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THEORETICAL AND COMPUTATIONAL ASPECTS OF NON 
LOCAL DAMAGE COUPLING WITH ELASTIC BEHAVIOUR  

Ourdia BELAIDI CHABANE CHAOUCHE1, Madjid ALMANSBA2, Dehbia 
FERRAH3, Neceur Eddine HANNACHI4 

Softening due to damage is the source of the strain localization in the 
materials as concrete. In such a situation, using the finite element analysis provides 
results that are directly depending to the spatio-temporal discretization. In this 
article, the adjustment of an isotropic elastic model coupled to non-local damage is 
presented in order to regularize the associated initial and boundary value problem.  
This formulation consists in delocalizing the damage variable “D”. Dispersion 
analysis and numerical simulations are used to compare the local and the non local 
models.  
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1. Introduction 

Deformation localization is a phenomenon often observed in a large class 
of materials, namely quasi-brittle materials such as concrete, rocks and soil. Based 
on the nature and intensity of the action-effect, concrete deformation takes place 
in a complex manner, bringing into play one or more combinations of basic 
mechanisms: elasticity, damage, sliding, rubbing, cracking, etc. 

Many studies have focussed on the problem of deformation localization in 
a continuum [1, 2]. Localization can be defined as a zone where the deformations 
remain continuous, but are concentrated in a large strip, very small in terms of the 
structure, which depends on the load conditions [3, 4, 5]. This localization 
phenomenon quickly results in a ruined structure. In practical terms, the 
localization can be interpreted in a variety of ways: for metals, the localization 
strip is formed through the sliding of crystalline planes and the formation of 
cavities and for granular areas, a rearrangement of the granules can be at the 
source of the localization. However, in the case we are interested in, for quasi-
brittle materials (concrete), the localization strip is formed by a collection of 
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microcracks. This localization strip, micro-structural in size, cannot be described 
correctly using classic continuum models [4, 6, 7]. 

At the same time, the localization of the damage makes the mathematical 
problem to be resolved improperly since the softening causes a loss in the 
ellipticity of the differential equations system describing the deformation process 
[8, 9]. Lastly, the initial conditions and the conditions at the limits, which were 
correctly defined in the elliptical case, become improperly adapted in the 
hyperbolic case. Numerically, these difficulties result in the results being greatly 
dependent on the finesse and orientation of the mesh in a finite elements 
calculation [10]. The size of the localization zone becomes a function of the size 
of the finite elements where the localization criterion has been achieved. The 
result is a non-objectivity of the results in terms of spatial discretization, leading 
to the dissipation of less and less energy when the mesh is refined.  

In order to resolve the physically-unrealistic results of a dissipated energy 
rupture that is nil as well as the numerical problem due the non-objectivity of the 
mesh, a variable of non-local damage is introduced into the local model. A non-
local environment is an environment in which at least one variable field is subject 
to a spatial average in a finite neighbourhood of a point [11]. The purpose of this 
regularization technique is to prevent the sensitivity of the solution to the mesh.  

This non-local model should contribute in helping to understand the major 
physical processes that govern the mechanisms for concrete deformation.  

Therefore, special attention must be given to the material’s behaviour in 
order to correctly reproduce the various phenomena put in play during its 
deformation.  

2. Local Damage Model    

Concrete, which is widely used in construction, has a very complex, non-
linear behaviour. Depending on the nature and intensity of the action-effect, the 
quasi-brittle behaviour of concrete promotes the development of various modes 
for rupturing and crack propagation. Damage mechanics makes it possible to 
model the effects of microcracking on concrete’s behaviour at the macroscopic 
scale. The basis for damage models is the introduction of a local damage variable 
impacting the stiffness of the material. This type of model was initially introduced 
for metallic materials (see work by Lemaitre and Chaboche) [12], reiterated by 
Montheillet and Moussy [13]. Mazars wrote a behaviour model based on these 
works and adapted to the uniaxial behaviour of concrete, both under compression 
and tension [3]. The model uses an isotropic scalar damage variable.  

The Mazars model was developed based on damage mechanics [3, 14, 15] 
and the theory of elasticity coupled to isotropic damage (it ignores all 
manifestations of plasticity as well as the closing of cracks). A scalar and isotropic 
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D damage variable has been defined. This concept directly describes the loss of 
rigidity as well as the softening behaviour of the material and takes into account 
tension compression dissymmetry. The particular point of this model is that it uses 
a deformation criterion, by introducing the notion of equivalent strain.  

The stress-strain relation can be expressed as follows: 
 (1 ) : ,D Cσ ε= −  (1) 

where C andε  are respectively the components of the fourth-order elasticity 
tensor and the elastic deformation tensor.  

Concrete damage in the Mazars criterion is governed by a variable called 
“equivalent strain” and which translates the local extension state of the material 
during loading. It is defined as:  
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The changes in the scalar damage are defined based on a threshold 
function:  

 ( ) ., eqd df k kε ε= −  (3) 

dk  is a parameter containing the load history. Initially, dk is equal to damage 
threshold 

0Dε  and takes on the maximum value achieved by eqε  during the entire 
load history "t": 
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In order to take into account the dissymmetric behaviour of the concrete 
under tension and compression, the damage is calculated as a combination of 
tension damage Dt and compression damage Dc. The linear combination of these 
two damages provides the global isotropic damage:  
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At, Bt, Ac and Bc are four parameters of the model to be determined based on 
compression and bending tests. Coefficients tα and cα are dimensionless 
coefficients that represent respectively the impact of the contribution of each of 
the parts under tension and in compression. Under direct tension, 1, 0t cα α= =   
and under direct compression, 0, 1t cα α= =  [3, 16]. t

iε   are the strains that result 
from the main positive stresses and c

iε are the strains that result from the main 
negative stresses. Fig.1 presents the answers of the Mazars damage model in the 
tension and compression tests [15]. 

 
Fig. 1. Response of the Mazars damage model under direct tension (a) and under direct 

compression (b) [15] 

The implementation of the model and its application in numerical 
simulations is more delicate: in fact, this type of model presents softening 
behaviours both under tension and compression (Fig.1), meaning that the 
numerical problem has not been set out properly. As soon as the material 
behaviour becomes soften, a strain localization phenomenon appears in a small 
zone [17].  For the finite element simulations, this results in a dependence of the 
results in relation to the mesh. In fact, based on the work of [5, 6, 16, 18, 19]. The 
localization zone becomes proportional to the size of the element. The more the 
mesh becomes refined, the smaller the localization zone becomes. An adjustment 
method therefore becomes necessary. Many regularizations techniques are 
proposed in the literature [18, 20, 21]. These various changes have led to rugged 
and usable models, both analytically and for finite element codes. The choice 
made here was to introduce a non-local change into the Mazars model.  

3. Non-local damage model 

Various works present varied formulations depending on the authors, 
physical for some, phenomenological for others as well as mathematical [22, 23]. 
They also make it possible to take into account the neighbouring effect for 
correcting the numerical dependence of the spatial discretization solution. 
Formulations based on the relaxation of potential energy [24], methods based on 
the introduction of new degrees of liberty [25], and others take into account a 
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spatial neighbouring effect, either through a delocalization operator (non-local 
models) or by introducing state variable gradients (gradient theories), [7, 10, 26, 
27, 28]. In this article, there is an attempt to limit the dependence on mesh by 
using a non-local variable in its integral form based on Pijaudier-Cabot [10, 21, 
29, 30] and Saanouni [26, 31].   

The idea of non-local models as described initially by Pijaudier-Cabot and 
Saanouni [10, 21, 26, 29, 31] for damage formulations and taken out again in the 
form of gradients by [5, 7, 32, 33, 34, 35, 36] involves taking into account a 
spatial neighbouring effect to describe the behaviour of a material point: there is 
remote interaction between the points of the structure Fig.2 [37]. These 
interactions take place in a neighbourhood of fixed size from the material point 
considered. More specifically, certain local sizes of the behaviour law are replaced 
by their non-local pendants. The choice of one or more non-local variables 
remains delicate to justify. However, it can be observed that the most effective 
models choose to go non-local where there are variables associated to the 
softening phenomena. This explains the choice of an isotropic strain-hardening 
scalar variable for a negative strain-hardening model where the choice of damage 
seems the most relevant. The work by Peerlings [32, 38] and by Engelen [33] for 
example proposes to adjust the cumulated plastic strain. However, Voyiadjis [39] 
proposes to adjust all of the internal variables. Germain [4] and Liebe [40] 
propose the choice of drive force variable for the damage. For damageable elastic 
behaviours, these formulations seem particularly effective; however, in this 
article, we have chosen to “delocalize” the local D damage variable, by replacing 
it with the non-local D  variable. Therefore, the non-local Dഥ damage variable is 
calculated based on a volume that is representative of the damage.  

The non-local D damage variable is expressed always as x in the structure:  

 1( ) ( , ) ( ) ,
( )

D x y x D y dV
x

ψ
ψ Ω

= ∫  (8) 

where V  is the structure’s volume and ( )xψ  is the volume represented in 
point x  defined by:  

 ( ) ( , ) .x y x dVψ ψ
Ω

= ∫  (9) 

( , )y xψ  is a non-local weighting function that is meant to be homogenous and 
isotropic. It characterizes the geometry of the localization zone. It depends solely 
on the distance R x y= −  between source point x and reception point y . 
Generally, a Gaussian is chosen as a weight function. This choice is purely 
numerical. In fact, it has been demonstrated that a Gaussian optimizes the 
convergence rate of the finite elements solution [10, 29]. 
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We will therefore use: 
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R describes the area of the integration radius. In terms of plane calculation, 
this integration area is composed of a disc of radius R.  

Before taking the first loading step, the function of a process is to define the 
volume that is representative of each point of the structure. Therefore, for each M 
integrating point on the mesh, we calculate the distance that separates it from 
other Gauss points and we consider as neighbours those that are included in the 
disc of the given R radius. For each of these N points, we calculate the 
contribution in the neighbourhood of the M point and we create a file in which we 
store, for all M points, the number of neighbours, the reference and contribution 
of each of these neighbours. It can be seen that with such a procedure, R = 0 
makes it possible to use a classic local approach (the M point is considered to be a 
neighbour of itself with a unit contribution) (Fig. 2). 

In cases where, in order to reduce the size of the finite elements problem, the 
symmetries of geometry and structure load are used, it is necessary to take into 
account fictional Gauss points that are not represented in the mesh but which exist 
in the real structure (Fig. 2). 

 
Fig. 2. Construction of fictional points in the neighbourhood of point M [37]  

The modelling is implemented in a finite element calculation mode based on 
the integral formulation.  

4. Numerical implementation 

The model thereby described for the simulation of the main macroscopic 
phenomena, introduced in the case of a damageable elastic behaviour, is 
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implemented into the finite element calculation program [41]. This program, 
initially developed for the numeric simulation of linear, isotropic, strain-hardening 
elastoplastic behaviour, has been modified for taking into account the coupled 
behaviour, elasticity-damage initially, then an additional block is added for 
calculating the non-local damaged, based on the organizational chart in Fig.3. In 
this same program, blocks were added so that the program would be interfaced 
with the GID Processor station. This program will be used to study the 
distribution of the damage, strain and stresses on a notched plate under tension, in 
a state of flat stress and strains.  

Given the writing of the model, the natural way of resolving non-linear 
problems associated with its implementation using finite elements is to use an 
algorithm with a secant matrix because the damage affects the value of the secant 
module (Fig.3): with each iteration, the elastic characteristics of the elements are 
recalculated (the damage, at all instants in the process, is interpreted as a variation 
of its elastic characteristics).  

The convergence test takes on a traditional form: in the current iteration i 
( )1i ≥ , we calculate the residues { }R (or rebalancing forces) of the resolution 
which ensures the overall balance of the structure:  

 { } [ ]{ } { }1( ) ,ii i
R K D u F+= −  (11) 

where { }F is the effort imposed (to balance) to the current increment (in the 
event a displacement is imposed on the structure, this effort depends on iteration 
i).  

{ }i
u the displacement calculated from{ }F and the damage of the previous 

iteration: 
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The non-linear calculation algorithm is tested on a tensile bar in order to 
validate the implementation of the model. The non-local D  damage value can be 
calculated using a numerical integration method, e.g. the Gauss method as part of 
the finite elements method.  

Within this framework, the value of D  on a geometric point ix is calculated 

by: 
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where eN  is the total number of elements, gN  is the number of Gauss points 
in an element, gy is the position vector of the integration point, and gw is the 
coefficient of the associated weight. 

 

 
 

Fig. 3. Calculation Algorithm Chart  
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5. Application with a tensile bar 

The mesh is completed using triangular, three-node elements with a Gauss 
integration point. An anchoring limit is applied on one side and displacement is 
imposed on the other. The dimensions, load and conditions at the limits of the 
tensile bar are represented in Fig.4. 

 
   Fig. 4. Dimensions, load and conditions at the limits of the tensile bar 

The parameters obtained are defined in the following table 1 
 Table 1 

Model Parameters for a Tensile Bar 
E (MPa) υ  At Bt 0Dε  Ac Bt R 

21000 0.2 0.8 20000 0.0001 1.4 1800 0.03 

Where E and υ  are respectively the Young's modulus and the Poisson's 
ratio.  

5.1. Influence of the R integration radius on the structure response 

The non-local calculation is conducted for three values: R=0.03mm, 
R=0.04mm and R=0.05mm, whereas the local calculation is made at R=0. We 
show the distribution of damage D, the equivalent strain and the von Mises stress 
in the local case in Fig.5, and in the non-local case in Fig.6, Fig.7, and Fig.8, for 
the various values of R. 
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                                              Damage    Equivalent Strain   von Mises Stress 

Fig. 5. Distribution of the local damage, equivalent strain, and the von Mises stress (R = 0) 

      
Fig. 6. Distribution of the non-local damage, the equivalent strain and the von Mises stress 

 (R=0.03 mm) 

      
Fig. 7. Distribution of the non-local damage, the equivalent strain and the von Mises stress  

(R=0.04 mm) 

       
Fig. 8. Distribution of the non-local damage, the equivalent strain and the von Mises stress  

(R=0.05 mm) 

The analysis of isovalues shows practically that the extent and form of the 
localization zone in the local case (R =0) takes place on a range of elements; 
however, in the non-local case (R = 0.03, R = 0.04 and R = 0.05), we see that the 
extent of the form of the localization zone forms a cloud of points around the 
central part of the plate. The localization zone volume therefore depends on the 
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value of R. By increasing the value of R, we see that the extent of the localization 
zone increases.  

 Fig.9 presents the load-displacement curve based on the various values of 
R (local and non-local cases). 

 
 Fig. 9. Load-Displacement Curve for various values of “R”  

We see that the rupture deformation increases with the value of R. We also 
see that during the softening phase, the load-displacement curves superimpose on 
one another as the R value increases. This shows that the non-nil values of R 
ensure the independence of the solution in terms of the mesh, and thanks to this 
non-local formulation, we were able to increase the load at rupture, which is one 
of the major inconveniences of the non-local formulations. We also see that the 
curves superimpose when the value of R is equal or greater to 0.04. The value 
R=0.04 seems to be representative of a zone where the damage is correctly 
captured by the approach considered in this work. Indeed, Hall and Hayhurst have 
observed that many materials have at microstructural level a characteristic volume 
where the damage distribution is almost uniform [42].The dimension of this 
characteristic volume is related to the material microstructure. Consequently, the 
correct choice the value of this parameter can only be accessed by combination of 
numerical and experimental research [43]. 

5.2. Sensitivity of the mesh 

Three regular meshes are used with an element size in the neighbourhood 
of the crack that is h=0.019m for mesh M1, h=0.011m for mesh M2, and 
h=0.0088m for mesh M3. The non-local calculation is made for a single value of 
R =0.05 (Fig.10). 
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                M1: 102 Elements    M2: 210 Elements     M3: 302 Elements 

Fig. 10. Representation of the Various Meshes Used 

In Fig. 11, the distribution of damage D, the equivalent strain and the von 
Mises stress are shown respectively for the various M1, M2 and M3 meshes. 

 
                        M1: 102 Elements                                               M2: 210 Elements    

 
M3: 302 Elements 

Fig. 11. Distribution of the non-local damage, the equivalent strain and the von Mises stress for the 
various meshes 

The analysis of the isovalues shows that the extent and form of the 
localization zone in the local case (R =0) is done on a range of elements and this 
regardless of the mesh considered. The localization occurs as observed previously, 
always on a range of elements, the width of this strip is linked directly to the 
spatial discretization, which brings us back to saying that, if we take h steps 
(element size) that are very low, the strip width will be nearly nil [34] however, in 
the non-local case and for a given R value, we see that the localization zone is 
almost identical on the three meshes (Fig.11).  

Fig.12 presents the load-displacement curve in the local case for the 
various M1, M2 and M3 meshes. The effort/displacement curves are different 
based on the mesh used. The consequences of the localization phenomenon at the 
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numerical level are immediate. The mesh controls the size of the damage 
localization zone with the calculations becoming unstable and the entire 
deformation is localized in a single element. By refining the mesh, we modify the 
global response of the structure (which depends explicitly on the number of 
elements). Furthermore, the energy dissipated to break the plate tends towards 
zero when the mesh is refined: at the limit, the bar breaks without consuming 
energy, as stated previously.  We might as well be saying that the results obtained 
numerically are not representative of the structure’s real response. In fact, the 
calculation solution depends pathologically on the size of the elements, but also 
more generally on their shape, orientation, degree of interpolation, in a word, the 
approximation space.  

Fig.13 presents the load-displacement curve in the non-local case and 
based on the various M1, M2 and M3 meshes. We can see the objectivity of these 
results. There is no mesh influence on the overall response of the structure. We 
can also note that the maximum strength of the plate is identical for the three 
meshes, which allows us to say that the expected objective of the non-local 
formulation has been achieved.  

 
Fig. 12. Load-displacement curve in the local case and based on the various M1, M2 and M3 

meshes 
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6. Conclusions 

In this work an elastic isotropic model coupled with non-local damage is 
developed. It is well known that conventional formulations using the finite 
elements method that present a softening character are strongly dependent on the 
parameters of discretization during the post-critical phase and are the source of 
localization: the strong dependence of the structure on the meshing. The 
progression of the damage is affected by spatio-temporal discretization. The 
hypothesis pertaining to the local mechanics is thus being questioned. In order to 
compensate for the faults in the finite elements method and to resolve the 
problems of dependency on meshing, a model of non-local damage is being 
proposed. To make non-local calculations, it is necessary to choose the variable 
that will be delocalized. In this work, we have chosen to delocalize the variable “
D ” in the form of a Gaussian integral “ D ”. This model describes the continuous 
degradation of a medium that was initially presumed to have been free of any 
cracks or cavities. The problem is resolved using the finite elements method. The 
numerical and mathematical aspects of the non-local damage model were 
presented. 
 In terms of mapping, we chose to examine the effect of the formulation on 
a tension specimen. The mapping shows that the results obtained through the non-
local model are practically independent from the mesh. With the help of the 
model, we were able to show that the deformation curves superimposed each 
other, and we were able to eliminate convergence and stability problems in the 
calculations – which was the set objective for this type of model. 
 However, there are a number of observations made on this work. We are 
citing only those that were considered at medium term. First of all, the use of 
micromorphic media or Cosserat media remains an open field that has only begun 
to make an appearance in the regularization of local models, the use of other 
forms of non-local damage can also be considered in convex damage, and, finally, 
the area of anisotropic models remains one to be further developed. 

R E F E R E N C E S 

[1]. P. Germain, Cours de mécanique des milieux continus, Masson Paris, 1973a. 
[2]. P. Germain, The method of virtual power in continuum mechanics, J. Appl. Math, vol.25 

no.3, 1973b. 
[3]. J. Mazars, Application de la mécanique de l’endommagement au comportement non-linéaire 

et à la rupture  du béton de structure, Thèse de doctorat des sciences, université Paris VI, 
1984. 

[4]. N. Germain, J. Besson,  F .Feye, Méthodes de calcul non local. Application aux structures  
composites, Giens, 7iem colloque national en calcul de structures GIENS, France, 17-20   
mai 2005  



Theoretical and computational aspects of non local damage coupling with elastic behaviour     71 

[5]. M. Almansba, Modélisation des structures élastoplastiques généralisées (Approches locale et   
non locale appliquées aux matériaux élastoplastiques endommageables), thèse de doctorat,   
université Mouloud Mammeri de Tizi-Ouzou, 2011. 

[6]. Z. P. Bažant, Instability, ductility and size effect in strain-softening concrete, Journal of 
Engineering Mechanics, vol.102, 1976, pp.331–344. 

[7]. R. de Borst, H.B. Muhlaus, Gradient dependent plasticity: Formulation and algorithmic 
aspects, International Journal for Numerical Methods in Engineering, vol.35, 1992, pp.521-
539. 

[8]. A. Benallal, R. Billardon , G. Geymonat, Bifurcation and rate-independent materials, In 
CISM Lecture Notes 327, éditeur: Bifurcation and stability of dissipative systems, Springer, 
1993, pp.1– 44. 

[9]. R. H. J. Peerlings, R. De Borst,W. A. M. Brekelmans, J. H. P. De Vree,  Gradient enhanced 
damage for quasi-brittle materials, International Journal for Numerical Methods in 
Engineering, vol.39, 1996a, pp.937–953. 

[10]. Z.P. Bažant , G. Pijaudier-Cabot, Nonlocal continuum damage, localization instability and 
convergence, Journal of Applied Mechanics ASME, vol.55,1988, pp.287–294. 

[11]. Z. P. Bažant, T.B. Belytschko , T.P. Chang, Continuum theory for strain-softening. Journal of 
Engineering Mechanics, vol.110, 1984, pp.1666–1692. 

[12]. J. Lemaitre, J.L. Chaboche, Aspect phénoménologique de la rupture par endommagement, 
Journal de Mécanique Appliquée, vol.2, 1978, pp.317–365. 

[13]. F. Montheillet,  F. Moussy, Physique et mécanique de l’endommagement, Les éditions de 
physique, 1986. 

[14]. J. Mazars, Z. P. Bažant, Eds., Cracking and damage, Strain localization and Size effect, 
Elsevier Pubs, 1988.  

[15]. J. Mazars, Mechanisms and mechanics of the behaviour and the failure of concrete. In 
ALERT, 6th European Autumn School: Constitutive Equations for Geomaterials, Aussois, 
France, 1994. 

[16]. C. Saouridis, identification et numérisation objectives des comportements adoucissants : une 
approche multi-échelle de l’endommagement  du béton, thèse de doctorat de l’université 
paris VI, 1988. 

[17]. L. Bodé, Stratégies numériques pour la prévision de la ruine des structures du génie civil,  
Thèse de doctorat, Université Pierre et Marie Curie – Paris VI, 1994. 

[18]. G. Pijaudier-Cabot, L. Bodé, Localisation in nonlocal continuum, Mechanics Research 
Communications, vol.19,1992, pp.145–153 

[19]. CE. Majorana , V. Salomoni, Strain Localisation in concrete using damage mechanics, 
COMPUTATIONAL PLASTICITY Fundamentals and Applications, D.R.J. Owen, E. Onate 
and E. Hinton (Eds.), CIMNE, Barcelona, 1997. 

[20]. Z. P. Bažant, B. Oh, Crack band theory for fracture of concrete, Materials and Structures, 
RILEM, vol.16, no. 94, 1983, pp.155–177. 

[21]. G. Pijaudier-Cabot , Z. P. Bazant, Nonlocal damage theory, J. Eng. Mech., vol.113, 1987, 
pp. 1512-1533. 

[22]. M. Ould ouali,M. Almansba, N. E. Hannachi, Numerical and experimental study of ductile 
fracture of an aluminium alloy during forging process, Proceeding of cmm-2011-computer 
methods in mechanics. Edited by a. Borkowski, t. Lewinski and g. Dzierzanowski, publishing 
house of the warsaw University of Technology, isbn: 978-8372079435, 2011, pp. 393-394.  

[23]. M. Almansba, M. Ould ouali , N. E. Hannachi, Micromechanical and phenomenological 
approaches of the sheet folding process, Procedia engineering (elsevier),  vol.10, 2011, 
pp.3359–3368.  

[24]. G. Francfort  ,  J. J. Marigo, stable damage evolution in brittle continuous medium, Eur. J. 
Mech., A/Solids, vol.12,  no.2 , 1993, pp. 149-189. 



72         Ourdia Bélaidi Chabane Chaouche, M. Almansba, D. Ferrah, N.E. Hannachi 

[25]. G. Pijaudier-Cabot, N. Burlion, Damage and localization in elastic materials with voids, 
Mech Coh. Frict. Mat., vol.1, 1996, pp. 905-919. 

[26]. K. Saanouni, Sur l’analyse de la fissuration des milieux élasto-viscoplastique par la théorie 
de l’endommagement continue, Université de Technologie de Compiègne, 1988.  

[27]. G. Pijaudier-Cabot, Non local damage. In Continuum models for materials with 
microstructures, H.B. Muhlhaus ed., Wiley, 1995. 

[28]. R.H.J. Peerlings., R. De Borst, W.A.M. Brekelmans , J.H.P. de Vree, Computational 
modelling of gradient-enhanced damage for fracture and fatigue problems, In proceedings 
Computational Plasticity IV, Owen & Onate eds., 1995, pp. 975-986. 

[29]. G. Pijaudier-Cabot, Non local fracture Characteristics of strain Softening Materials, PhD 
Northwestern University USA, 1987. 

[30]. G. Pijaudier-Cabot, Yves Berthaud, Effets des interactions dans l'endommagement d'un 
milieu fragile. Formulation non locale, C.R. Acad. Sci. Paris, t. 310, 1990, Série II, pp. 1577-
1582.  

[31]. P.M. Lesne, K. Saanouni, Non Local Damage Model to Describe Creep Fracture In The 
Framework of Damage Mechanics, Rech. Aérosp., no.1, 1990, pp.23-36 

[32]. R.H.J. Peerlings, Enhanced damage modelling for fracture and fatigue, PhD thesis, 
Technische Universiteit Eindhoven, 1999. 

[33]. R.A.B. Engelen, Plasticity-induced Damage in Metals, PhD thesis, Technische Universiteit 
Eindhoven, 2005. 

[34]. M. Almansba, K. Saanouni , N. E. Hannachi , isotropic elastoplasticity fully coupled with 
non-local damage", scientific research engineering,  vol.2, no. 6, Juin 2010, pp. 421-431. 

[35]. M. Almansba, K. Saanouni , N. E. Hannachi , Régularisation d'un modèle élastoplastique par 
introduction d'un gradient d'endommagement, XIXème Congrés Français de Mécanique, 
CFM'09, France, du 24 au 28 Aout 2009.  

[36]. K. Saanouni., M. Almansba, N.E. Hannachi, Damage-gradient based non local formulations 
revisited", 7th EUROMECH Solid Mechanics Conference (ESMC2009), Lisbon, Portugal, 
du 07 au 11 Septembre 2009.  

[37]. L. Davanne, C. Saouridis, J.M. Piau, un code de calcul pour la prévision  du comportement 
de structures endommageables en béton, en béton armé, ou en béton de fibres, ann. itbt,  
Laboratoire de Mécanique et de Technologie, ENS Cachan, no. 478, 1989. 

[38]. R. Peerlings, M. Geers, Thermodynamical aspects of implicit gradient damage, 11th 
International Conference on Fracture, A. Carpinteri, 2005. 

[39]. G. Voyiadjis, and al., Thermodynamic framework for coupling of non-local viscoplasticity 
and non-local anisotropic viscodamge for dynamic localization problems using gradient 
theory, INT. J. Plasticity, vol.20, 2004, pp.981–1038. 

[40]. T. Liebe, P. Steinmann, A. Benallal, Theoretical and computational aspects of 
thermodynamically consistent framwork for geometrically linear gradient damage, Comput. 
Methods Appl. Mech. Engrg, vol.190, 2001, pp. 6555–6576. 

[41].  D. R. J. Owen, E. Hinton, Finite elements in plasticity, theory and practice, ed. Pineridge 
Press Limited, 1980. 

[42].  F. R. Hall, D. R. Hayhurst, Modelling of grain size effects in creep crack growth usmg a 
nonlocal continuum damage approach, Proc. R. Sot. Land. vol. A 433, 1991, pp. 405-421.  

[43].  J. H. P. de Vree, W. A. M. Brekelmans, M. A. J. van Gil, comparison of nonlocal approaches 
in continuum damage mechanics. Computers & Structures, vol. 55(4), 1995, pp. 581-588. 


