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AN EMPIRICAL METHOD FOR SIGNAL STATIONARITY 

ESTIMATION 

Hristo ZHIVOMIROV1 

The paper presents a novel method for estimation of the wide-sense stationarity 

of signals / time series / data sequences without a priori knowledge of the underlying 

process and without efforts to make an inference about it. The method is entirely 

empirical and threatens the signal “as it is”. 

At the beginning of the paper, a clarification of the stationarity concept is 

provided concerning both the processes and the corresponding signals, with 

particular attention to the problems related to the application of some known signal 

stationary estimation techniques. After that, a logical explanation and a mathematical 

description of the newly proposed method are given, incl. an algorithm. Several 

numerical experiments are performed to verify the performance of the proposed 

method. Finally, some conclusions are made regarding the presented work. 
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1. Introduction 

The estimation of whether a given process is stationary or not is a classic 

problem in signal processing (e.g., speech processing) [1]; econometrics (e.g., 

modeling of market behavior) [2]; environmental science (e.g., climate modeling) 

[3]; medicine (e.g., patients monitoring [4]), etc.  

In many cases, one deals only with a single realization (e.g., signal / time 

series) instead of the corresponding underlying process. Hence, the fundamental 

consideration is whether a resulting signal is stationary or not. Moreover, the signal 

shall be considered “as it is”, that is, without a priori knowledge about the 

underlying process. Also, surprisingly (or not), there are situations when the process 

is stationary, but the resulted signal is not (e.g., data sequence containing ten 

outcomes from a Bernoulli process – coin flipping).  

A signal is said to be wide-sense stationary (WSS) if its local statistical 

properties up to the second-order are time-invariant [5] or which is the same – the 

local spectral content of the signal does not vary by time [6]. In other words, using 

purely engineering terms, the stationarity of a signal concerns its DC value, RMS 

value and spectral content. 

This problem is not trivial since it directly affects the proper choice of signal 

analysis tools. For instance, the power spectral density could be calculated using 

the autocorrelation function (ACrF) or Bartlett's or Welch's methods only if the 
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signal is WSS. Otherwise, a proper time-frequency analysis technique (e.g., short-

time Fourier transform) should be used [6]. 

Three basic techniques exist for assessing a data sequence's stationarity, 

described in the next section. It would be shown that each has serious drawbacks 

(e.g., subjectivity, no possibility for automation of the assessment process, too 

many erroneous results, inappropriateness for some signal types, etc.). So, a niche 

exists for a novel, more accurate, and robust stationary estimation method. 

To overcome the above problems, a novel approach for signal stationarity 

estimation is proposed and described below. This work extends and further 

develops the study presented in [7]. The developed method is implemented in the 

Matlab® environment and is ready-to-use for real-world scientific and engineering 

applications. 

The paper is organized as follows: (i) at the beginning, a clarification of the 

stationarity concept is provided concerning both the processes and the 

corresponding signals; (ii) special attention is paid to the problems related to the 

application of the known signal stationary estimation techniques; (iii) an 

explanation and a description of the newly proposed method for signal WSS 

estimation is given; (iv) results from experiments for sake of verification and 

demonstration of the method are shown and conclusions are made regarding the 

presented work. 

2. Background 

In this section, we clarify the concept of stationarity. First, let's consider a 

discrete a priori unknown process (phenomenon) ( ) , : ,X s t s S t T     

defined in the index set (e.g., time domain) T, which is an object of observation 

(e.g., measurement) by an experiment. For the observation time, a set of outcome 

results (events) are collected, forming the event space E S , part of the sample 

space S (population) – the aggregate observations of the process ( ),X s t  [8].  

The members of the event space E may be arranged in an event matrix 

( ), : ,M NX e t M N   as shown in Fig. 1. For instance, one may think of it as 

a dataset from meteorological temperature measurements from M different spatial 

locations containing N data values each. 

For a fixed event me , ( )eX t  is a time series (a realization) ( )x t , and for a 

fixed time nt , ( )tX e  is an ensemble of realizations (a random variable) ( )x e . In 

terms of our example, each time series is a set of data from a single measurement 

location as a function of time, and the cross-section of the time series at time t is 

the state of the thermal process at time t. In this light, the process may be considered 

as a collection of events ensembles defined at specific time instances [9]. 
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Fig. 1. A graphical representation of an event matrix ( ),X e t  and the related concepts for an 

ensemble of realizations and a single realization (time series). 

 

The dynamic behavior of the processes can be analyzed by answering how 

the statistical properties of its ensembles vary in time. The process is considered 

stationary if they remain unchanged in time (i.e., time-invariant). This property is 

of great significance since unless the stationarity is established for the stochastic 

process under consideration, the analysis of the last becomes intractable [9]. Many 

stochastic processes have that property, so their average statistical properties are 

stable and time-independent. However, many other processes and their 

corresponding signals are nonstationary, so special methods for handling them 

should be implemented. Hence, an analysis tool should be used to assess whether 

the signal is stationary or not. 

From a practical point of view, the so-called wide-sense / weak-sense / 

covariance stationarity is of particular interest. It refers to the stationarity of the 

statistical properties of the successive data ensembles up to the second-order (first- 

and second-order moments) – sample (empirical) mean xm  and sample (empirical) 

cross-covariance xys  [10].  

In the typical case, ( )xm t  and ( )xys t  are functions of time [5, 11]: 
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( ) ( )
1

,x n m n

m

m t x e t
M
 ,                                         (1) 

( ) ( ) ( )
1

, , ,xy k n m k m n

m

s t t x e t x e t
M
 .                                (2) 

For a WSS process [5, 11]: 

( ) .,x nm t const n=  ,                                             (3) 

( ) ( ), : , ,xy k n xy n ks t t s t t k n = = −  ,                                 (4) 

so that xm  is not a function of time t (i.e., it is time-invariant) and ( )xys   is a 

function only of the time-shift τ between the considered ensembles of realizations. 

One should be aware that for most of the real-world processes, the sample 

space S is not fully available and so the process is not fully cognizable (e.g., the 

monthly financial benefit on each household in New York /USA/ for a specific year 

or the exact position and velocity of any car in Varna /Bulgaria/ during a specific 

day). 

Moreover, in many cases, only one realization of the process is available 

(due to physical restrictions or due to the nature of the process), for instance, the 

output of flipping a coin several times (Bernoulli process) or the daily USD/EUR 

exchange rate for the last month (Lévy process). In such a case, a new question 

arises concerning the stationarity of the available single realization itself (e.g., 

signal / time series) instead of the process as a whole. At this stage, one should be 

aware that one does not make assumptions about the process but only about a single 

realization that is not statistically representative of the underlying process. 

The already presented paradigm of WSS of a process can be applied to a 

single time series but with modifications. A time series is said to be WSS if Eqs. 

(3) and (4) holds true [11]. Now, one does not dispose with the process' ensembles 

of realizations but only one time series; hence, the averaging should take place 

locally in the time domain (cf. Fig. 2), that is, one should work with the time-

localized statistical properties of the signal instead of the ensemble's one. 

In light of the above discussion, in this paper, the object of consideration is 

assessing whether a given signal is stationary without considering the underlying 

process. We defined the signal as WSS if: (i) its (time-localized) mean value xm  

(i.e., the first-order raw moment) is constant over time (in the boundary of the signal 

existence) and if (ii) its (time-localized) autocovariance function (i.e., the second-

order central cross-moment) ( ),xx k nC t t  depends only on the difference k nt t = −

, but not on their particular values [11].  
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Fig. 2. A graphical representation of the ensemble averaging in one particular time instant vs. the 

time-localized averaging in one particular signal realization. The presented WSS estimation 

technique adopts the second approach, as only one signal realization is available in most cases. 

 

It is known that the jth-order stationarity guarantees the ith-order stationarity 

for all i j , that is, if a process is second-order (i.e., covariance) stationary, the 

process is also first-order (i.e., mean) stationary [9]. As a matter of principle, this 

property allows one to estimate the WSS of a given signal by checking directly for 

second-order stationarity. However, performing a check for both the mean and 

covariance is practically advisable. Moreover, for completeness, we also suggest a 

test for stationarity about variance along with autocovariance. This measure ensures 

more robustness of the proposed estimation method and is more informative 

regarding the reasons for possible nonstationarity of the signal under test.   

3. The Problem of the Stationarity Estimation 

Three basic techniques exist for assessing the stationarity of a data sequence 

– visual inspection of the run-plot of the data, visual inspection of the correlogram, 

and statistical tests.  

The researcher's expertise and experience limit the visual inspection of the 

data graph, so this method is too subjective. Also, it cannot be automatized, so it is 

impractical for large datasets. 

The second approach to estimate the stationarity of the signals by the 

correlogram (the plot of the ACrF) is shown in [12]. This technique turns out to be 

entirely irrelevant since there are pieces of evidence that the ACrF has no relation 

to the stationarity of the signal i.e., the shape of the ACrF is not indicative of the 

stationarity. Hyndman and Athanasopoulos stated: “As well as the time plot of the 

data, the ACrF plot is also useful for identifying nonstationary time series. For a 

stationary time series, the ACrF will drop to zero relatively quickly, while the ACrF 
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of nonstationary data decreases slowly. Also, for nonstationary data, the value of r1 

(i.e., ACrF for a lag of one sample) is often large and positive.”    

Fig. 3 shows the ACrF of a linear frequency-modulated (LFM) signal, which 

contradicts the above statement insofar as the LMF signal is a notorious example 

of nonstationary behavior. In addition, Fig. 4 depicts a correlogram of a sine-wave 

signal, showing that the ACrF decreases slowly with a significant positive r1 spike 

regardless of the signal's heavy stationarity. 

 

 
Fig. 3. Correlogram of an LFM signal (duration 0.1 s, start frequency 0 Hz, end frequency 10000 

Hz, sampling frequency 22050 Hz). The ACrF decreases rapidly, although the signal is 

nonstationary. 
  

 
Fig. 4. Correlogram of a sine-wave signal (duration 0.1 s, frequency 400 Hz, sampling frequency 

22050 Hz). The ACrF decreases slowly with a significant positive r1 value, although the signal is 

stationary. 

 

The third method is to use some of the unit root tests. The most famous of 

them are the augmented Dickey–Fuller (ADF) test and the Kwiatkowski–Phillips–

Schmidt–Shin (KPSS) test [13]. 

Both tests (and many others) fail to detect stationarity for many real-world 

signals. They work well predominantly with data from autoregressive processes. 

Another weakness is that the tests are limited to trend-stationarity or unit-root 
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nonstationarity hypotheses. It is often the case that using different statistics gives 

contradictory results. 

A simulation2 was performed in the Matlab® environment, confirming the 

weakness of the ADF, KPSS, and also the Phillips-Perron and Leybourne-McCabe 

tests. All of them erroneously classified the example LFM signal as stationary.  

These inconsistent and contradictive results must ensure the reader how 

tricky the topic is. The drawbacks mentioned above lead to the idea that a new 

method must be developed and applied to obtain more reliable results. 

4. Method Description 

First, let's introduce the statistics of interest in our study – the mean, the 

standard deviation, the variance and the autocovariance. 

The sample mean and the sample standard deviation (STD) of a signal are 

given as [14, 15] 

1
[ ]x

n

m x n
N
 ,                                                (5) 

21
[ ]

1
x x

n

s x n m
N

−
−
 .                                       (6) 

The sample variance 2

xs  is defined as the square of the STD. 

The autocovariance function (ACvF) is a classic tool for assessment of the 

similarity between a signal and its sliding delayed copy as a function of the delay 

(sample lag) h [14, 15] 

( ) ( ) ( )
1

[ ] [ ]
N h

xx x x

n

C h x n h m x n m
−

=

+ −  − .                            (7) 

Often, the autocovariance sequence is normalized by its value at zero lag 

[14, 15] 

( )
( )

( )
ˆ

0

xx

xx

xx

C h
C h

C
,                                               (8) 

so that ( )ˆ1 1xyC h−   .    

Another tool that measures the linear relationship between two sequences is 

the Pearson correlation coefficient (PCC) [14, 15]   

 
2 It can be found in the supplementary material given in [16]. There are also two examples that show 

the failure of the correlogram as a WSS estimation tool and a demonstration of the efficiency of 

the developed method to detect even weakly nonstationarities in the signals under test. 
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If the signal is WSS and if it is fragmented in a few (let’s say K) frames 

(with or without overlapping) with constant length, the mean and the 

autocovariance will be identical for all of them – they will not vary from frame to 

frame. If the signal is nonstationary, the above statement will not be valid. This fact 

plays a central role in developing the signal stationary estimation technique 

described below.  

The stationarity estimation procedure itself starts with splitting the signal of 

interest x[n] into three equally length parts termed “partial signals” – 1[ ]x m , 2[ ]x m  

and  3[ ]x m  (so, K = 3), where  1,...,n N= N ,  1,...,m M= N , and N and M 

are the corresponding signals' lengths. After that, the parameters of interest – the 

means, the variances, and the autocovariance sequences of the three partial signals 

are compared empirically, as specified below.  

First, one should check the statistical significance of the mean values 

compared to the STD for each partial signal. We proposed the mean to be 

considered statistically insignificant if the logical statement 

k kX Xm s                                                 (10) 

holds true for each partial signal (  1,...,k K= N , and in this particular case 

 1,2,3k = ), where ⟦·⟧ denotes the Iverson bracket, and   is a predefined 

tolerance. If this is the case, then one may assume that the overall signal [ ]x n  is 

mean-stationary since the mean values and their difference are negligible (with 

respect to the STD of the signal). If not, one should test additionally using the 

logical statement 

( )
1 2

1 2
min ,

X X

X X

m m

m m


−
 .                                         (11) 

If the statement holds true, the overall signal is estimated as stationary about 

the mean since the difference between the partial means is negligible.  

Similarly, for the variances, the following logical statement should hold true 

to determine a signal as stationary about its variance: 

( )
1 2

1 2

2 2

2 2min ,

X X

X X

s s

s s


−
 .                                          (12) 
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Note that one does not check for the significance of the individual partial 

signals' variances since this parameter is always non-zero. 

The identity of the ACvF of the partial signals is estimated in two steps. 

First, we check for the equality of the variances of the ACvF sequences using  

( )
1 1 2 2

1 1 2 2

2 2

2 2min ,

X X X X

X X X X

C C

C C

s s

s s


−
 .                                       (13) 

The second check is performed using the PCC 
1 2C CR and by estimating the 

p-value for testing the hypothesis of getting a PCC as large as the observed one by 

random chance when the true PCC is 0 [17]. The p-value ranges from 0 to 1, where 

values close to 0 correspond to a significant correlation between the ACvFs under 

test and a low probability of observing the null hypothesis that there is no 

relationship between them. Presented in the form of a logical condition, the second 

check is satisfied when 

p  .                                                    (14) 

This double-check is mandatory since the PCC checks only for “pattern” 

similarity but does not consider the possible scale differences.  

In Eqs. (10) to (14)   is the tolerance level of the test. It determines the 

tolerable dissonance between the time-localized values of the particular statistical 

parameter (mean, variance, autocovariance) acceptable by the user in the specific 

context. If all parameters of interest are virtually time-invariant, that is, if their drift 

is within the tolerance, it may be neglected, and the signal is considered as WSS. In 

contrast, if some of the statements (10) ÷ (14) are not met, the signal is 

nonstationary regarding the corresponding property. The user chooses the tolerance 

depending on the task and requirements; typical values are 0.01, 0.05, 0.1 (i.e., 1%, 

5%, 10%). 

The algorithm of the proposed stationarity estimation method is shown in 

Fig. 5 (left), and the core of the method is the statistical identity procedure shown 

in Fig. 5 (right). It is entirely empirical, that is, it does not rely on statistical tests 

(in comparison with the previous version presented in [7]) but on a comparison of 

the time-localized summary statistics of the signal under test i.e., no a priori 

assumptions are made about the underlying process or population. 
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5. The general algorithm of the novel signal stationarity estimation procedure (left). The signal is 

split into three equally length parts with 50% overlapping. Then, a check is made for their 

statistical identity using the core algorithm (right). Finally, a conclusion is made about the signal 

stationarity based on the results of the statistical identity checks. 

5. Experimental results 

A software implementation of the algorithm is done by the author in the 

Matlab® environment as a user-defined function named “isstationary”. This 

function, along with some supportive examples and test data are freely accessible 

at the Matlab Central File Exchange repository [16], which allows full 

reproducibility of the experimental results. 
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Twelve representative signals are selected for test purposes. The formal 

descriptions of them are given in Tab. 1. They are separated into four groups: (i) 

TSxA which represents four deterministic signals of the type “sine wave”; (ii) TSxB 

are four signals of type “color noise”; (iii) TSxC are two signals representing 

autoregressive–moving-average (ARMA) processes and (iv) TSxD are two real-

world sound signals – human speech and music. Some signals are strongly 

stationary (e.g., TS1A, TS1B), and others are heavily nonstationary (e.g., TS4B, 

TS1D). The tolerance level δ is set to 0.1 (i.e., 10% tolerance) for all cases, and the 

sampling frequency is 44100 Hz, excluding the TSxD signals. 

Table 1 

Mathematical descriptions of the representative test signals 

Test signal Signal type Signal parameters 

TS1А 

Sine-wave 

(stationary signal) 

( )0 0( ) sin 2mx t U f t=  

( )

 

( ) 1.0sin 2 440 ,

0,...,0.5 .

x t t

t

=

=
 

TS2А 

Sequence of sine-waves 

(nonstationary signal) 

( )

( )

1 1 1

2 2 1 2

sin 2 , 0
( )

sin 2 ,

m

m

U f t t t
x t

U f t t t t





 
= 

 

 

( )

( )

1.0sin 2 440 , 0 0.1,
( )

2.0sin 2 440 , 0.1 0.5.

t t
x t

t t





 
= 

 

 

TS3А 

Sequence of sine-waves 

(nonstationary signal) 

( )

( )

1 1 1

2 2 1 2

sin 2 , 0 ,
( )

sin 2 ,

m

m

U f t t t
x t

U f t t t t





 
= 

 

 

( )

( )

1.0sin 2 440 , 0 0.1,
( )

1.0sin 2 1000 , 0.1 0.5.

t t
x t

t t





 
= 

 

 

TS4А 

Linear chirp 

(nonstationary signal) 

22

1( ) sin 2m

f
x t U f t t

T
 

 
= + 

 
  

220000
( ) 1.0sin 2 20 ,

0.5

0,...,0.5 .

x t t t

t

 
 

= + 
 

=

 

TS1B 

Violet noise 

(stationary signal) 
2( ) ( , )x t   =VN  

( )

 

( ) 0,1 ,

0,..., 0.5 .

x t  

t

=

=

VN
 

TS2B 

Blue noise 

(stationary signal) 
2( ) ( , )x t   =BN  

( )

 

( ) 0,1 ,

0,..., 0.5 .

x t  

t

=

=

BN
 

TS3B 

Pink noise 

(nonstationary signal) 
2( ) ( , )x t   =PN  

( )

 

( ) 0,1 ,

0,..., 0.5 .

x t  

t

=

=

PN
 

TS4B 

Red noise 

(nonstationary signal) 
2( ) ( , )x t   =RN  

( )

 

( ) 0,1 ,

0,..., 0.5 .

x t  

t

=

=

RN
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Mathematical descriptions of the representative types of test signals (cont.) 

TS1C 

AR(p) process 

(stationary signal) 

1 -1 -( ) ...t t p t px t x x   = + + + +  

AR(2) 

-1 -2( ) 0.5 0.6 0.1t t tx t x x= + + +  

(0, 0.1)t   =WN ,  0,...,0.5 .t =  

TS2C 

MA(q) process 

(stationary signal) 

1 1( ) ...t t q t qx t      − −= + + + +  

MA(12) 

1 12( ) 0.5 0.6 0.1t t tx t   − −= + + +  

(0, 0.1)t   =WN ,  0,...,0.5 .t =  

TS1D 
Human speech 

(nonstationary signal) 

Record “DR2_FRAM1_SI522” 

from the TIMIT database [18]. 

TS2D 
Music 

(nonstationary signal) 

Built-in Matlab® audio sample 

of the “Hallelujah Chorus” from Handel 

 

 
Fig. 6. Results from applying the developed empirical stationary estimation method on: TS1A – 

sine-wave signal; TS2A – sine-wave with variable amplitude; TS3A – sine-wave with variable 

frequency; TS4A – linear chirp; TS1B – violet noise; TS2B – blue noise; TS3B – pink noise; 

TS4B – red noise; TS1C – data sample from AR(2) process; TS2C – data sample from MA(12) 

process; TS1D – sample of human speech; TS2D – music sample. 

 

The routine is applied to any test signal, and in all cases, fair results are 

obtained, as shown in Fig. 6, using the “stationary semaphore” [7]. 

The test confirmed that TS1A is a pure sine-wave signal – a par excellence 

WSS signal. TS2A is a sine-wave signal with an abrupt change in the amplitude, so 
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the test confirms that the mean is stable, but the variance and, hence, the 

autocovariance of the signal are not stationary. TS3A is a sine-wave with an abrupt 

change in the frequency, which implies a stable mean and variance but 

nonstationary autocovariance, as detected by the test. The same result is obtained 

for TS4A, which has time-varying frequency but constant mean and variance. TS1B 

and TS2B are WSS stochastic noise signals, as the test confirms. 

On the other hand, TS3B (pink noise) and TS4B (red noise) are 

progressively nonstationary, with a still stable mean of TS3B. TS1C (AR(2) 

process) and TS2C (MA(12) process) are detected as WSS in accordance with the 

theory. On the other hand, TS1D (speech) and TS2D (music) have assertive 

nonstationary behavior where only the mean value is stable, which is correctly 

detected by the test.  

All results align well with the theory. The simulations provide clear 

evidence of the reliability of the suggested WSS estimation procedure. 

6. Conclusions 

The paper addresses the problem of signal stationarity estimation, treating 

the single realization itself instead of the underlying process. First, a brief 

description of the theoretical background is given, and then the challenges are 

highlighted regarding the assessment of the WSS, including the limitations of 

existing techniques such as visual inspection, correlogram analysis, and statistical 

tests. 

Further, to overcome these limitations, a novel approach is proposed for 

signal WSS estimation. The method focuses on the signal's time-localized first and 

second-order statistical properties – mean, variance, and autocovariance. By 

comparing these properties across different signal segments, one can determine 

whether the signal can be considered stationary. 

The effectiveness of the proposed method is demonstrated and validated 

through numerical experiments on various types of signals (representative for a 

wide range of processes). The obtained results aligned well with the theoretical 

expectations and the actual signal characteristics. 

The method's advantages lie in its empirical nature, as it does not rely on 

statistical tests or make a priori assumptions about the underlying process or 

population. It provides a more accurate and reliable estimation of signal stationarity 

compared to existing techniques, which suffer from subjectivity, lack of 

automation, and inconsistent results. Also, it allows the determination of the source 

of the possible nonstationarity. 

The developed method, implemented in the Matlab® environment, offers a 

ready-to-use solution for real-world scientific and engineering applications. 
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Future research will focus on applying the proposed empirical WSS 

estimation method on nonstationary signals to determine their short-time 

stationarity duration, that is, the short-time intervals at which a particular signal 

may be considered WSS. 
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