U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 2, 2016 ISSN 2286-3540

EFFICIENT IMAGE PROCESSING USING REACTION-
DIFFUSION CNN IMPLEMENTED IN CUDA TECHNOLOGY

George Valentin STOICA!, Radu DOGARU?, Elena Cristina STOICA®

This paper proposes an implementation model for reaction-diffusion Cellular
nonlinear networks (RD-CNN) on CPU and GPU platforms. Efficient
implementations are proposed in order to speed-up the computational model of the
RD-CNN using nVidia’s CUDA platform, highlighting the GPU advantages over the
CPU.

Keywords: reaction-diffusion CNN, CUDA-enabled GPU, nonlinear image
processing

1. Introduction

This paper explores an implementation model for speeding-up the
execution time for the highly computational model of the reaction-diffusion CNN
(RD-CNN) described in [1]. RD-CNNs as well as standard CNNs are computing
intensive, and this is a limiting factor to explore its full potential especially for
image processing tasks. Hardware implementations using VLSI or FPGA
architectures can provide the required computing power but at a higher
acquisition, development and implementation costs. Recent developments of
General-Purpose computation on Graphics Processing Units (GPGPU) technology
provide scalable, powerful and cost effective solutions [2].

GPU represents an important computing resource due to its widespread
cost effective powerful and massively parallel architecture. There are various
fields in which GPU accompanies classic CPU architectures or even replace them
in order to solve intensive computing tasks: imaging, computer vision, finance,
scientific visualizations, cryptography, etc [3]. Investigating the capabilities of
GPU could produce affordable and easy to implement models for implementing
intensive computation RD-CNN image processor.

Increased interest is focused on adapting and implementing existing
algorithms on GPU. One step is to identify the applications or parts of the

! Faculty of Electronics, Telecommunications, and Information Technology, University
POLITEHNICA of Bucharest, Romania, e-mail: vstoica@yahoo.com

2 Faculty of Electronics, Telecommunications, and Information Technology, University
POLITEHNICA of Bucharest, Romania

® Faculty of Electronics, Telecommunications, and Information Technology, University
POLITEHNICA of Bucharest, Romania

148 George Valentin Stoica, Radu Dogaru, Elena Cristina Stoica

applications that exploit the multi-threaded capabilities of the multi-core GPU
architecture, another step is to identify and efficiently use the GPU specific
resources, i.e. multi-core computing power, fast memory resources (registry,
shared memory), high bandwidth long latency global memory, specific
architecture of threads, blocks, warps, grids. Image or video processing involves
large data and requires a significant level of data based parallel processing power,
migrating from CPU to GPU can generate 10x-200x typical speed-up [4].

From early experiments GPU architecture becomes a viable solution for
CNN implementations, for example the CNN edge detector on GPU execution
time is comparable with CPU OpenCV's Laplace transform [5]. A more recent
Fermi GPU architecture is included into a comparison along with the Intel i5
CPU, CELL and Xilinx Virtex-5 FPGA, all running the CNN image processor on
a 512x512 size image [6]. We introduce the T.;, the execution time per cell and

iteration, in order to unify the computing performance measurements.
Table 1
CPU, GPU, CELL, FPGA comparison [6]

Computing resources
. GTX560 XC5VSX240T
Intel i5 660 GPU CELL FPGA
Ta(ns) |2.519 0.227 0.276 |0.016
Acceleration 1 11.07 9.13 162.10

2. RD-CNN image processor

Exploring the huge parameter space the reaction-diffusion model can
implement many useful image processing tasks. One important advantage of this
model is the inherent parallelism and a simple coupling between cells. This makes
the RD-CNN suitable for discrete implementation using parallel systems like
FPGA, GPU and CPU as well. Choosing a two layers configuration, « and v, the
mathematical continuous-time model of the RD-CNN is:

du,

di =i 2V G+ Dy g 1ty g+t A)
dv,,
5 L0V DD Va4 Vi = W)) o
where f; and > are nonlinear functions given by (2):
filu,v)=cu - %us -V
fo(u,v)=—e(u—->bv+a))

The ¢, a, b, e set of cell parameters are called genes, G=[c, a, b, €], and D,
and D; are the diffusion coefficients defining the coupling.

Efficient image processing using reaction-diffusion CNN implemented in CUDA technol. ... 149

Developing the discrete-time image processor, [1] proposes the following
formulae:
u. . =Ax.

i, ij
Vig =A%,
for t=1..T, for allcelidi,)
u; =u,, +At[f(u —4u,.h/.)]

V:j =Vt At[f(ulj ' Vi,j) +D, (Vi+1,j FVig; PVija Vi _4Vi,j)]

i,j’Vi,j) +D1 (ui+1,j +ui—1,j +ui,j—1 +ui,j+l

_ +
U =U;

Vs =V (3)
There are two cell layers, corresponding to u;; and v;; cells. Each layer is
initialized with the input image to be processed, i.e. x;;, assuming that each

¥, €1 and 1 is the gain parameter that may influence the dynamics and the
output image. If not specified otherwise, A=0.5. The number of iterations, 7,
corresponds to a period of time of the continuous time model. Az is another
parameter that can tune the discrete time model, from various experiments Az
~(0.12 may lead to an unstable system, thus if not specified otherwise we will
consider At=0.1. By selecting the genes G and the number of iterations 7, there
can be implemented a wide range of image filters. Fig. 1 shows the evolution of
the two layers using specific parameters to implement the edge detection filter.

T=0 (initial) T=100 T=150 T=200

l Il /AY
Fig. 1. The evolution of the RD-CNN image processor for a=-0.5, b=1.2, c=1, e=-0.1, D1=0,
D2=2.2 and T=50,100,150,200 implementing the edge detection filter

The image processor presented in (3) describes an iterative intensively
computational process suited for implementation in various platforms like multi

150 George Valentin Stoica, Radu Dogaru, Elena Cristina Stoica

CPU, GPU, FPGA. Among all, one particular platform is analyzed in this paper:
GPU and more specifically the nVidia’s CUDA C platform.

3. Implementation model

Implementing the discrete-time image processor described in (3) is
straightforward, as presented in the next C like code:

void rd_cnn(float* ul, float * v1, float * u2, float * v2, int N){
for(i=1; i<N-1; i++){
for(=i*N+1; j<(i+1)*N-1; j++){
uz[jl=ulljl+de=(F1Cuifi].vifil)
+D1*(ul[j+1]+ul[j-1]+ul[j-w]+ul[j+w]-4.0F*ul[j])):
vZjl=vilj]+dt*(f2(uiljl.vigl)
+D2*(v1i[j+1]+Vvi[j-1]+Vvi[j-wl+vi[j+w]-4.0F*vi[jD);:}}}
void main({
for(t = 0; t<T; t++) {
rd_cnn(ul, vl1, u2, v2, N); u2<ul; v2evl;}}

Note that the initial 2D matrixes were transformed into 1D arrays using
row-major convention: all elements of the same row are placed into consecutive
memory locations. This is due the flar memory space used in both CPU and GPU
platforms, in which the main memory/global memory elements are accessed in a
linear mode. CUDA C uses row-major memory layout.

The above code lacks some steps as the initialization of the u1 and vi
matrixes from the input image. The input image contain NxN pixels and in the
case of grayscale images each pixel is an /0, 255] range integer value. Each value
must be transformed into /-0.5, 0.5] range floating point values as presented in
(3). Additional processing must be performed at the end of the T steps:
transforming the image back to grayscale image. In this case extra care must be
taken: values of the ul and v1 elements could exceed initial range and proper
scale must be performed. Frontier elements must be processed separately from the
internal elements since there are no left/right/up/down cells (depending on the
specific cell position), without this approach errors will be propagated to the inner
cells.

In order to have a relevant base for measuring the efficiency of GPU
implementations, there will be some simple optimizations to the initial code. For
example instead of accessing each memory location multiple times it is more
efficient to create a local variable that can be placed into the registry, initialize it
one and use it many times:

float utemp, vtemp;
for(i=1; i<N-1; i++){
for(=i*N+1; j<(i+1)*N-1; j++){

Efficient image processing using reaction-diffusion CNN implemented in CUDA technol. ... 151

utemp=ul[j]; vtemp=vli[j];
u2ly]=utemp+dt*(fl(utemp,Vvi[j])
+D1*(ul[j+1]+ul[j-1]+ul[j-NJ+ul[j+N]-4.0Ff*utemp));}}
Accessing an element can be made using the notation ul[i] or *uil, this
transforming the iteration through the entire array into the following:

float utemp, vtemp;
float* ultemp, vitemp;
ultemp = ul; vitemp = vi;
for(i=1; i<N-1; i++){
Ffor(J=i*N+1; j<(i+1)*N-1; j++){
utemp=ultemp++; vtemp=vlitemp++;}}

Using such optimizations there will be significant improvements and the
optimized execution code is twice as fast compared with the non-optimized

version, as presented in the Table 2.
Table 2
Execution time for optimized vs. non-optimized CPU code for various image size

Image size

Execution time (s)
512x512 | 1024x1024 | 2048x2048 | 4096x4096

CPU non-optimized 2.56 10.47 43.26 166.11
CPU optimized 1.33 5.34 21.08 88.54

4. GPU implementation using CUDA

RD-CNN exhibits a large degree of parallelism and a very simple coupling
between neighborhood cells. As resulted from (3), for a specific iteration and cell,
there is independence between cells, i.e. each u;; cell state is computed from its
corresponding value and neighborhood cells values set in the previous iteration.
Synchronization between iterations is required.

The massive degree of parallelism of the current GPUs can be exploited to
speed-up the execution time of RD-CNN. As opposite to GPU computing, CPU
computing using multithreading has some disadvantages: uses less power for
computing and focuses on complex data cache or flow control, uses complex and
slow structures for thread management, uses limited number of cores and threads,
has slower memory bandwidth. CPU is generally optimized for sequential code
execution, while the GPU is focused on massive floating point calculations
inherited from the initial purpose: 2D and 3D graphics. GPU trades large cache
and complex control chip circuitry to higher execution throughput.

Algorithms that focus on large number of arithmetic operations and lower
number of memory read/write operations will benefit more from the GPU
architectures. Such an algorithm is the implementation model of RD-CNN: initial

152 George Valentin Stoica, Radu Dogaru, Elena Cristina Stoica

data is loaded intro GPU memory, a large number of computations intensively
iterations are performed, and at the end the final image is transferred back to CPU.
Efficient GPU programming patterns are based on dividing the problem into a
large number of threads using fast memory resources (registry, shared memory,
and cache) and minimizing long latency main memory accesses. Rather than
dividing the problem in few large blocks as accustomed in multithreading CPU
implementations, GPU allows (and benefits) from computing each cell in a
separate thread thus obtaining hundreds, thousands and even tens of thousand of
threads that will be efficiently managed by the GPU control unit.

Load image

& v r' Y
Convert .
o 25‘15] —,[-0.5, 0.5] uy, vy, i,j: [1, N] [TPPRV Uy Vit v v e Unn, VAN
e
Synchronize
y
i [=/
v — v ——
Compute u*y, v*; uy, v ij: [1, NJ . 77T I Ug, Vjjp = oo 0o e UNN, VN[
Synchronize |
)
t<T —
v P 12 —
Convert ..
[-0.5, 0.5] — [0,255] uy, Vi bj: [1, N] Ug,Vagf = oo Ujjy Vit =+ =0 o e Unn, VAN

A
Save image Save image

CPU (sequential) GPU (parallel)
implementation model implementation model

Fig. 2. CPU sequential and GPU parallel implementation model of RD-CNN

I

Using CUDA C we can easily transform the CPU sequential
implementation into a parallel one that will run on GPU. But first we will just
implement the sequential code into GPU and run it in a single thread. This will
highlight the general recommendation that sequential algorithms achieve better
execution time using CPU platform due to their special architecture designed for
such problems. As presented in the Table 3, there are few orders of magnitude
difference when comparing the single thread versions of CPU and GPU executing

Efficient image processing using reaction-diffusion CNN implemented in CUDA technol. ... 153

the same code, highlighting that GPU shows its power only when all of its
resources are intensively used.

Table 3
CPU vs. GPU single thread execution time over various image sizes

Image size

Execution time (s)
128x128 | 256x256 512x512 |1024x10246

CPU sequential 0.13 0.27 1.33 5.34
GPU sequential 2.73 11.24 44.91 180.16
(1 thread)

The CUDA parallel programming model is based on the decomposition of
the problem into independent blocks of threads and assigning each block on the
available physical multiprocessors and cores. This enables the automatic
scalability: while each block can be independently executed, different hardware
with different number of physical multiprocessors can produce the same result
with different performance, i.e. the GPU with more multiprocessors will
automatically execute the program in less time than a GPU with fewer
multiprocessors. The numerous threads from each block provide fine-grained data
parallelism and thread parallelism, nested within coarse-grained data parallelism
and task parallelism represented by the blocks [7]. CUDA parallel programming
model is based on the following concepts:

- kernel: user defined functions that are executed by the threads

- threads: the smallest execution entity

- blocks: a collection of threads that runs on a physical multiprocessor
- grid: a collection of blocks

4x4 Grid of blocks

4x4 Block of threads

= 4
. /

Thread—Image pixel

Fig. 3. Image decomposition into bidimensional grids and blocks, and cell (pixel) level threads

154 George Valentin Stoica, Radu Dogaru, Elena Cristina Stoica

In order to assist the developers and match the decomposition of the
problem, blocks and grids can have one-dimensional, two-dimensional, or three-
dimensional structure: threads in a block and blocks in a grid can be organized
using one-, two-, or three-dimensional structure.

The highly multithreaded GPUs encourage the use of massive, fine-
grained data parallelism in CUDA. Efficient threading support in GPUs allows
applications to expose a much larger amount of parallelism than available
hardware execution resources with little or no penalty [8]. Applying this technique
to the image processing problem using RD-CNN we can use one thread to
compute the state of one cell. Threads are grouped in a two-dimensional block of
threads. Blocks of threads are grouped in a two-dimensional grid of blocks. The
grid and block are sized to have one thread per cell.

Implementing the model presented in Fig. 3 requires three kernel functions
that will run on the GPU hardware:

__global__ void gpu_int_to_float (float* u, float* v, const
unsigned char* image, int N){
int i = (blockldx.y * blockDim.y + threadldx.y) * N
+ blockldx.x * blockDim.x + threadldx.x;
float temp = (float)image[i]/ 256.0F - 0.5F;
u[i] = temp; Vv[i] = temp;}

__global__ void gpu_float_to_int (float* u, const unsigned char*
image, int N){
int i = (blockldx.y * blockDim.y + threadldx.y) * N
+ blockldx.x * blockDim.x + threadldx.x;
image[i] = (unsigned char)(255.0F * (u[i] + 0.5F));}

__global__ void gpu_rd_cnn(float* ul, float * vl1l, float * u2,
float * v2, int N){
i = (blockldx.y * blockDim.y + threadldx.y) * N
+ blockldx.x * blockDim.x + threadldx.x;
u2[i]=ulfi]+dt*(FLQulfi],Vvi[iD)
+D1*(ui[i+1]+ul[i-1]+ul[i-NJ+ul[i+N]-4.0fF*ul[i]));
v2[i]=vi[i]+dt*(f2(ui[i],vi[i]D)
+D2*(vi[i+1]+vi[i-1]+vi[i-N]+vi[i+N]-4.0fF*vi[i]));}

void main(){

dim3 dimBlock(blockSizeX, blockSizeY);//e.g.32x32 threads/block
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);//e.g.16x16 blocks/grid
gpu_int_to_float<<<dimGrid,dimBlock>>>(ul, v1, source_image, N);
cudabDeviceSynchronize();
for(t = 0; t<T; t++) {

gpu_rd_cnn(ul, vi, u2, v2, N);

cudaDeviceSynchronize();

u2-ul; v2evl; }
gpu_TFfloat_to_int<<<dimGrid,dimBlock>>>(ul, output_u_image, N);

Efficient image processing using reaction-diffusion CNN implemented in CUDA technol. ... 155

gpu_float_to_int<<<dimGrid,dimBlock>>>(v1l, output_v_image, N);
cudaDeviceSynchronize();}

Using 32x32 threads per block and N/32xN/32 grid of blocks, the
execution time is dramatically reduced compared with the CPU version, as shown

in the Table 4.
Table 4
CPU sequential vs. GPU multithread execution time
for various image sizes and T=200 iterations

Image size

Execution time (s)
512x512 | 1024x1024 | 2048x2048 | 4096x4096

CPU sequential 1.33 5.34 21.08 88.54
GPU multithread 0.05 0.16 0.51 1.96

Efficient implementation using CUDA must consider the hardware
resources and limitations. For example, in order to simplify the control unit of the
GPU, threads from a block are grouped in warps and are managed together: all the
threads from the warp executes the same instruction at one moment (but on
different data), all the threads from the warp are executed by the hardware cores
or all are waiting for a resource if one or may of them are waiting for that
resource. The warp size is a property of each device. The tested GPU has 32
threads per warp. If there are blocks having less than 32 threads, then there will be
an inefficient usage of the hardware resources since not all the 32 cores allocated
to the warp are occupied by a thread. As presented in the Table 5. it is clearly that

higher hardware occupancy provides better performance.
Table 5
Execution time as function of the number of threads in a warp
for 512x512 pixels image and T=200 iterations

Threads per warp

Execution time (s)
1 2 4 8 16 32

GPU multithread 1.12 0.58 0.30 0.17 | 0.10 | 0.05

One disadvantage of GPU over CPU is the global memory access latency.
Depending on the hardware version there is 200-800 clock cycles latency while
accessing a byte from the global memory [7]. For maximum performance, these
memory accesses must be coalesced as with accesses to global memory. Global
memory resides in the device memory and device memory is accessed via 32-, 64-
, or 128-byte memory transactions. When a warp executes an instruction that
accesses global memory, it coalesces the memory accesses of the threads within
the warp into one or more of these memory transactions depending on the size of

156 George Valentin Stoica, Radu Dogaru, Elena Cristina Stoica

the word accessed by each thread and the distribution of the memory addresses
across the threads. By convention the image matrix is organized using row-major
configuration as described in section 3. Simultaneously accessing consecutive
cells from a row ensures that these accesses can be included into a single
transaction. Organizing the blocks in horizontal tiles ensures that consecutive
threads will access consecutive memory locations as a single transaction. As
opposite to this configuration, when the blocks are organized in vertical tiles then
each threads will access scattered memory locations with limited to no chance that
these access to be grouped into a single transaction, as presented in the Fig. 4.

Row-major image in global memory

NENNEEENNENENEEE CEENEEEE

Y -
Block with coalesced access
': i Block with partial coalesced access
§ Block with no coalesced access

Fig. 4. Horizontal blocks vs. vertical blocks and the memory access to the row-major image matrix

Execution time (ms)

Vertical block

size (Y)

16 32 64
Horizontal block size (X)

128 954

Fig. 5. Execution time for different block dimensions for 512x512 image size and T=200 iterations

Efficient image processing using reaction-diffusion CNN implemented in CUDA technol. ... 157

The difference between coalesced and not coalesced global memory access
is reflected into the execution time, as presented in the Fig. 5. Horizontal blocks
(i.e. 256x1, 256x2, 128x1 etc.) performs coalesced memory access and the
execution time is at least half compared with the no coalesced memory access
specific to vertical blocks (i.e. 1x256, 2x256, 1x128 etc.). Note that there is a
hardware limit for maximum 1024 threads per block.

5. Conclusions

This paper proposes an implementation model for reaction-diffusion CNN
as defined in [1]. The model requires a significant amount of computing power
necessary to implement image processing tasks and there is a need for efficient
implementations. One cost effective solution is to implement the model using the
massive parallel power of GPU. Another advantage in favor of this solution is that
current development tools does not requires learning GPU new or specific
programming languages, for example nVidia’s CUDA platform is compatible
with C, C++, FORTRAN easing the conversion of existing CPU applications for
GPU execution.

Several techniques of GPU resources usage were tested. According to the
experiments presented in this paper the acceleration over the CPU implementation
can go up to 77x, this using the GPU’s global memory, shared memory, local

registers and computing power.
Table 6
CPU and GPU execution time and corresponding acceleration
for various image size and T=200 iterations

Image size

512x512|768x768(1024x10241536x1536[2048x20483072x3072/4096x4096

Execution CPU 1.329 | 2.474 5.338 12.065 | 21.084 | 48.534 | 85.442
time (s) | sequential

GPU multi-| 0,034 | 0,052 0,081 0,173 0,287 0,641 1,115
threading

Execution CPU 25,349 | 20,972 | 25,454 | 25,569 | 25,134 | 25,714 | 25,464
time per | sequential

celland |GPU multi-| 0,648 | 0,441 | 0,386 0,367 0,342 0,340 0,332
iteration | threading
Tcil (ns)

Acceleration 39x 48x 66X 70x 73X 76X 77X

Measurements were performed on the following hardware/software
architecture:
- Windows 7/32 bit operating system, nVidia CUDA C Toolkit v5.5
- CPU Intel Core 2Duo E6320 CPU running at 1.860 GHz [9], 2GB DDR2
DRAM

158 George Valentin Stoica, Radu Dogaru, Elena Cristina Stoica

- GPU nVidia GeForce GTX 650 Ti Boost using Kepler architecture
compatibility 3.0, four 980 MHz base clock multiprocessors, each having

196 cores with a total of 768 cores, 1GB GDDR5 DRAM with a

bandwidth of 144.2 GB/s [10].

Tests were performed on 8bpp grayscale images with various dimensions.
Computations were made using single precision floating point numbers. The
measured execution time includes the data transfer between the CPU main
memory and GPU global memory and back. Initial memory allocation and final
memory freeing were not measured.

Future work will extend the GPU model for using other CUDA specific
resources like shared memory, more registries. Instead floating point operations a
version using only integer operations can be tested for more efficient execution
time while obtaining similar results. Current experiments were conducted only for
still images obtaining for example =0.05 seconds processing time for 1024x1024
pixels grayscale images, this being equivalent with 20fps. Further enhancements
and interleaving CPU-GPU-CPU image copy and GPU image processing can be
used for real-time video processing.

REFERENCES

[1]. R. Dogaru, “Applications of Emergent Computation in Reaction-Diffusion CNNs for Image
Processing”, International Conference on Control Systems and Computer Science (CSCS),
Bucharest, 29-31 May 2013, pp. 370 — 377

[2]. K.V. Kalgin, “Implementation of algorithms with a fine-grained parallelism on GPUs”,
Numerical Analysis and Applications, VVol.4, No.1, 2011, pp. 46-55.

[3]. *** GPU Applications by domain, http://www.nvidia.com/object/gpu-applications-
domain.html

[4]. R. Di Salvo and C. Pino, “Image and Video Processing on CUDA: State of the Art and Future
Directions”, MACMESE'11 Proceedings of the 13th WSEAS international conference on
Mathematical and computational methods in science and engineering, pp. 60-66, 2011

[5]- R. Dolan and G. DeSouza, “GPU-Based Simulation of Cellular Neural Networks for Image
Processing”, Proceedings of International Joint Conference on Neural Networks, Atlanta,
Georgia, USA, June 14-19, 2009

[6]. E. Laszlo, P. Szolgay and Z. Nagy, “Analysis of a GPU based CNN implementation”, 13th
International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA),
Turin, Aug. 29-31, 2012

[7]. *** CUDA C Programming Guide, http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html

[8]. D. B. Kirk and W. W. Hwu, “Programming Massively Parallel Processors”, Second Edition,
Morgan Kaufmann, 2013

[9]. *** Intel Core 2Duo E6320 CPU specifications
http://www.intel.com/support/processors/sb/CS-032819.htm

[10]. *** nVidia GeForce 650Ti Boost Hardware specifications,
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-650ti-boost/specifications

