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THEORETICAL AND COMPUTATIONAL ASPECTS OF NON
LOCAL DAMAGE COUPLING WITH ELASTIC BEHAVIOUR

Ourdia BELAIDI CHABANE CHAOUCHE?, Madjid ALMANSBA?, Dehbia
FERRAH?, Neceur Eddine HANNACHI*

Softening due to damage is the source of the strain localization in the
materials as concrete. In such a situation, using the finite element analysis provides
results that are directly depending to the spatio-temporal discretization. In this
article, the adjustment of an isotropic elastic model coupled to non-local damage is
presented in order to regularize the associated initial and boundary value problem.
This formulation consists in delocalizing the damage variable “D”. Dispersion
analysis and numerical simulations are used to compare the local and the non local
models.

Keywords: damage, softening behaviour, localization, non-local damage model,
concrete.

1. Introduction

Deformation localization is a phenomenon often observed in a large class
of materials, namely quasi-brittle materials such as concrete, rocks and soil. Based
on the nature and intensity of the action-effect, concrete deformation takes place
in a complex manner, bringing into play one or more combinations of basic
mechanisms: elasticity, damage, sliding, rubbing, cracking, etc.

Many studies have focussed on the problem of deformation localization in
a continuum [1, 2]. Localization can be defined as a zone where the deformations
remain continuous, but are concentrated in a large strip, very small in terms of the
structure, which depends on the load conditions [3, 4, 5]. This localization
phenomenon quickly results in a ruined structure. In practical terms, the
localization can be interpreted in a variety of ways: for metals, the localization
strip is formed through the sliding of crystalline planes and the formation of
cavities and for granular areas, a rearrangement of the granules can be at the
source of the localization. However, in the case we are interested in, for quasi-
brittle materials (concrete), the localization strip is formed by a collection of
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microcracks. This localization strip, micro-structural in size, cannot be described
correctly using classic continuum models [4, 6, 7].

At the same time, the localization of the damage makes the mathematical
problem to be resolved improperly since the softening causes a loss in the
ellipticity of the differential equations system describing the deformation process
[8, 9]. Lastly, the initial conditions and the conditions at the limits, which were
correctly defined in the elliptical case, become improperly adapted in the
hyperbolic case. Numerically, these difficulties result in the results being greatly
dependent on the finesse and orientation of the mesh in a finite elements
calculation [10]. The size of the localization zone becomes a function of the size
of the finite elements where the localization criterion has been achieved. The
result is a non-objectivity of the results in terms of spatial discretization, leading
to the dissipation of less and less energy when the mesh is refined.

In order to resolve the physically-unrealistic results of a dissipated energy
rupture that is nil as well as the numerical problem due the non-objectivity of the
mesh, a variable of non-local damage is introduced into the local model. A non-
local environment is an environment in which at least one variable field is subject
to a spatial average in a finite neighbourhood of a point [11]. The purpose of this
regularization technique is to prevent the sensitivity of the solution to the mesh.

This non-local model should contribute in helping to understand the major
physical processes that govern the mechanisms for concrete deformation.

Therefore, special attention must be given to the material’s behaviour in
order to correctly reproduce the various phenomena put in play during its
deformation.

2. Local Damage Model

Concrete, which is widely used in construction, has a very complex, non-
linear behaviour. Depending on the nature and intensity of the action-effect, the
quasi-brittle behaviour of concrete promotes the development of various modes
for rupturing and crack propagation. Damage mechanics makes it possible to
model the effects of microcracking on concrete’s behaviour at the macroscopic
scale. The basis for damage models is the introduction of a local damage variable
impacting the stiffness of the material. This type of model was initially introduced
for metallic materials (see work by Lemaitre and Chaboche) [12], reiterated by
Montheillet and Moussy [13]. Mazars wrote a behaviour model based on these
works and adapted to the uniaxial behaviour of concrete, both under compression
and tension [3]. The model uses an isotropic scalar damage variable.

The Mazars model was developed based on damage mechanics [3, 14, 15]
and the theory of elasticity coupled to isotropic damage (it ignores all
manifestations of plasticity as well as the closing of cracks). A scalar and isotropic
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D damage variable has been defined. This concept directly describes the loss of
rigidity as well as the softening behaviour of the material and takes into account
tension compression dissymmetry. The particular point of this model is that it uses
a deformation criterion, by introducing the notion of equivalent strain.

The stress-strain relation can be expressed as follows:

oc=@-D)C:¢, (1)

where C ande are respectively the components of the fourth-order elasticity
tensor and the elastic deformation tensor.

Concrete damage in the Mazars criterion is governed by a variable called
“equivalent strain” and which translates the local extension state of the material
during loading. It is defined as:

Eoq = Z({ei ). )2 : (2)

In which:
& is the principal strain in i (i=1,3) and (&) =¢ sig >0
= 0 otherwise

The changes in the scalar damage are defined based on a threshold
function:

f(&ky)=¢yq Ky 3)
k, is a parameter containing the load history. Initially, k,is equal to damage
threshold &, and takes on the maximum value achieved by &, during the entire
load history "t™:

arEo, )- (4)

In order to take into account the dissymmetric behaviour of the concrete
under tension and compression, the damage is calculated as a combination of
tension damage D; and compression damage D.. The linear combination of these
two damages provides the global isotropic damage:

D=¢D, +a.D,, (5)
with:

1_5D0(1_A,c) A,c
Eoq ’ eXp( Bt,c (geq ~ &b, ))

and: a,, = ( i.s MJ (7

t,c

, (6)
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A, Bi, Ac and B are four parameters of the model to be determined based on
compression and bending tests. Coefficients ¢, ande are dimensionless

coefficients that represent respectively the impact of the contribution of each of
the parts under tension and in compression. Under direct tension, ¢, =1, =0
and under direct compression, ¢, =0, =1 [3, 16].& are the strains that result
from the main positive stresses and &/ are the strains that result from the main

negative stresses. Fig.1 presents the answers of the Mazars damage model in the
tension and compression tests [15].
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Fig. 1. Response of the Mazars damage model under direct tension (a) and under direct
compression (b) [15]

The implementation of the model and its application in numerical
simulations is more delicate: in fact, this type of model presents softening
behaviours both under tension and compression (Fig.1), meaning that the
numerical problem has not been set out properly. As soon as the material
behaviour becomes soften, a strain localization phenomenon appears in a small
zone [17]. For the finite element simulations, this results in a dependence of the
results in relation to the mesh. In fact, based on the work of [5, 6, 16, 18, 19]. The
localization zone becomes proportional to the size of the element. The more the
mesh becomes refined, the smaller the localization zone becomes. An adjustment
method therefore becomes necessary. Many regularizations techniques are
proposed in the literature [18, 20, 21]. These various changes have led to rugged
and usable models, both analytically and for finite element codes. The choice
made here was to introduce a non-local change into the Mazars model.

3. Non-local damage model

Various works present varied formulations depending on the authors,
physical for some, phenomenological for others as well as mathematical [22, 23].
They also make it possible to take into account the neighbouring effect for
correcting the numerical dependence of the spatial discretization solution.
Formulations based on the relaxation of potential energy [24], methods based on
the introduction of new degrees of liberty [25], and others take into account a
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spatial neighbouring effect, either through a delocalization operator (non-local
models) or by introducing state variable gradients (gradient theories), [7, 10, 26,
27, 28]. In this article, there is an attempt to limit the dependence on mesh by
using a non-local variable in its integral form based on Pijaudier-Cabot [10, 21,
29, 30] and Saanouni [26, 31].

The idea of non-local models as described initially by Pijaudier-Cabot and
Saanouni [10, 21, 26, 29, 31] for damage formulations and taken out again in the
form of gradients by [5, 7, 32, 33, 34, 35, 36] involves taking into account a
spatial neighbouring effect to describe the behaviour of a material point: there is
remote interaction between the points of the structure Fig.2 [37]. These
interactions take place in a neighbourhood of fixed size from the material point
considered. More specifically, certain local sizes of the behaviour law are replaced
by their non-local pendants. The choice of one or more non-local variables
remains delicate to justify. However, it can be observed that the most effective
models choose to go non-local where there are variables associated to the
softening phenomena. This explains the choice of an isotropic strain-hardening
scalar variable for a negative strain-hardening model where the choice of damage
seems the most relevant. The work by Peerlings [32, 38] and by Engelen [33] for
example proposes to adjust the cumulated plastic strain. However, Voyiadjis [39]
proposes to adjust all of the internal variables. Germain [4] and Liebe [40]
propose the choice of drive force variable for the damage. For damageable elastic
behaviours, these formulations seem particularly effective; however, in this
article, we have chosen to “delocalize” the local D damage variable, by replacing

it with the non-local D variable. Therefore, the non-local D damage variable is
calculated based on a volume that is representative of the damage.
The non-local D damage variable is expressed always as xin the structure:

B0 = [y(y, D)V, ®)
v(X) s

where V is the structure’s volume and w(x) is the volume represented in
point x defined by:

w(x)=[w(y,x)dv. (©)

w(y,x) is a non-local weighting function that is meant to be homogenous and
isotropic. It characterizes the geometry of the localization zone. It depends solely
on the distance R=|x-y| between source pointxand reception pointy .
Generally, a Gaussian is chosen as a weight function. This choice is purely

numerical. In fact, it has been demonstrated that a Gaussian optimizes the
convergence rate of the finite elements solution [10, 29].
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We will therefore use:

w(y,X)= exp{—@} for(x—y)<R

w(y,x)=0 for(x—y)>R. (10)

R describes the area of the integration radius. In terms of plane calculation,
this integration area is composed of a disc of radius R.

Before taking the first loading step, the function of a process is to define the
volume that is representative of each point of the structure. Therefore, for each M
integrating point on the mesh, we calculate the distance that separates it from
other Gauss points and we consider as neighbours those that are included in the
disc of the given R radius. For each of these N points, we calculate the
contribution in the neighbourhood of the M point and we create a file in which we
store, for all M points, the number of neighbours, the reference and contribution
of each of these neighbours. It can be seen that with such a procedure, R = 0
makes it possible to use a classic local approach (the M point is considered to be a
neighbour of itself with a unit contribution) (Fig. 2).

In cases where, in order to reduce the size of the finite elements problem, the
symmetries of geometry and structure load are used, it is necessary to take into
account fictional Gauss points that are not represented in the mesh but which exist
in the real structure (Fig. 2).

v
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"ahosts" points ‘ real pomts circle neghbowhood of point 1
Fig. 2. Construction of fictional points in the neighbourhood of point M [37]
The modelling is implemented in a finite element calculation mode based on
the integral formulation.
4. Numerical implementation

The model thereby described for the simulation of the main macroscopic
phenomena, introduced in the case of a damageable elastic behaviour, is
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implemented into the finite element calculation program [41]. This program,
initially developed for the numeric simulation of linear, isotropic, strain-hardening
elastoplastic behaviour, has been modified for taking into account the coupled
behaviour, elasticity-damage initially, then an additional block is added for
calculating the non-local damaged, based on the organizational chart in Fig.3. In
this same program, blocks were added so that the program would be interfaced
with the GID Processor station. This program will be used to study the
distribution of the damage, strain and stresses on a notched plate under tension, in
a state of flat stress and strains.

Given the writing of the model, the natural way of resolving non-linear
problems associated with its implementation using finite elements is to use an
algorithm with a secant matrix because the damage affects the value of the secant
module (Fig.3): with each iteration, the elastic characteristics of the elements are
recalculated (the damage, at all instants in the process, is interpreted as a variation
of its elastic characteristics).

The convergence test takes on a traditional form: in the current iteration i

(i>1), we calculate the residues {R}(or rebalancing forces) of the resolution
which ensures the overall balance of the structure:
(R}, =[K (®.]{u},~{F}. )
where {F} is the effort imposed (to balance) to the current increment (in the
event a displacement is imposed on the structure, this effort depends on iteration
i).
{u}ithe displacement calculated from{F}and the damage of the previous
iteration:
{u} =[K (D)1 {F}, (12)

and [K(D )] is the secant matrix introduced by the new damage calculated

i+1

based on {uj

It is felt we have reasonably converged on the solution when the following
two tests are checked:

<n FIRL
Pl "™ FET +

where ‘R;nax‘ and |Fmax| are the components at maximum absolute value on the
vectors {R}. and{F} of iteration i, and nis a tolerance chosen by the user (10"

for example).
{.}T indicates the Euclidean transposition .
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The non-linear calculation algorithm is tested on a tensile bar in order to
validate the implementation of the model. The non-local D damage value can be
calculated using a numerical integration method, e.g. the Gauss method as part of
the finite elements method.

Within this framework, the value of D on a geometric point X; is calculated

N=N, N=Ng
Z Z ng//(yg'xi)D(yg)det(‘])g

by: D(x,) =ML Nt : (14)

N=N, N=Ng

Z Z Wy ( Yoo X )det(‘])g

N=1 N=1
where N, is the total number of elements, N, is the number of Gauss points

in an element, y_ is the position vector of the integration point, and w,is the
coefficient of the associated weight.
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5. Application with a tensile bar

The mesh is completed using triangular, three-node elements with a Gauss
integration point. An anchoring limit is applied on one side and displacement is
imposed on the other. The dimensions, load and conditions at the limits of the
tensile bar are represented in Fig.4.
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Fig. 4. Dimensions, load and conditions at the limits of the tensile bar

The parameters obtained are defined in the following table 1

Table 1
Model Parameters for a Tensile Bar
E (MPa) v A B: &p, A B: R
21000 0.2 0.8 20000 0.0001 1.4 1800 0.03

Where E and v are respectively the Young's modulus and the Poisson's
ratio.

5.1. Influence of the R integration radius on the structure response

The non-local calculation is conducted for three values: R=0.03mm,
R=0.04mm and R=0.05mm, whereas the local calculation is made at R=0. We
show the distribution of damage D, the equivalent strain and the von Mises stress
in the local case in Fig.5, and in the non-local case in Fig.6, Fig.7, and Fig.8, for
the various values of R.
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Fig. 5. Distribution of the local damage, equivalent strain, and the von Mises stress (R = 0)
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Fig. 6. Distribution of the non-local damage, the equivalent strain and the von Mises stress
(R=0.03 mm)

Fig. 7. Distribution of the non-local damage, the equivalent strain and the von Mises stress
(R=0.04 mm)
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Fig. 8. Distribution of the non-local damage, the equivalent strain and the von Mises stress
(R=0.05 mm)

The analysis of isovalues shows practically that the extent and form of the
localization zone in the local case (R =0) takes place on a range of elements;
however, in the non-local case (R = 0.03, R = 0.04 and R = 0.05), we see that the

extent of the form of the localization zone forms a cloud of points around the
central part of the plate. The localization zone volume therefore depends on the
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value of R. By increasing the value of R, we see that the extent of the localization
zone increases.

Fig.9 presents the load-displacement curve based on the various values of
R (local and non-local cases).
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0.000 +— ‘ >

0.0E+00 5.0E-06 _.1.0E-05 15E-0 2.0E-05 2.5E-05
Displacement [mm

Fig. 9. Load-Displacement Curve for various values of “R”

We see that the rupture deformation increases with the value of R. We also
see that during the softening phase, the load-displacement curves superimpose on
one another as the R value increases. This shows that the non-nil values of R
ensure the independence of the solution in terms of the mesh, and thanks to this
non-local formulation, we were able to increase the load at rupture, which is one
of the major inconveniences of the non-local formulations. We also see that the
curves superimpose when the value of R is equal or greater to 0.04. The value
R=0.04 seems to be representative of a zone where the damage is correctly
captured by the approach considered in this work. Indeed, Hall and Hayhurst have
observed that many materials have at microstructural level a characteristic volume
where the damage distribution is almost uniform [42].The dimension of this
characteristic volume is related to the material microstructure. Consequently, the
correct choice the value of this parameter can only be accessed by combination of
numerical and experimental research [43].

5.2. Sensitivity of the mesh

Three regular meshes are used with an element size in the neighbourhood
of the crack that is h=0.019m for mesh M1, h=0.011m for mesh M2, and
h=0.0088m for mesh M3. The non-local calculation is made for a single value of
R =0.05 (Fig.10).
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M1: 102 Elements M2: 210 Elements  M3: 302 Elements
Fig. 10. Representation of the Various Meshes Used

In Fig. 11, the distribution of damage D, the equivalent strain and the von
Muises stress are shown respectively for the various M1, M2 and M3 meshes.
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Fig. 11. Distribution of the non-local damage, the equivalent strain and the von Mises stress for the
various meshes

The analysis of the isovalues shows that the extent and form of the
localization zone in the local case (R =0) is done on a range of elements and this
regardless of the mesh considered. The localization occurs as observed previously,
always on a range of elements, the width of this strip is linked directly to the
spatial discretization, which brings us back to saying that, if we take h steps
(element size) that are very low, the strip width will be nearly nil [34] however, in
the non-local case and for a given R value, we see that the localization zone is
almost identical on the three meshes (Fig.11).

Fig.12 presents the load-displacement curve in the local case for the
various M1, M2 and M3 meshes. The effort/displacement curves are different
based on the mesh used. The consequences of the localization phenomenon at the
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numerical level are immediate. The mesh controls the size of the damage
localization zone with the calculations becoming unstable and the entire
deformation is localized in a single element. By refining the mesh, we modify the
global response of the structure (which depends explicitly on the number of
elements). Furthermore, the energy dissipated to break the plate tends towards
zero when the mesh is refined: at the limit, the bar breaks without consuming
energy, as stated previously. We might as well be saying that the results obtained
numerically are not representative of the structure’s real response. In fact, the
calculation solution depends pathologically on the size of the elements, but also
more generally on their shape, orientation, degree of interpolation, in a word, the
approximation space.

Fig.13 presents the load-displacement curve in the non-local case and
based on the various M1, M2 and M3 meshes. We can see the objectivity of these
results. There is no mesh influence on the overall response of the structure. We
can also note that the maximum strength of the plate is identical for the three
meshes, which allows us to say that the expected objective of the non-local
formulation has been achieved.
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Fig. 12. Load-displacement curve in the local case and based on the various M1, M2 and M3
meshes
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Fig. 13. Load-displacement curve in the non-local case and based on the various M1, M2 and M3 meshes
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6. Conclusions

In this work an elastic isotropic model coupled with non-local damage is
developed. It is well known that conventional formulations using the finite
elements method that present a softening character are strongly dependent on the
parameters of discretization during the post-critical phase and are the source of
localization: the strong dependence of the structure on the meshing. The
progression of the damage is affected by spatio-temporal discretization. The
hypothesis pertaining to the local mechanics is thus being questioned. In order to
compensate for the faults in the finite elements method and to resolve the
problems of dependency on meshing, a model of non-local damage is being
proposed. To make non-local calculations, it is necessary to choose the variable
that will be delocalized. In this work, we have chosen to delocalize the variable “

D " in the form of a Gaussian integral “ D . This model describes the continuous
degradation of a medium that was initially presumed to have been free of any
cracks or cavities. The problem is resolved using the finite elements method. The
numerical and mathematical aspects of the non-local damage model were
presented.

In terms of mapping, we chose to examine the effect of the formulation on
a tension specimen. The mapping shows that the results obtained through the non-
local model are practically independent from the mesh. With the help of the
model, we were able to show that the deformation curves superimposed each
other, and we were able to eliminate convergence and stability problems in the
calculations — which was the set objective for this type of model.

However, there are a number of observations made on this work. We are
citing only those that were considered at medium term. First of all, the use of
micromorphic media or Cosserat media remains an open field that has only begun
to make an appearance in the regularization of local models, the use of other
forms of non-local damage can also be considered in convex damage, and, finally,
the area of anisotropic models remains one to be further developed.
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