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AN EMPIRICAL METHOD FOR SIGNAL STATIONARITY
ESTIMATION

Hristo ZHIVOMIROV!

The paper presents a novel method for estimation of the wide-sense stationarity
of signals / time series / data sequences without a priori knowledge of the underlying
process and without efforts to make an inference about it. The method is entirely
empirical and threatens the signal “as it is”.

At the beginning of the paper, a clarification of the stationarity concept is
provided concerning both the processes and the corresponding signals, with
particular attention to the problems related to the application of some known signal
stationary estimation techniques. After that, a logical explanation and a mathematical
description of the newly proposed method are given, incl. an algorithm. Several
numerical experiments are performed to verify the performance of the proposed
method. Finally, some conclusions are made regarding the presented work.

Keywords: signal, stationarity, estimation, assessment, empirical, test, method.
1. Introduction

The estimation of whether a given process is stationary or not is a classic
problem in signal processing (e.g., speech processing) [1]; econometrics (e.g.,
modeling of market behavior) [2]; environmental science (e.g., climate modeling)
[3]; medicine (e.g., patients monitoring [4]), etc.

In many cases, one deals only with a single realization (e.g., signal / time
series) instead of the corresponding underlying process. Hence, the fundamental
consideration is whether a resulting signal is stationary or not. Moreover, the signal
shall be considered “as it is”, that is, without a priori knowledge about the
underlying process. Also, surprisingly (or not), there are situations when the process
is stationary, but the resulted signal is not (e.g., data sequence containing ten
outcomes from a Bernoulli process — coin flipping).

A signal is said to be wide-sense stationary (WSS) if its local statistical
properties up to the second-order are time-invariant [5] or which is the same — the
local spectral content of the signal does not vary by time [6]. In other words, using
purely engineering terms, the stationarity of a signal concerns its DC value, RMS
value and spectral content.

This problem is not trivial since it directly affects the proper choice of signal
analysis tools. For instance, the power spectral density could be calculated using
the autocorrelation function (ACrF) or Bartlett's or Welch's methods only if the
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signal is WSS. Otherwise, a proper time-frequency analysis technique (e.g., short-
time Fourier transform) should be used [6].

Three basic techniques exist for assessing a data sequence's stationarity,
described in the next section. It would be shown that each has serious drawbacks
(e.g., subjectivity, no possibility for automation of the assessment process, too
many erroneous results, inappropriateness for some signal types, etc.). So, a niche
exists for a novel, more accurate, and robust stationary estimation method.

To overcome the above problems, a novel approach for signal stationarity
estimation is proposed and described below. This work extends and further
develops the study presented in [7]. The developed method is implemented in the
Matlab® environment and is ready-to-use for real-world scientific and engineering
applications.

The paper is organized as follows: (i) at the beginning, a clarification of the
stationarity concept is provided concerning both the processes and the
corresponding signals; (ii) special attention is paid to the problems related to the
application of the known signal stationary estimation techniques; (iii) an
explanation and a description of the newly proposed method for signal WSS
estimation is given; (iv) results from experiments for sake of verification and
demonstration of the method are shown and conclusions are made regarding the
presented work.

2. Background

In this section, we clarify the concept of stationarity. First, let's consider a
discrete a priori unknown process (phenomenon) {X(S,t)ZSES ell,teT eD}
defined in the index set (e.g., time domain) T, which is an object of observation

(e.g., measurement) by an experiment. For the observation time, a set of outcome
results (events) are collected, forming the event space E € S, part of the sample

space S (population) — the aggregate observations of the process X (s,t) [8].

The members of the event space E may be arranged in an event matrix
X (et)ed™™:M,N el asshown in Fig. 1. For instance, one may think of it as
a dataset from meteorological temperature measurements from M different spatial
locations containing N data values each.

For a fixed event e, X, (t) is a time series (a realization) x(t), and for a

fixed time t,, X, (e) is an ensemble of realizations (a random variable) x(e). In

terms of our example, each time series is a set of data from a single measurement
location as a function of time, and the cross-section of the time series at time t is
the state of the thermal process at time t. In this light, the process may be considered
as a collection of events ensembles defined at specific time instances [9].
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Fig. 1. A graphical representation of an event matrix X (e,t) and the related concepts for an
ensemble of realizations and a single realization (time series).

The dynamic behavior of the processes can be analyzed by answering how
the statistical properties of its ensembles vary in time. The process is considered
stationary if they remain unchanged in time (i.e., time-invariant). This property is
of great significance since unless the stationarity is established for the stochastic
process under consideration, the analysis of the last becomes intractable [9]. Many
stochastic processes have that property, so their average statistical properties are
stable and time-independent. However, many other processes and their
corresponding signals are nonstationary, so special methods for handling them
should be implemented. Hence, an analysis tool should be used to assess whether
the signal is stationary or not.

From a practical point of view, the so-called wide-sense / weak-sense /
covariance stationarity is of particular interest. It refers to the stationarity of the
statistical properties of the successive data ensembles up to the second-order (first-
and second-order moments) — sample (empirical) mean m, and sample (empirical)

cross-covariance s,, [10].
In the typical case, m,(t) and s, (t) are functions of time [5, 11]:



246 Hristo Zhivomirov

m, (t, )0 ﬁZx(em,tn), (1)
Sy (to )0 ﬁZx(em,tk)x(em,tn). (2)
For a WSS process [5, 11]: '
m, (t, ) =const.,vn, (3)
Sy (tot,) =5, (7): 7=t —t,,vk,n, 4)

so that m_ is not a function of time t (i.e., it is time-invariant) and s, (z) is a

function only of the time-shift z between the considered ensembles of realizations.

One should be aware that for most of the real-world processes, the sample
space S is not fully available and so the process is not fully cognizable (e.g., the
monthly financial benefit on each household in New York /USA/ for a specific year
or the exact position and velocity of any car in Varna /Bulgaria/ during a specific
day).

Moreover, in many cases, only one realization of the process is available
(due to physical restrictions or due to the nature of the process), for instance, the
output of flipping a coin several times (Bernoulli process) or the daily USD/EUR
exchange rate for the last month (Lévy process). In such a case, a new question
arises concerning the stationarity of the available single realization itself (e.g.,
signal / time series) instead of the process as a whole. At this stage, one should be
aware that one does not make assumptions about the process but only about a single
realization that is not statistically representative of the underlying process.

The already presented paradigm of WSS of a process can be applied to a
single time series but with modifications. A time series is said to be WSS if Egs.
(3) and (4) holds true [11]. Now, one does not dispose with the process' ensembles
of realizations but only one time series; hence, the averaging should take place
locally in the time domain (cf. Fig. 2), that is, one should work with the time-
localized statistical properties of the signal instead of the ensemble’s one.

In light of the above discussion, in this paper, the object of consideration is
assessing whether a given signal is stationary without considering the underlying
process. We defined the signal as WSS if: (i) its (time-localized) mean value m,

(i.e., the first-order raw moment) is constant over time (in the boundary of the signal
existence) and if (ii) its (time-localized) autocovariance function (i.e., the second-

order central cross-moment) C, (t,,t,) depends only on the difference 7 = |tk —tn|
, but not on their particular values [11].
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Fig. 2. A graphical representation of the ensemble averaging in one particular time instant vs. the
time-localized averaging in one particular signal realization. The presented WSS estimation
technique adopts the second approach, as only one signal realization is available in most cases.

It is known that the jth-order stationarity guarantees the ith-order stationarity
for all i< j, that is, if a process is second-order (i.e., covariance) stationary, the

process is also first-order (i.e., mean) stationary [9]. As a matter of principle, this
property allows one to estimate the WSS of a given signal by checking directly for
second-order stationarity. However, performing a check for both the mean and
covariance is practically advisable. Moreover, for completeness, we also suggest a
test for stationarity about variance along with autocovariance. This measure ensures
more robustness of the proposed estimation method and is more informative
regarding the reasons for possible nonstationarity of the signal under test.

3. The Problem of the Stationarity Estimation

Three basic techniques exist for assessing the stationarity of a data sequence
— visual inspection of the run-plot of the data, visual inspection of the correlogram,
and statistical tests.

The researcher's expertise and experience limit the visual inspection of the
data graph, so this method is too subjective. Also, it cannot be automatized, so it is
impractical for large datasets.

The second approach to estimate the stationarity of the signals by the
correlogram (the plot of the ACrF) is shown in [12]. This technique turns out to be
entirely irrelevant since there are pieces of evidence that the ACrF has no relation
to the stationarity of the signal i.e., the shape of the ACrF is not indicative of the
stationarity. Hyndman and Athanasopoulos stated: “As well as the time plot of the
data, the ACrF plot is also useful for identifying nonstationary time series. For a
stationary time series, the ACrF will drop to zero relatively quickly, while the ACrF
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of nonstationary data decreases slowly. Also, for nonstationary data, the value of rl1
(i.e., ACrF for a lag of one sample) is often large and positive.”

Fig. 3 shows the ACrF of a linear frequency-modulated (LFM) signal, which
contradicts the above statement insofar as the LMF signal is a notorious example
of nonstationary behavior. In addition, Fig. 4 depicts a correlogram of a sine-wave
signal, showing that the ACrF decreases slowly with a significant positive rl spike
regardless of the signal's heavy stationarity.

Correlogram of the signal

—o signal correlogram
- = -0.05 level

o
%

<=
a

<
'S

e
)

;'"o'o‘"c??%'?‘f‘i'?'?"?’é"é ?o""

o

cf

o

s

Cr

o
Lo
1

o1

Or

e

G|

ol

Normalized autocorrelation coefficient

-(;.5 0 0.‘5
Delay, ms
Fig. 3. Correlogram of an LFM signal (duration 0.1 s, start frequency 0 Hz, end frequency 10000
Hz, sampling frequency 22050 Hz). The ACrF decreases rapidly, although the signal is
nonstationary.
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Fig. 4. Correlogram of a sine-wave signal (duration 0.1 s, frequency 400 Hz, sampling frequency
22050 Hz). The ACrF decreases slowly with a significant positive rl value, although the signal is
stationary.
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The third method is to use some of the unit root tests. The most famous of
them are the augmented Dickey—Fuller (ADF) test and the Kwiatkowski—Phillips—
Schmidt-Shin (KPSS) test [13].

Both tests (and many others) fail to detect stationarity for many real-world
signals. They work well predominantly with data from autoregressive processes.
Another weakness is that the tests are limited to trend-stationarity or unit-root
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nonstationarity hypotheses. It is often the case that using different statistics gives
contradictory results.

A simulation? was performed in the Matlab® environment, confirming the
weakness of the ADF, KPSS, and also the Phillips-Perron and Leybourne-McCabe
tests. All of them erroneously classified the example LFM signal as stationary.

These inconsistent and contradictive results must ensure the reader how
tricky the topic is. The drawbacks mentioned above lead to the idea that a new
method must be developed and applied to obtain more reliable results.

4. Method Description

First, let's introduce the statistics of interest in our study — the mean, the
standard deviation, the variance and the autocovariance.
The sample mean and the sample standard deviation (STD) of a signal are
given as [14, 15]
m, [ %Z x[n], (5)

n

1 2
S, [ \/m;|X[n]—mx| . (6)

The sample variance s’ is defined as the square of the STD.

The autocovariance function (ACVF) is a classic tool for assessment of the
similarity between a signal and its sliding delayed copy as a function of the delay
(sample lag) h [14, 15]

N

Co (M) D D (XIn+|h1-m,)-(x[n]-m,). (7)

n=1
Often, the autocovariance sequence is normalized by its value at zero lag
[14, 15]

&, (mo St ®)

so that -1<C, (h)<1.

Another tool that measures the linear relationship between two sequences is
the Pearson correlation coefficient (PCC) [14, 15]

2 It can be found in the supplementary material given in [16]. There are also two examples that show
the failure of the correlogram as a WSS estimation tool and a demonstration of the efficiency of
the developed method to detect even weakly nonstationarities in the signals under test.



250 Hristo Zhivomirov

> ({n1-m, )-(yinl-m,)
Ry = ——2 . ©)

" Boornr [Fomny

n=1 n=1

If the signal is WSS and if it is fragmented in a few (let’s say K) frames
(with or without overlapping) with constant length, the mean and the
autocovariance will be identical for all of them — they will not vary from frame to
frame. If the signal is nonstationary, the above statement will not be valid. This fact
plays a central role in developing the signal stationary estimation technique
described below.

The stationarity estimation procedure itself starts with splitting the signal of
interest x[n] into three equally length parts termed “partial signals” — x,[m], X,[m]
and x,[m] (so, K = 3), where n={1..,N}eN, m={1,..,M}eN, and N and M
are the corresponding signals' lengths. After that, the parameters of interest — the
means, the variances, and the autocovariance sequences of the three partial signals
are compared empirically, as specified below.

First, one should check the statistical significance of the mean values

compared to the STD for each partial signal. We proposed the mean to be
considered statistically insignificant if the logical statement

my |/sx, <ot (10)

holds true for each partial signal (k ={1,..., K} e N, and in this particular case

k={12,3}), where [-] denotes the Iverson bracket, and & is a predefined

tolerance. If this is the case, then one may assume that the overall signal x[n] is

mean-stationary since the mean values and their difference are negligible (with
respect to the STD of the signal). If not, one should test additionally using the

logical statement
é M, 71, ‘<5§. (11)
mm(mxl,mxz)‘

If the statement holds true, the overall signal is estimated as stationary about
the mean since the difference between the partial means is negligible.

Similarly, for the variances, the following logical statement should hold true
to determine a signal as stationary about its variance:

2 2
‘le — S5,

é—min(sil,siz) <5§. (12)
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Note that one does not check for the significance of the individual partial
signals' variances since this parameter is always non-zero.

The identity of the ACVF of the partial signals is estimated in two steps.
First, we check for the equality of the variances of the ACVF sequences using

2 2
CX1X1 szxz

min (séx1x1 , séxzxz )
The second check is performed using the PCC R.. and by estimating the

p-value for testing the hypothesis of getting a PCC as large as the observed one by
random chance when the true PCC is 0 [17]. The p-value ranges from 0 to 1, where
values close to 0 correspond to a significant correlation between the ACvFs under
test and a low probability of observing the null hypothesis that there is no
relationship between them. Presented in the form of a logical condition, the second
check is satisfied when

<3H. (13)

p<o . (14)

This double-check is mandatory since the PCC checks only for “pattern”
similarity but does not consider the possible scale differences.

In Egs. (10) to (14) o is the tolerance level of the test. It determines the
tolerable dissonance between the time-localized values of the particular statistical
parameter (mean, variance, autocovariance) acceptable by the user in the specific
context. If all parameters of interest are virtually time-invariant, that is, if their drift
is within the tolerance, it may be neglected, and the signal is considered as WSS. In
contrast, if some of the statements (10) + (14) are not met, the signal is
nonstationary regarding the corresponding property. The user chooses the tolerance
depending on the task and requirements; typical values are 0.01, 0.05, 0.1 (i.e., 1%,
5%, 10%).

The algorithm of the proposed stationarity estimation method is shown in
Fig. 5 (left), and the core of the method is the statistical identity procedure shown
in Fig. 5 (right). It is entirely empirical, that is, it does not rely on statistical tests
(in comparison with the previous version presented in [7]) but on a comparison of
the time-localized summary statistics of the signal under test i.e., no a priori
assumptions are made about the underlying process or population.
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Fig.

5. The general algorithm of the novel signal stationarity estimation procedure (left). The signal is
split into three equally length parts with 50% overlapping. Then, a check is made for their
statistical identity using the core algorithm (right). Finally, a conclusion is made about the signal
stationarity based on the results of the statistical identity checks.

5. Experimental results

A software implementation of the algorithm is done by the author in the
Matlab® environment as a user-defined function named “isstationary”. This
function, along with some supportive examples and test data are freely accessible
at the Matlab Central File Exchange repository [16], which allows full
reproducibility of the experimental results.
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Twelve representative signals are selected for test purposes. The formal
descriptions of them are given in Tab. 1. They are separated into four groups: (i)
TSXA which represents four deterministic signals of the type “sine wave”; (i1) TSxB
are four signals of type “color noise”; (iii) TSXC are two signals representing
autoregressive—moving-average (ARMA) processes and (iv) TSxD are two real-
world sound signals — human speech and music. Some signals are strongly
stationary (e.g., TS1A, TS1B), and others are heavily nonstationary (e.g., TS4B,
TS1D). The tolerance level ¢ is set to 0.1 (i.e., 10% tolerance) for all cases, and the
sampling frequency is 44100 Hz, excluding the TSxD signals.

Table 1

Mathematical descriptions of the representative test signals

Test signal Signal type Signal parameters
Sine-wave _ i
TSIA (stationary signal) X(t) =1.0sin (274401),
X(t) =U,, sin (27 ft) t={0,..,0.5.
Sequence of sine-waves
(nonstationary signal) o [L0sin(2r4a0t), 0<t <0
TS2A i =
() = VSN2 i), 0<t<t, 2.0sin(27440t), 0.1<t<05.
U,,sin(2zf,t), t, <t<t,
Sequence of sine-waves
(nonstationary signal) 1.0sin(27440t), 0<t<0.1,
TS3A i =
() = | Um SN (27 i), 0=t <ty 1.0sin (271000t), 0.1<t <0.5.
U,,sin(2zf,t), t, <t<t,
Linear chirp
(nonstationary signal) x(t) =1.0sin (ZzzZOt + 7zmt2 ]
TS4A f,
= i 2
X(t)—UmSIﬂ(Zﬂ'flt-i-ﬂT t j t={0,..,0.5}.
\/_iolet no_ise X(t) = VoV (0,1),
TS1B (stationary signal)
X(t):W(IU, 62) t:{O,,05}
3'“9 noi_se x(t) =27 (0,1),
TS2B (stationary signal)
Pink noise x(t) = 2 (0,1),
TS3B (nonstationary signal)
X(t) — ip(]\/u(#, 0_2) t= {0,..., 05}
Re:d noise_ x(t) = 2V (0,1),
TS4B (nonstationary signal)
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Mathematical descriptions of the representative types of test signals (cont.)

AR(p) process AR(2)
TsiC (stationary signal) X(t) =0.5+¢ +0.6x, +0.1x,,
X(t) =+ & +0X%, +..+ 0, %, & =wN(0,0.1), t={0,..,0.5}.
MA(q) process MA(12)
TS2C (stationary signal) X(t) =05+ +0.6¢_,+0.1¢,
X(O) =p+e+0s,+..+0,6 4 & =WwN(0,0.), t={0,..,05}.
TS1D Human speech Record “DR2 FRAMI1 SI522”
(nonstationary signal) from the TIMIT database [18].
TS2D Music Built-in Matlab® audio sample
(nonstationary signal) of the “Hallelujah Chorus” from Handel
Stationarity Stationarity Stationarity Stationarity
semaphore for TSIA semaphore for TS2A semaphore for TS3A semaphore for TS4A

Mean Mean Mean Mean

Variance Variance Variance Variance

Autocovariance Autocovariance Autocovariance Autocovariance

Stationarity Stationarity Stationarity Stationarity
semaphore for TS1B semaphore for TS2B semaphore for TS3B semaphore for TS4B

Mean Mean Mean Mean

Variance Variance Variance Variance

Autocovariance Autocovariance Autocovariance Autocovariance

Stationarity Stationarity Stationarity Stationarity
semaphore for TSIC semaphore for TS2C semaphore for TSID semaphore for TS2D

Mean Mean Mean Mean

Variance Variance Variance Variance

Autocovariance Autocovariance Autocovariance

Autocovariance

Fig. 6. Results from applying the developed empirical stationary estimation method on: TS1A —
sine-wave signal; TS2A — sine-wave with variable amplitude; TS3A — sine-wave with variable
frequency; TS4A — linear chirp; TS1B — violet noise; TS2B — blue noise; TS3B — pink noise;
TS4B — red noise; TS1C — data sample from AR(2) process; TS2C — data sample from MA(12)
process; TS1D — sample of human speech; TS2D — music sample.

The routine is applied to any test signal, and in all cases, fair results are
obtained, as shown in Fig. 6, using the “stationary semaphore” [7].

The test confirmed that TS1A is a pure sine-wave signal — a par excellence
WSS signal. TS2A is a sine-wave signal with an abrupt change in the amplitude, so
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the test confirms that the mean is stable, but the variance and, hence, the
autocovariance of the signal are not stationary. TS3A is a sine-wave with an abrupt
change in the frequency, which implies a stable mean and variance but
nonstationary autocovariance, as detected by the test. The same result is obtained
for TS4A, which has time-varying frequency but constant mean and variance. TS1B
and TS2B are WSS stochastic noise signals, as the test confirms.

On the other hand, TS3B (pink noise) and TS4B (red noise) are
progressively nonstationary, with a still stable mean of TS3B. TS1C (AR(2)
process) and TS2C (MA(12) process) are detected as WSS in accordance with the
theory. On the other hand, TS1D (speech) and TS2D (music) have assertive
nonstationary behavior where only the mean value is stable, which is correctly
detected by the test.

All results align well with the theory. The simulations provide clear
evidence of the reliability of the suggested WSS estimation procedure.

6. Conclusions

The paper addresses the problem of signal stationarity estimation, treating
the single realization itself instead of the underlying process. First, a brief
description of the theoretical background is given, and then the challenges are
highlighted regarding the assessment of the WSS, including the limitations of
existing techniques such as visual inspection, correlogram analysis, and statistical
tests.

Further, to overcome these limitations, a novel approach is proposed for
signal WSS estimation. The method focuses on the signal's time-localized first and
second-order statistical properties — mean, variance, and autocovariance. By
comparing these properties across different signal segments, one can determine
whether the signal can be considered stationary.

The effectiveness of the proposed method is demonstrated and validated
through numerical experiments on various types of signals (representative for a
wide range of processes). The obtained results aligned well with the theoretical
expectations and the actual signal characteristics.

The method's advantages lie in its empirical nature, as it does not rely on
statistical tests or make a priori assumptions about the underlying process or
population. It provides a more accurate and reliable estimation of signal stationarity
compared to existing techniques, which suffer from subjectivity, lack of
automation, and inconsistent results. Also, it allows the determination of the source
of the possible nonstationarity.

The developed method, implemented in the Matlab® environment, offers a
ready-to-use solution for real-world scientific and engineering applications.
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Future research will focus on applying the proposed empirical WSS
estimation method on nonstationary signals to determine their short-time
stationarity duration, that is, the short-time intervals at which a particular signal
may be considered WSS.
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