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FLOW DYNAMICS REGIMES VIA NON-
DIFFERENTIABILITY IN COMPLEX FLUIDS

Ciprian [ulian AXINTE', Constantin BACIU?, Simona VOLOVAI3, Dan
TESLOIANU* , Zoltan BORSOS®, Anca BACIU®, Maricel AGOP’

A new topic in the analyses of complex fluid dynamics, considering that the
movements of the complex fluid entities take place on continuum but non-
differentiable curves is proposed. It results that in the dispersive approximation of
motion, two distinguished flow regimes (non-quasi-autonomous and quasi-
autonomous) by means of cnoidal modes of a velocity field can be established. The
self-similarity of these modes specifies both the existence of some “cloning”
mechanisms but also holographic behaviours. Some correlations with experimental
data in plasma ablation are presented.

Keywords: complex fluid, plasma ablation, flow regime, non-differentiability,
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1. Introduction

The complex fluids dynamics is an interdisciplinary research topic that has
been studied by means of a combination of basic theory, derived especially from
physics and computer simulation. Such systems are composed of many interacting
elemental units (called ,,agents”) and, among the most significant properties are
the self-organization, the adaptability etc [1-3]. Examples of the most studied
complex fluids are: colloidal fluids, polymers, foams, emulsions, gels,
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suspensions, micelar and liquid-crystal phases, molten materials, blood, etc. In
this case the fluids do not obey to the hydrodynamic laws [4-6].

Plasma of electrical discharges shows complex dynamics as periodic
transitions between multiple states [7-9], intermittency [10,11], chaos and
hyperchaos[12]. The electrical response to different perturbations (periodic [13-
16] or noisy[17]) can be explained using models involving transitions between
solid-like and fluid-like behavior. Despite the large variety of the theoretical
models that describe the complex dynamics [7, 9, 18-19], the physical origin of
complexity is still a subject of interest. A possible solution can be the new
approach based on the model of flow dynamics regimes via non-differentiability.
In this way, both the complexity of interaction process that determines various
temporal resolution scales and the patterns evolution that determines different
degrees of freedom are taking into account.

In the framework of the multiscale approach of complex fluid dynamics,
the main hypotheses are based on that, for temporal scales that are large with
respect to the inverse of the highest Lyapunov exponent, the deterministic
trajectories of the complex fluid particles are replaced by a collection of virtual
trajectories and the concept of definite positions by that of probability density [20-
22]. Since, in such context, the non-differentiability appears as a universal
property of the complex fluids dynamics, it is necessary to construct a non-
differentiable physics by considering that the complexity of the interactions
processes is replaced by non-differentiability. This topic was developed using the
Scale Relativity Theory (SRT) [23,24] and its extensions [25-26].

In the present paper we propose a new approach in the analyses of
complex fluid dynamics, using SRT. Considering that the entities of the complex
fluid are moving on continuous but non-differentiable curves, we show that in the
dispersive approximation of SRT, two distinct flow regimes of the complex fluid
appear. These regimes are controlled by means of a non-linear parameter
associated to the modulus of the elliptic function cn (cnoidal oscillation modes of
a velocity field).

2. Geodesics equations

We can simplify the dynamics of a complex fluid supposing that it
displays chaotic behaviours (i.e. self-similarity and strong fluctuations at all
possible scales [1-6,10-12,14,18,19,25,26]). This means that the complex fluid
particles move on continuous but non-differentiable curves, i.e. fractal curves (for
example, the Koch curve, the Peano curve or the Weierstrass curve [20,23,24]).

Once such hypothesis accepted, some consequences of non-
differentiability through SRT become obvious [23,24]: 1) physical quantities
describing the complex fluid dynamics are fractal functions, i.e. functions that
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simultaneously depend on spatial coordinates, time and scale resolution, d#/t
(identified here with d#/r by substitution principle [23,24]). We mention that in
classical physics, the physical quantities describing the dynamics of a complex
fluid are continuous but differentiable functions merely depending on spatial
coordinates and on time; ii) the complex fluid will behave as a special interaction-
less ,.fluid” by means of geodesics in a fractal space (these geodesics are
identified with the stream lines of complex fluid). In such conjecture, the
dynamics of the complex fluid particles are given by the fractal operator dide

(the dispersive approximation of motion of SRT) [19,26]:

3 2 2/DF)1 3 (3/Dp)-1
i—ﬁw -V—i/l—(d—j ‘f”l ( j % (1)
dt ot T\ T 3 ¢\t
where
V=V, iV, 2)

is the complex velocity, Vp is the differentiable and resolution scale independent
velocity, Vf is the non-differentiable and resolution scale dependent velocity.

V -V is the convective term, the next term in (1) is the dissipative term and the
last one is the dispersive term. D is the fractal dimension of the movement curve,

J is the spatial resolution scale, 7 is the temporal resolution scale and 1> /7 =D is
the Nottale coefficient specific to fractal — non-fractal transition [23,24]. In the
case of fractal dimension Dp, we can use any definition (the Hausdorff —
Besikovici fractal dimension, the Kolmogorov fractal dimension etc. [20,22,24]),
but once such definition accepted, it has to be constant over the entire complex
fluid dynamics analysis.

Applying the fractal operator (1) to the complex speed (2) and accepting
a generalized inertial principle (a generalization of Nottale's principle of scale
covariance [19,26]), we obtain the geodesics equation

2 (2/Dp)- 3 (3/Dy )~
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Equation (3) shows that at any point of a fractal path, local acceleration,

oV, convection, (VV)\? , the dissipation, A°/z(dt/7 )2/1), AV, and

dispersion, A°/ r(dt/ )3/DF
dispersive term in (3) generalizes the results from [23,24], so that all implications
from [19,26] (the behaviours of the complex fluids are viscoelastic or hysteretic)
and not only, can be here extended.

Since the movement of the complex fluid lacks interaction, we practically
make use of self-convection, self-dissipation and self-dispersion type

VV are in equilibrium. The presence of the
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mechanisms. Then, the geodesics equations are identified with “stream lines” of
the complex fluid.

3. Separation of flow dynamics regimes in complex fluids

Separating in geodesics equation (3) the real part from the imaginary one
of velocity field (2), for the differentiable scale resolution, we obtain:

N, NV
TtD = azD +(V, VIV, =(V, - V)V, -
4)
2 (2/Dp)-1 3 (3/Dp)-1 (
—ﬂ“—(@j av, + Y22 (dtj vV, =0
T\ T 3 T\ T
while for the fractal one:
N, N
th = GzF +(V,- VIV, +(V, -V)VF +
6))
2 (2/Dy)- 3 (3/Dy )~
A (dtj AV 22 (dtj v3vF=o
T\ 7T KA
For irotational motions of the velocity field (2),
VxV =0,VxV, =0,VxV, =0 (6a-c)
the following form can be chosen:
A2\ (a\*"
V——2l[ j( j Vlnl// 7
T )\t
or explicitly, with y = \/; exp iS ) ,
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where /o 1is an amplitude and S a phase. In such a context, if the dissipative

effects are negligible compared to the convective and dispersive ones, then the
equations (4) and (5) take the form (for details of the method see [18,25,26]):
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N v J2 23 di (3/Dp )1
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An explicit form of the velocity field Vp is obtained for the one-
dimensional case. In dimensionless variables

wt=r,loc=§,9=§—Mr,;—D=¢ (10a-d)

2

the solution of equation (9) using the method from [19,26] becomes:
E(s) —1}+2acn2 [a(@—é’o);s] (11)

K(s)
where K(s), E(s) are the complete elliptical integrals of first and second kind of
modulus s, cn is the Jacobi elliptical function of argument a(8 - 6y) and modulus s
[27], a is an amplitude and @ is an average value of the states density. Details on
defining parameters s, a and @ can be found in [4,6,28]. Moreover, in previous
relations (10a-d), @ is a specific pulsation, £ is the inverse of a specific length,
Vp, 18 a specific velocity and M is an equivalent of Mach number. These

¢:5+2a{

parameters are specific to the complex fluid characterizing both structure and
dynamic types [4-6]. Therefore the flow dynamics of the complex fluids is
achieved through space-time cnoidal oscillation modes of the velocity field
(Fig.1). The oscillation modes are explained through modulus s of the elliptical
function cn, non-linearity parameter depending both on structure and dynamic
types of the complex fluids. Moreover, the oscillation modes are self-similar via
the parameter s (Fig.2a,b) which specifies the fractal character of the flow
processes in complex fluids.

L
0 gp

Fig. 1. Three-dimensional dependence of cnoidal oscillations modes of velocity field
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Fig. 2. Self-similar contour curves of the velocity field versus non-linear parameter s: a) 0 <s <
0.5,b)0<s5<0.2

The self-similarity of the cnoidal modes specifies the existence of some
“cloning” mechanisms (full and fractional velocity function — a function which
evolves in time to a state describable as a collection of spatially distributed sub-
velocity-functions that each closely reproduces the initial velocity-function shape)
[29]. All these show a direct connection between the fractal structure of the flow
dynamics of complex fluid and holographic behaviours [30].

The space-type cnoidal oscillation modes have the following characteristic
parameters:

1) Wave number
1/2

a
= 12
sK(s) (12)
i1) Phase velocity
2
U =60 +4a| L&) 13 (13)
K(s) s

iii) Period (see Figure 3a,b)
- 12 3/2 2
T=1/{3‘Da , 2 [3E(s)_l+s }} 14)

sK(s) sK(s)| K(s) s
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Fig. 3. The period of the cnoidal oscillation modes versus @ and s (a); two dimensional contour of
the period (b)

For s — 0 (11) it is reduced to a harmonic package type sequence, while
for s—1,(11)itis reduced to a soliton package type sequence. For s =0 (11)
it is reduced to a harmonic type sequence and for s = 1 (11) it is reduced to
soliton type sequence.

Through non-linearity s two distinct “flow” regimes of the complex fluid
appears: non-quasi-autonomous regime (by harmonic type sequences, harmonic
package type sequence), and quasi-autonomous respectively (by soliton type
sequences, soliton package type sequences) - see Fig.3a, b.

In such context, we can consider that the nonlinear and chaotic dynamics
generated by space charge configurations or other localized particles structures in
an electrical plasma discharge can be explained and modelled by the complex
fluid flow dynamics. Particularly, in the case of plasma ablation [31,32] the two
plasma structures experimentally observed by optical and electrical measurements
(structures that correspond to two types of electrons, cold and hot) can be
generated by means of two flow regimes of the complex fluid previously
mentioned. Indeed, if the temperature of the hot electrons is kgT. =~ 8 eV and the
temperature of the cold electrons is kgT. = 2 eV [31-35] then, according with
SRT, by means of the relation D =k,T /mv, , where m is the rest mass of the

entities from the plasma ablation, v, the collision frequency, we can define two
fractal-nonfractal “diffusion coefficients” corresponding to the flow regimes. i.e.
Dy =~ 4-10* m%/s and D, =~ 30 m%/s (for details see [35]). Considering that the two
ablation plasma structures are associated with double layers [36] with the
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dimensions L, ~ 10? m and L. = 1.5-10”m (see the evolution of the visible
emission from the aluminum plasma plume recorded using camera with gating
time 20 ns [35]), it result the characteristic velocities Vj, = Dy/L, =~ 4-10* m/s* and
V.= Dd/L. = 2:10° m/s. These values are close to those obtained by means of the
expansion velocities of the experimental first (hot) and second (cold) plasma
structures (for details on the method see [35]). We note that the complex fluid
methods [18,19,25,26] give reliable results and can be used together with the
methods of non-linear dynamics and chaos [7,8,11-13], to the analyses of the
dynamics experimentally observed in electrical discharge plasmas.

4. Conclusions

The main conclusions of the present paper are the following:

— Supposing that the entities of a complex fluid are moving on continuous
and non-differentiable curves (fractal curves) the geodesics are obtained.
These geodesics are identified with the complex fluid stream lines;

— If the dissipative effects are negligible compared to the convective and
dispersive ones, for one dimensional case the solution of motion equation
is established. In such context the flow regimes of the complex fluid are
controlled by means of cnoidal oscillation modes of the velocity field;

— The flow regime types are explained by means of cnoidal elliptical
function modulus. So, non-quasi-autonomous regime (by harmonic type
sequences, harmonic package type sequence), and quasi-autonomous one
(by soliton type sequences, soliton package type sequences) are obtained;

— The self-similarity of the cnoidal modes specifies the existence of some
“cloning” mechanisms. All these show a direct connection between the
fractal structure of the flow dynamics of complex fluid and holographic
behaviours;

— Possible validations of the model by means of plasma ablation
experimental data are presented.
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