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EFFICIENT IMAGE PROCESSING USING REACTION-
DIFFUSION CNN  IMPLEMENTED IN CUDA TECHNOLOGY 

George Valentin STOICA1, Radu DOGARU2, Elena Cristina STOICA3  

This paper proposes an implementation model for reaction-diffusion Cellular 
nonlinear networks (RD-CNN) on CPU and GPU platforms. Efficient 
implementations are proposed in order to speed-up the computational model of the 
RD-CNN using nVidia’s CUDA platform, highlighting the GPU advantages over the 
CPU. 
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1. Introduction 

This paper explores an implementation model for speeding-up the 
execution time for the highly computational model of the reaction-diffusion CNN 
(RD-CNN) described in [1]. RD-CNNs as well as standard CNNs are computing 
intensive, and this is a limiting factor to explore its full potential especially for 
image processing tasks. Hardware implementations using VLSI or FPGA 
architectures can provide the required computing power but at a higher 
acquisition, development and implementation costs. Recent developments of 
General-Purpose computation on Graphics Processing Units (GPGPU) technology 
provide scalable, powerful and cost effective solutions [2].  

GPU represents an important computing resource due to its widespread 
cost effective powerful and massively parallel architecture. There are various 
fields in which GPU accompanies classic CPU architectures or even replace them 
in order to solve intensive computing tasks: imaging, computer vision, finance, 
scientific visualizations, cryptography, etc [3].  Investigating the capabilities of 
GPU could produce affordable and easy to implement models for implementing 
intensive computation RD-CNN image processor. 

Increased interest is focused on adapting and implementing existing 
algorithms on GPU. One step is to identify the applications or parts of the 
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applications that exploit the multi-threaded capabilities of the multi-core GPU 
architecture, another step is to identify and efficiently use the GPU specific 
resources, i.e. multi-core computing power, fast memory resources (registry, 
shared memory), high bandwidth long latency global memory, specific 
architecture of threads, blocks, warps, grids. Image or video processing involves 
large data and requires a significant level of data based parallel processing power, 
migrating from CPU to GPU can generate 10x-200x typical speed-up [4]. 

From early experiments GPU architecture becomes a viable solution for 
CNN implementations, for example the CNN edge detector on GPU execution 
time is comparable with CPU OpenCV's Laplace transform [5]. A more recent 
Fermi GPU architecture is included into a comparison along with the Intel i5 
CPU, CELL and Xilinx Virtex-5 FPGA, all running the CNN image processor on 
a 512x512 size image [6]. We introduce the Tcit, the execution time per cell and 
iteration, in order to unify the computing performance measurements. 

Table 1 
CPU, GPU, CELL, FPGA comparison [6] 

 
Computing resources 

Intel i5 660 GTX560 
GPU CELL XC5VSX240T 

FPGA 
Tcit(ns) 2.519 0.227 0.276 0.016 

Acceleration 1 11.07 9.13 162.10 

2. RD-CNN image processor 

Exploring the huge parameter space the reaction-diffusion model can 
implement many useful image processing tasks. One important advantage of this 
model is the inherent parallelism and a simple coupling between cells. This makes 
the RD-CNN suitable for discrete implementation using parallel systems like 
FPGA, GPU and CPU as well. Choosing a two layers configuration, u and ν, the 
mathematical continuous-time model of the RD-CNN is: 
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where f1 and f2 are nonlinear functions given by (2): 
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    (2) 
The c, a, b, e set of cell parameters are called genes, G=[c, a, b, e], and D1 

and D2 are the diffusion coefficients defining the coupling. 
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Developing the discrete-time image processor, [1] proposes the following 
formulae: 
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   (3) 
There are two cell layers, corresponding to ui,j and vi,j cells. Each layer is 

initialized with the input image to be processed, i.e. xi,j, assuming that each 
]1,1[, −∈jix  and λ is the gain parameter that may influence the dynamics and the 

output image. If not specified otherwise, λ=0.5. The number of iterations, T, 
corresponds to a period of time of the continuous time model. ∆t is another 
parameter that can tune the discrete time model, from various experiments ∆tcrit 
≈0.12 may lead to an unstable system, thus if not specified otherwise we will 
consider ∆t=0.1. By selecting the genes G and the number of iterations T, there 
can be implemented a wide range of image filters. Fig. 1 shows the evolution of 
the two layers using specific parameters to implement the edge detection filter. 

 

 
Fig. 1. The evolution of the RD-CNN image processor for a=-0.5, b=1.2, c=1, e=-0.1, D1=0, 

D2=2.2 and T=50,100,150,200 implementing the edge detection filter 
 
The image processor presented in (3) describes an iterative intensively 

computational process suited for implementation in various platforms like multi 
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CPU, GPU, FPGA. Among all, one particular platform is analyzed in this paper: 
GPU and more specifically the nVidia’s CUDA C platform. 

3. Implementation model 

Implementing the discrete-time image processor described in (3) is 
straightforward, as presented in the next C like code: 

 
void rd_cnn(float* u1, float * v1, float * u2, float * v2, int N){ 
  for(i=1; i<N-1; i++){ 
    for(j=i*N+1; j<(i+1)*N-1; j++){ 
      u2[j]=u1[j]+dt*(f1(u1[j],v1[j]) 

+D1*(u1[j+1]+u1[j-1]+u1[j-w]+u1[j+w]-4.0f*u1[j])); 
      v2[j]=v1[j]+dt*(f2(u1[j],v1[j]) 

+D2*(v1[j+1]+v1[j-1]+v1[j-w]+v1[j+w]-4.0f*v1[j]));}}} 
void main(){ 
  for(t = 0; t<T; t++)  { 
    rd_cnn(u1, v1, u2, v2, N); u2↔u1; v2↔v1;}} 

 
Note that the initial 2D matrixes were transformed into 1D arrays using 

row-major convention: all elements of the same row are placed into consecutive 
memory locations. This is due the flat memory space used in both CPU and GPU 
platforms, in which the main memory/global memory elements are accessed in a 
linear mode. CUDA C uses row-major memory layout.  

The above code lacks some steps as the initialization of the u1 and v1 
matrixes from the input image. The input image contain NxN pixels and in the 
case of grayscale images each pixel is an [0, 255] range integer value. Each value 
must be transformed into [-0.5, 0.5] range floating point values as presented in 
(3). Additional processing must be performed at the end of the T steps: 
transforming the image back to grayscale image. In this case extra care must be 
taken: values of the u1 and v1 elements could exceed initial range and proper 
scale must be performed. Frontier elements must be processed separately from the 
internal elements since there are no left/right/up/down cells (depending on the 
specific cell position), without this approach errors will be propagated to the inner 
cells. 

In order to have a relevant base for measuring the efficiency of GPU 
implementations, there will be some simple optimizations to the initial code. For 
example instead of accessing each memory location multiple times it is more 
efficient to create a local variable that can be placed into the registry, initialize it 
one and use it many times: 

 
float utemp, vtemp; 
for(i=1; i<N-1; i++){ 
  for(j=i*N+1; j<(i+1)*N-1; j++){ 
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    utemp=u1[j]; vtemp=v1[j]; 
    u2[y]=utemp+dt*(f1(utemp,v1[j]) 

+D1*(u1[j+1]+u1[j-1]+u1[j-N]+u1[j+N]-4.0f*utemp));}} 
Accessing an element can be made using the notation u1[i] or *u1, this 

transforming the iteration through the entire array into the following: 
 

float utemp, vtemp; 
float* u1temp, v1temp; 
u1temp = u1; v1temp = v1; 
for(i=1; i<N-1; i++){ 
  for(j=i*N+1; j<(i+1)*N-1; j++){ 
    utemp=u1temp++; vtemp=v1temp++;}} 

 
Using such optimizations there will be significant improvements and the 

optimized execution code is twice as fast compared with the non-optimized 
version, as presented in the Table 2.  

Table 2 
Execution time for optimized vs. non-optimized CPU code for various image size 

Execution time (s) 
Image size 

512x512 1024x1024 2048x2048 4096x4096 

CPU non-optimized 2.56 10.47 43.26 166.11 
CPU optimized 1.33 5.34 21.08 88.54 

4. GPU implementation using CUDA 

RD-CNN exhibits a large degree of parallelism and a very simple coupling 
between neighborhood cells. As resulted from (3), for a specific iteration and cell, 
there is independence between cells, i.e. each ui,j cell state is computed from its 
corresponding value and neighborhood cells values set in the previous iteration. 
Synchronization between iterations is required. 

The massive degree of parallelism of the current GPUs can be exploited to 
speed-up the execution time of RD-CNN. As opposite to GPU computing, CPU 
computing using multithreading has some disadvantages: uses less power for 
computing and focuses on complex data cache or flow control, uses complex and 
slow structures for thread management, uses limited number of cores and threads, 
has slower memory bandwidth. CPU is generally optimized for sequential code 
execution, while the GPU is focused on massive floating point calculations 
inherited from the initial purpose: 2D and 3D graphics. GPU trades large cache 
and complex control chip circuitry to higher execution throughput.  

Algorithms that focus on large number of arithmetic operations and lower 
number of memory read/write operations will benefit more from the GPU 
architectures. Such an algorithm is the implementation model of RD-CNN: initial 
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data is loaded intro GPU memory, a large number of computations intensively 
iterations are performed, and at the end the final image is transferred back to CPU. 
Efficient GPU programming patterns are based on dividing the problem into a 
large number of threads using fast memory resources (registry, shared memory, 
and cache) and minimizing long latency main memory accesses. Rather than 
dividing the problem in few large blocks as accustomed in multithreading CPU 
implementations, GPU allows (and benefits) from computing each cell in a 
separate thread thus obtaining hundreds, thousands and even tens of thousand of 
threads that will be efficiently managed by the GPU control unit. 

 

 
Fig. 2. CPU sequential and GPU parallel implementation model of RD-CNN 

 
Using CUDA C we can easily transform the CPU sequential 

implementation into a parallel one that will run on GPU. But first we will just 
implement the sequential code into GPU and run it in a single thread. This will 
highlight the general recommendation that sequential algorithms achieve better 
execution time using CPU platform due to their special architecture designed for 
such problems. As presented in the Table 3, there are few orders of magnitude 
difference when comparing the single thread versions of CPU and GPU executing 
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the same code, highlighting that GPU shows its power only when all of its 
resources are intensively used. 

 
Table 3 

CPU vs. GPU single thread execution time over various image sizes 

Execution time (s) 
Image size 

128x128 256x256 512x512 1024x10246 

CPU sequential 0.13 0.27 1.33 5.34 
GPU sequential  

(1 thread) 
2.73 11.24 44.91 180.16 

 
The CUDA parallel programming model is based on the decomposition of 

the problem into independent blocks of threads and assigning each block on the 
available physical multiprocessors and cores. This enables the automatic 
scalability: while each block can be independently executed, different hardware 
with different number of physical multiprocessors can produce the same result 
with different performance, i.e. the GPU with more multiprocessors will 
automatically execute the program in less time than a GPU with fewer 
multiprocessors. The numerous threads from each block provide fine-grained data 
parallelism and thread parallelism, nested within coarse-grained data parallelism 
and task parallelism represented by the blocks [7]. CUDA parallel programming 
model is based on the following concepts: 

- kernel:  user defined functions that are executed by the threads 
- threads: the smallest execution entity 
- blocks: a collection of threads that runs on a physical multiprocessor 
- grid: a collection of blocks 

 

 
Fig. 3. Image decomposition into bidimensional grids and blocks, and cell (pixel) level threads 
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In order to assist the developers and match the decomposition of the 
problem, blocks and grids can have one-dimensional, two-dimensional, or three-
dimensional structure: threads in a block and blocks in a grid can be organized 
using one-, two-, or three-dimensional structure.  

The highly multithreaded GPUs encourage the use of massive, fine-
grained data parallelism in CUDA. Efficient threading support in GPUs allows 
applications to expose a much larger amount of parallelism than available 
hardware execution resources with little or no penalty [8]. Applying this technique 
to the image processing problem using RD-CNN we can use one thread to 
compute the state of one cell. Threads are grouped in a two-dimensional block of 
threads. Blocks of threads are grouped in a two-dimensional grid of blocks. The 
grid and block are sized to have one thread per cell. 

Implementing the model presented in Fig. 3 requires three kernel functions 
that will run on the GPU hardware: 

 
__global__ void gpu_int_to_float (float* u, float* v, const 
unsigned char* image, int N){ 
  int i = (blockIdx.y * blockDim.y + threadIdx.y) * N  

+ blockIdx.x * blockDim.x + threadIdx.x; 
  float temp = (float)image[i]/ 256.0f - 0.5f; 
  u[i] = temp;  v[i] = temp;} 
 
__global__ void gpu_float_to_int (float* u, const unsigned char* 
image, int N){ 
  int i = (blockIdx.y * blockDim.y + threadIdx.y) * N  

+ blockIdx.x * blockDim.x + threadIdx.x; 
  image[i] = (unsigned char)( 255.0f * (u[i] + 0.5f));} 
 
__global__ void gpu_rd_cnn(float* u1, float * v1, float * u2, 
float * v2, int N){ 
  i = (blockIdx.y * blockDim.y + threadIdx.y) * N  

+ blockIdx.x * blockDim.x + threadIdx.x; 
  u2[i]=u1[i]+dt*(f1(u1[i],v1[i]) 

+D1*(u1[i+1]+u1[i-1]+u1[i-N]+u1[i+N]-4.0f*u1[i])); 
  v2[i]=v1[i]+dt*(f2(u1[i],v1[i]) 

+D2*(v1[i+1]+v1[i-1]+v1[i-N]+v1[i+N]-4.0f*v1[i]));} 
 

void main(){ 
  dim3 dimBlock(blockSizeX, blockSizeY);//e.g.32x32 threads/block 
  dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);//e.g.16x16 blocks/grid 
  gpu_int_to_float<<<dimGrid,dimBlock>>>(u1, v1, source_image, N);  
  cudaDeviceSynchronize(); 
  for(t = 0; t<T; t++)  { 
    gpu_rd_cnn(u1, v1, u2, v2, N); 
    cudaDeviceSynchronize(); 
    u2↔u1; v2↔v1; } 
  gpu_float_to_int<<<dimGrid,dimBlock>>>(u1, output_u_image, N); 
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  gpu_float_to_int<<<dimGrid,dimBlock>>>(v1, output_v_image, N);  
  cudaDeviceSynchronize();} 

 
Using 32x32 threads per block and N/32xN/32 grid of blocks, the 

execution time is dramatically reduced compared with the CPU version, as shown 
in the Table 4. 

Table 4 
CPU sequential vs. GPU multithread execution time  

for various image sizes and T=200 iterations 

Execution time (s) 
Image size 

512x512 1024x1024 2048x2048 4096x4096 

CPU sequential 1.33 5.34 21.08 88.54 
GPU multithread 0.05 0.16 0.51 1.96 

 
Efficient implementation using CUDA must consider the hardware 

resources and limitations. For example, in order to simplify the control unit of the 
GPU, threads from a block are grouped in warps and are managed together: all the 
threads from the warp executes the same instruction at one moment (but on 
different data), all the threads from the warp are executed by the hardware cores 
or all are waiting for a resource if one or may of them are waiting for that 
resource. The warp size is a property of each device. The tested GPU has 32 
threads per warp. If there are blocks having less than 32 threads, then there will be 
an inefficient usage of the hardware resources since not all the 32 cores allocated 
to the warp are occupied by a thread. As presented in the Table 5. it is clearly that 
higher hardware occupancy provides better performance. 

Table 5 
Execution time as function of the number of threads in a warp  

for 512x512 pixels image and T=200 iterations 

Execution time (s) 
Threads per warp 

1 2 4 8 16 32 

GPU multithread 1.12 0.58 0.30 0.17 0.10 0.05 
 
One disadvantage of GPU over CPU is the global memory access latency. 

Depending on the hardware version there is 200-800 clock cycles latency while 
accessing a byte from the global memory [7]. For maximum performance, these 
memory accesses must be coalesced as with accesses to global memory. Global 
memory resides in the device memory and device memory is accessed via 32-, 64-
, or 128-byte memory transactions. When a warp executes an instruction that 
accesses global memory, it coalesces the memory accesses of the threads within 
the warp into one or more of these memory transactions depending on the size of 
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the word accessed by each thread and the distribution of the memory addresses 
across the threads. By convention the image matrix is organized using row-major 
configuration as described in section 3. Simultaneously accessing consecutive 
cells from a row ensures that these accesses can be included into a single 
transaction. Organizing the blocks in horizontal tiles ensures that consecutive 
threads will access consecutive memory locations as a single transaction.  As 
opposite to this configuration, when the blocks are organized in vertical tiles then 
each threads will access scattered memory locations with limited to no chance that 
these access to be grouped into a single transaction, as presented in the Fig. 4. 

 

 
Fig. 4. Horizontal blocks vs. vertical blocks and the memory access to the row-major image matrix 
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Fig. 5. Execution time for different block dimensions for 512x512 image size and T=200 iterations 
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The difference between coalesced and not coalesced global memory access 
is reflected into the execution time, as presented in the Fig. 5. Horizontal blocks 
(i.e. 256x1, 256x2, 128x1 etc.) performs coalesced memory access and the 
execution time is at least half compared with the no coalesced memory access 
specific to vertical blocks (i.e. 1x256, 2x256, 1x128 etc.). Note that there is a 
hardware limit for maximum 1024 threads per block. 

5. Conclusions 

This paper proposes an implementation model for reaction-diffusion CNN 
as defined in [1]. The model requires a significant amount of computing power 
necessary to implement image processing tasks and there is a need for efficient 
implementations. One cost effective solution is to implement the model using the 
massive parallel power of GPU. Another advantage in favor of this solution is that 
current development tools does not requires learning GPU new or specific 
programming languages, for example nVidia’s CUDA platform is compatible 
with C, C++, FORTRAN easing the conversion of existing CPU applications for 
GPU execution. 

Several techniques of GPU resources usage were tested. According to the 
experiments presented in this paper the acceleration over the CPU implementation 
can go up to 77x, this using the GPU’s global memory, shared memory, local 
registers and computing power. 

Table 6 
CPU and GPU execution time and corresponding acceleration  

for various image size and T=200 iterations 
 Image size 

512x512 768x768 1024x10241536x15362048x20483072x30724096x4096
Execution 
time (s) 

CPU 
sequential 

1.329 2.474 5.338 12.065 21.084 48.534 85.442 

GPU multi-
threading 

0,034 0,052 0,081 0,173 0,287 0,641 1,115 

Execution 
time per 
cell and 
iteration 
Tcit (ns) 

CPU 
sequential 

25,349 20,972 25,454 25,569 25,134 25,714 25,464 

GPU multi-
threading 

  0,648   0,441   0,386   0,367   0,342   0,340   0,332 

Acceleration 39x 48x 66x 70x 73x 76x 77x 
 
Measurements were performed on the following hardware/software 

architecture: 
- Windows 7/32 bit operating system, nVidia CUDA C Toolkit v5.5 
- CPU Intel Core 2Duo E6320 CPU running at 1.860 GHz [9], 2GB DDR2 

DRAM 
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- GPU nVidia GeForce GTX 650 Ti Boost using Kepler architecture 
compatibility 3.0, four 980 MHz base clock multiprocessors, each having 
196 cores with a total of 768 cores, 1GB GDDR5 DRAM with a 
bandwidth of 144.2 GB/s [10]. 
Tests were performed on 8bpp grayscale images with various dimensions. 

Computations were made using single precision floating point numbers. The 
measured execution time includes the data transfer between the CPU main 
memory and GPU global memory and back. Initial memory allocation and final 
memory freeing were not measured. 

Future work will extend the GPU model for using other CUDA specific 
resources like shared memory, more registries. Instead floating point operations a 
version using only integer operations can be tested for more efficient execution 
time while obtaining similar results. Current experiments were conducted only for 
still images obtaining for example ≅ 0.05 seconds processing time for 1024x1024 
pixels grayscale images, this being equivalent with 20fps. Further enhancements 
and interleaving CPU-GPU-CPU image copy and GPU image processing can be 
used for real-time video processing.  
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