I = té)(@e — < (x)] = [(0F = <F O] — e + p1||”
< tllyg(ze) = o' = <fP)I? /0 + (1 = at)|lz, — p'|
— |[Evg(we) + (I = &) (e — s f(@e))] — ue + £ 1]
This together with (8) implies that
llze = o1 < Jlue — pT|I?

< thyg(a) — (" — <f(N)I? /o + (1 - ot)l|lz, —pT|?
— |[tvg(e) + (I = td) (@e — s f(x0))] — ue + < (D).

Hence,
[lEvg(we) + (I =) (@ — sf(@)] = we+ s fED]| < thva(we) — 60" = sF Y2/ — 0.
With the help of (10), we deduce
tgr&_ |z — ue| = 0. (12)
Then,
1 — v — = 1 — — =
Jim e, — 21— 7)zl| = Jim (1= ) — el = 0. (13)

Thanks to (12), we attain

lue = pTI1” < ([tvg(ae) + (I = t6) (we — < f ()] = [(p" — < f(PN))], e — pT)
<ty(gla) —g(p"), ue —p') + (I = t6)((w — < f () — (p" — < f(P1)), ue — p7)
+t{yg(p") — (o' — <f (")), ur — p)
< tyllg(xe) — g(N)llue — p'l| + [T = t][|(ze — < f () — (pF — < f (1))
x Jlug — pt| + t(yg(p") — o0 — < f(P1)), ue — p7)
< 1= (o =)tz — p'||lue — p'l| + tlvg(®") — d(p" — < f(P")), ur — pT)
< 1—(o—ykK)t
2

< lze = B2 + 3llue =2
+t{vg(p") — ¢(p' — < f(p")), ue — pT).
Hence,
|zt = pTI* < [lue = pT|I> < [1 = (0 = ye)t] |2 — pT|?
+2t(yg(p") — (" —<f(p")), ur — pT).
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It follows that

ph? <
o— K

Next we show that {z;} is relatively norm compact as ¢ — 0+. Let {¢t,} C (0,1) be a

(1) . 1),

(vg®") — p(" = <f®")),ue — p7). (14)

|z —

sequence such that t,, = 0 as n — oco. Put oy’ := =z, and uy’ = ug,. From (13), we get
tim 2 — J¥ (I~ )2 = 0. (15)

By (14), we have
2
2 — pl[|* < mhg(p*) —o(p" —<f(p"),ull) — p). (16)

Since {xn } is bounded, there exists a subsequence {xn }C {mn } such that o) ~atee
as i — oo. Applying Lemma 2.3, we deduce that 2t € Fix(JY (I — 7)) = Sol(€, ¥, ).

On the other hand, utilizing (12), we have ug) — zt. Note that
ul) = @, (2)) = Foprojeltn, v9(al)) + (I — tn,0)(2l) — < f(2f)))]

and the operator F.proje(I —<f) is nonexpansive. By Lemma 2.3, we get 2! € Sol(C, ¢, f).
Therefore, x' € T'. Substituting p' with z' in (16), we obtain

1) _ 112 « A _ Ty 17

Joff) — 1P < 2 ugla) - ola’ = o), uld) — ) a7)

Since ult) — 2z € €, it follows from (17) that 2 — xt. This has proved the relative
norm- Compactness of the net {x;} as t — 0+.

Step 4. The whole net z; — = as t — 0+.

Since {z;} is relatively norm compact as ¢ — 0+. Let {s,} C (0,1) be another

sequence such that s,, — 0 as n — oco. Set xg) = x5, and u( ) = Us, . Since {ng)}

is bounded, there is another subsequence {xgi)} C {acg«?)} satisfying x%) —ylas j — oo

Consequently, we deduce y! € I and

IIxﬁi)—yTIFSG_L%Wg(y) oyt —<f ("), ul?) — o). (18)

Since u( )y € €, it follows from (18) that x%) — yf. Take into account of (14), we
acquire

|28 —yT? < — - (va(y") — eyt — s f ("), ul) —y). (19)
and
o2 = ol < 2 fyglah) — ola’ = (e, ul2) ~ ), (20)

Letting ¢ — oo in (19) and noting that u( ) 2f(i = o0), we have
(rgy") — o' —<fyh),2" —yT) > 0. (21)
Letting 7 — oo in (20) and noting that un — 9T (j — 00), we have
)

(vg(ah) — o(a’ —<f(a)),y" —2) > 0. (22)

Combining (21) and (22), we conclude that #7 = y'. Therefore, the whole net z; — x' as
t — 0+. The proof is completed. O
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4. Conclusions

Equilibrium problems and quasi-variational inclusion problems provide a unified frame
for solving many problems arising from science and engineering. In this paper, we investigate
a common problem of the generalized equilibrium problem (2) and the quasi-variational
inclusion (3) in Hilbert spaces. With the help of resolvent method, we propose an implicit
algorithm [Algorithm 3.1] for finding a common solution of the generalized equilibrium
problem (2) and the quasi-variational inclusion (3). We show that the net {z;} defined
by Algorithm 3.1 weakly converges to a common solution of the generalized equilibrium
problem (2) provided some mild conditions are satisfied.
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