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ON THE INTRINSIC TIME SCALE IN THE BOUC-WEN 
MODEL 

Marius Florinel IONESCU1, Tudor SIRETEANU2, Veturia CHIROIU3 

 The intrinsic time, other than the clock time which governs the behavior of 
the materials, was introduced by Valanis [13] in order to develop the endochronic, 
which is a theory of viscoplasticity without a yield surface. Erlicher and Point [12] 
have proved the thermodynamic admissibility of the Bouc–Wen model, by adopting 
the endochronic theory. This paper discusses the behavior of a SDOF oscillator for 
different measures for the intrinsic time. 
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1. Introduction 

 The inelastic deformation processes under non-proportional cyclic loading 
of materials is described by the endochronic theory of plasticity, which belongs to 
the class of theories of functional materials with internal variables [1-5]. Based on 
the endochronic theory, it is possible to describe a number of peculiar features of 
the elastoplastic deformation of materials under loading and unloading, such as 
linear and nonlinear hardening, retardation of the vector and scalar properties of 
materials when a break in the strain path takes place, hysteresis, and stabilization 
of hysteresis under cyclic loading, effects of cyclic creep, etc. [6].  

Also, a wide variety of hysteretic features including inelastic load-
displacement law without distinct yield point, progressive loss of lateral stiffness 
in each loading cycle (stiffness degradation), degradation of strength when 
cyclically load is done to the same displacement level (strength degradation) and 
pinching due to slipping during force reversal, are possible to be describe with the 
endochronic theory [7, 8]. The constitutive equations of the endochronic theory 
permit to describe the non-proportional repeated variable deformation of initially 
isotropic materials [9-11]. Section 3 describes the behavior of a SDOF oscillator 
for different measures of the intrinsic time. The role of these in the behavior of the 
SDOF oscillator is discussed. The last Section is devoted to Conclusions 

Starting from the relationship between the Bouc model and the 
endochronic theory, Erlicher and Point [12] have proved the thermodynamic 
admissibility of the Bouc–Wen model, by adopting an intrinsic time measure.  
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In this paper, we discuss the role of the intrinsic time scale in the dynamic 
response of a SDOF oscillator. Two different measures for the intrinsic times are 
chosen.  

The paper is organized as follows: Section 2 is devoted to the relationship 
between the endochronic theory and the Bouc-Wen hysteresis model, established 
in the spirit of Erlicher and Point [12]. By adopting the intrinsic time measures, 
the thermodynamic admissibility of the Bouc–Wen model is proved 

2. The intrinsic time scale 

The chapter titles will be numbered, if necessary, and will be written in 
small characters (12 pts), bold. 

The presentation will be clear and concise and the symbols used therein 
will be specified in a symbol list (if necessary). In the paper it will be used the 
measurement units International System. In the paper, there will be no apparatus 
or installation descriptions. The intrinsic time was introduced by Valanis [13] as a 
non-decreasing function which depends on the strain tensor ε  or the stress tensor 
σ . Erlicher and Point [12] defined it as  

1/ 2d (d : d )ϑ = ε ε  ,                                                               (1) 
where the double dot product of two tensors is noted by “:” , i.e. : il jk ij klA B A B= δ δ , 
with 1 forij i jδ = =  and  0 forij i jδ = ≠ . For p I= , the relation (1) is reduced to 
d || d ||ϑ = ε . 

The second principle for small isothermal transformations states that the 
intrinsic mechanical dissipation 1Φ  has to be non-negative 

1 : 0Φ = σ ε −Ψ ≥ ,                                                             (2) 
where Ψ  is the Helmoltz free energy density. If Ψ depends on a single internal 
variable tensorχ , the state equation is given by 

∂Ψ
σ =

∂ε
.                                                                            (3) 

The thermodynamic force τ  associated to the internal variable χ  is 
expressed as 

∂Ψ
τ =

∂χ
.                                                                           (4) 

In virtue of (3) and (4), 1Φ  becomes 

1
d : 0
dt

∂Ψ χ
Φ = − = −τ χ ≥

∂χ
,                                                           (5) 

Now, we consider the Helmholtz free energy density written as 
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2
0 2 0 2

2
0 2

/2 tr( ) / 2 : tr( )tr( ) :

/2 tr( ) / 2 :
d d d d

d d

C C B B

D D

Ψ = ε + ε ε + ε χ + ε χ +

+ χ + χ χ
               (6) 

where 1/ 3tr( )d Iε = ε − ε  and 1/ 3tr( )d Iχ = χ − χ  are the deviatoric part of the strain 
tensor and of the internal variable tensor χ , I  is the unit tensor, and the constants 
verify the conditions 0 2, 0C C > , 0 2, 0D D > and 2

2 2 2B C D≤  from thermodynamic 
considerations [1]. Using (6), the state equation (3) can be written as 

0 0 2 21/ 3tr( ) ( tr( ) tr( ))d d dI C B I C Bσ = σ + σ = ε + χ + ε + χ .                (7) 
The thermodynamic force (4) becomes 

0 0 2 21/3tr( ) ( tr( ) tr( ))d d dI B D I B Dτ = τ + τ = ε + χ + ε + χ .                  (8) 
In (8), 0tr( ) 3 tr( )Bτ = ε is the elastic hydrostatic response. The second 

principle inequality (5) is rewritten  

1
d d: 0
d dt
χ ϑ

Φ = −τ ≥
ϑ

,                                                       (9) 

and it is satisfied if there exist a positive convex dissipation potential d
dt
ϑ⎛ ⎞ϕ⎜ ⎟

⎝ ⎠
 so 

that 
d 0
dt
ϑ⎛ ⎞ϕ ≥⎜ ⎟

⎝ ⎠
, (0) 0ϕ =  and d 0

dt
ϑ
≥ .                                      (10) 

In addition, it is easy to show that 
dtr 0
dt

⎛ ⎞ϑ⎛ ⎞ϕ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

,                                                     (11) 

and 

2

d
dt

d

b
τϑ⎛ ⎞ϕ = −⎜ ⎟

⎝ ⎠
 , 2 0b > .                                             (12) 

From (8) we have 
2 2d d dB Dτ = ε + χ .                                                        (13) 

The solution of (10) for (0) 0dτ = , is 

2
2

20

( )exp ( dd
d

DB
b

ϑ ′⎛ ⎞ ∂ε ϑ′ ′τ = − ϑ−ϑ ϑ⎜ ⎟ ′∂ϑ⎝ ⎠
∫ .                                           (14) 

From (6) we obtain 

2 2 2
2 2 2 2 2

2 2
2 2 2 2 20

( )exp( ( ) dd
d d d d

B B B B DC C
D D D D b

ϑ ′⎛ ⎞ ⎛ ⎞ ∂ε ϑ′ ′σ = − ε + τ = − ε + − ϑ−ϑ ϑ⎜ ⎟ ⎜ ⎟ ′∂ϑ⎝ ⎠ ⎝ ⎠
∫ ,       (15) 

with 
2
2

2
2

0BC
D

− ≥ and  
2
2

2

0B
D

> . 
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Denoting 
2
2

0 2
2

BA C
D

= − ,  
2
2

2

BA
D

= , 2

2

D
b

β =  and ( ) exp( )Aμ ϑ = −βϑ , Eq.(15) 

becomes 
2

0 0
2 0

( )( ) dd
d d d d

BA A
D

ϑ ′∂ε ϑ′ ′σ = ε + τ = ε + μ ϑ−ϑ ϑ
′∂ϑ∫ .                    (16) 

If we are denoting 

0

( )( ) ddz
ϑ ′∂ε ϑ′ ′= μ ϑ−ϑ ϑ

′∂ϑ∫ ,                                              (17) 

(16) and (17) become 
0d dA zσ = ε + ,  d d ddz A z= ε −β ϑ .                                        (18) 

We recognize in (18) the hysteresis model proposed by Bouc [14] in the 
differential form 

0( ) ( ) ( )w t A u t z t= + ,  d d dz A u z= −β ϑ ,                                      (19) 
with ( )u t  and ( )w t  are the input and output time-dependent functions, and 0 0A ≥ . 
The function ( )z t  represents the hysteretic auxiliary variable which describes the 
time history of the input variable u .  

The function ( ) 0′μ ϑ−ϑ ≥ is continuous, bounded and positive and non-
decreasing on its interval. This function is known in the literature as the hereditary 
kernel. In particular, the hereditary kernel has an exponential form 

( ) exp( )Aμ ϑ = −βϑ ,  , 0A β > .                                                 (20) 
The time function ϑ  is positive and non-decreasing, and according to 

Bouc, may represent the total variation of u   

0

d( ) d
d

t utϑ = τ
τ∫ ,                                                            (21)   

or 
d | d |uϑ = , with (0) 0ϑ = .                                                     (22) 

More general formulation for (19) 2  was proposed in the literature.  For 
example, Bouc suggested the form 

d d | d | | | dz A u z u z u= −β −γ , γ < β .                                        (23) 
Wen [16] has proposed another model, with 0n >  

d d ( sign( d ) ) | | dnz A u z u z u= − β + γ .                                        (24) 
Baber and Wen [17] have advanced the stiffness and strength degradation 

model 
d d ( sign( d ) ) | | dnz A u z u z u= − ν β + γ ,                                        (25) 

where ν  is a positive and increasing function of the energy dissipated by the 
structure. 
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All parameters that appear in (23)-(25) for the hysteretic restoring force 
are controlling the scale and general shape of the hysteretic loop, while n  controls 
the smoothness of the loop. The β  and γ  are describing the softening or 
hardening, i.e. if β + γ  is positive the system exhibits softening, while   if β + γ  is 
negative, the system exhibits hardening, respectively. If β  decreases, the width of 
the loop becomes large because the dissipation energy due to the hysteresis 
becomes larger. 

These models were proposed without a thermodynamical analysis. By 
adopting the intrinsic time measures from the endochronic theory of plasticity, the 
thermodynamic admissibility of the Bouc–Wen model is proved. The conditions  

0A >  and −β ≤ γ ≤ β  are necessary and sufficient for the thermodynamic 
admissibility of the Bouc–Wen model [18]- [21]. 

In the next Section we try to understand the role of different measures for 
the intrinsic time in a SDOF oscillator.  

3. A SDOF oscillator 

Let us consider a SDOF oscillator described by a set of differential 
equations with hysteresis 

(1 ) ( )x kx kz F t+ α + −α = ,                                                (26) 
 ( sign( ) ) | |nz Ax zx z= − β + γ ϑ ,                                             (27) 

where x  is displacement,  k  is the linear stiffness coefficient and ( )F t is the 
external force.  The hysteretic restoring force z  is of the form of (24). The non-
damping restoring force is composed by the linear restoring force kzα , and the 
hysteretic restoring force (1 )kz−α , where 0 1< α <  is the rigidity ratio 
representing the relative participations of the linear and nonlinear terms. The 
quantity z  is known as the hysteretic restoring force.  

For the time function ϑ , two positive and non-decreasing functions are 
chosen: 

1.  total variation of x   
d | d |xϑ = , with (0) 0ϑ = .                                                       (28) 

2. total variation of  a variable y  introduced to describe an uncertain 
system characterized by the parameter ς   

d | dy |ϑ = , with (0) 0ϑ = ,   y x= ς , [ , ]a bς∈ , (0) 0y = , , Ra b∈ .  (29) 
The hysteretic operator (27) possesses the symmetrical characteristics. For 

non-symmetrical characteristics, the Bouc-Wen model can be modified by 
introducing an additional term sgnxδ ϑ  in (27) [22] 

 ( sign( ) ) | | sgnnz Ax zx z x= − β + γ ϑ+ δ ϑ ,                              (30) 
where δ  is a non-symmetrical factor.   
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Example 1.  
 
The model (26)-(28) can be generalized for a continuum system such a 

cable, in the problem of vibrating cable in the Stockbridge damper [23, 24]. The 
deformation of the cable is due to the bending moment, and the shape of the cable 
during deformation depends on the frequency and amplitude of the clamp motion 
which is not known a priori.  

For this problem, a local model with the position dependent properties can 
be developed starting to (26) and (27). The position dependent property is 
supposed to be only the hysteretic restoring moment ( , )H s t .  

The flexural rigidity EI  and the linear spring k  are considered to be 
constant. The variable x  from (26) is replaced by the local curvature ( , )w s t′′ , with 

( , )w s t the displacement. The intrinsic time function is d | d |w′′ϑ = . The prime 
denotes the derivative with respect to s , and the dot denotes the time derivative.   

So, the model (26)-(28) is rewritten under the form 
 

( , ) ( , ) ( ) 0EIw s t H s t sF t′′ + + = ,                                                 (31) 
 

( )( , ) ( sign( ) ) | |nH s t k Aw Hw H w′′ ′′ ′′= − β + γ .                           (32) 
 

Given 2
0( ) cos( )F t f t= ω ω , with 0f  and ω  the amplitude and frequency of 

the external force, and initial conditions for ( , )H s t  and ( , )w s t′′ , ( , )w s t′′ , 
( , )w s t can be numerically determined. 

The hysteretic loops force-displacement for 12Hz and 13 Hz respectively, 
are plotted in Fig. 1 and Fig. 2, respectively, for k = 30N/m and 22.5NmEI = . The 
natural frequency is 15Hz. These loops are similar to the experimental results 
reported in [23]. 

For the non-symmetrical model (31) we have 
( )( , ) ( sign( ) ) | | sgnnH s t k Aw Hw H w w w′′ ′′ ′′ ′′ ′′= − β + γ + δ .       (33) 

The non-symmetrical version of the hysteretic loop for 12Hz is presented in 
Fig. 3 for 710−δ = .  

The plane phase orbits ( ,w w ) for softening hysteresis and hardening hysteresis 
respectively, are shown in Fig. 4.  
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Fig. 1. Hysteresis loop for 12 Hz ( A = 0.75, β = − 0.25, 1γ = ). 

 

 
Fig.2. Hysteresis loop for 13Hz ( A = 0.9, β = 0.1, 1γ = ). 
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Fig. 3. Hysteresis loop for 12 Hz ( A = 0.75, β = − 0.25, 1γ = , 710−δ = ). 

 

 
Fig. 4. The phase orbits for softening ( A = 0.75, β = − 0.25, γ = 1, ω = 75.4), and hardening 

( A = 0.75, β = − 0.25, γ = 1, ω = 75.4) ( A = 0.9, β = − 0.1, γ = 1, ω = 81.6 ). 
 
Example 2. 
The model (26), (27) and (29) can be applied to systems with unknown 

time-varying behavior. Such systems have nonlinear uncertainties with no prior 
knowledge of their values or bounds, and therefore the rapidly varying 
disturbances have to be analyzed in order to obtain the stabilization controller of 
the chaotic behavior via different logic systems.  Usually, stable adaptive 
controllers are obtained by combining the back stepping and small-gain 
approaches. This method was used in [25] to control the chaotic motion of the 
double pendulum without knowledge of the parameters. Once the desired unstable 
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trajectories to be stabilized are chosen, the control will be initialized to require the 
pendulum to move towards the equilibrium position.  

Let us consider the equations (26) and (27) with 2
0( ) cos( )F t f t= ω ω , and 

the equation (29) which describes the behavior of the variable y  which describes 
an uncertain system  

d | dy |ϑ = , with (0) 0ϑ = ,   y x= ς , (0) 0y = .                            (34) 
with a  real-valued parameter [1, 3]ς∈ . The time variation of the parameter ς is 
plotted in Fig. 5. 

 
Fig. 5. The time variation of the parameter ς . 

 
The system “does not agrees” the abrupt change of ς at 20st =  and 

(30s,40s)t∈ , respectively, and reacts as seen in Fig. 6.   

 
Fig. 6. The time variation of the variable ( )x t . 
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Fig. 7. Hysteretic loop for 12 Hz ( A = 0.75, β = − 0.25, 1γ = ) and [1, 3]ς∈ . 

 

 
Fig. 8. Hysteresis loop for 12 Hz ( A = 0.75, β = − 0.25, 1γ = ) (up 0f = 0.19 mm and down 

0f = 0.28 mm). 
The hysteretic loops force-displacement for 12Hz and A = 0.75, β = − 0.25, 
1γ = , are plotted in Fig. 7 for 0f =0.10, 0.15 and 0.28 mm, respectively, and 
[1, 3]ς∈ . The allure of these curves is practically chaotic, the restoring force 
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having an irregular evolution. For fixed values for ς , i.e. 1ς =  and  0f =  0.28 mm, 
and 2ς = , respectively, the hysteretic loops force-displacement are plotted in Fig. 
8, for 0f =0.19, 12Hz and A = 0.75, β = − 0.25, 1γ =  .  

Finally, other different time functions ϑ  may be chosen. An interesting case 
may be a system with delay, where the total variation of a variable y  is expressed 
as 

d | dy |ϑ = , with 0(0)ϑ = ϑ ,   ( ( ))y k r x t h= − − , 0(0)y y= .                              (35) 

4. Conclusions 

Due to nature of the hysteretic phenomenon, the dynamical systems may 
display complex behavior and energy dissipation properties with effect to their 
reliability and safety. The intrinsic time, other than the clock time, was introduced 
by Valanis in the frame of the theory of viscoplasticity without a yield surface in 
order, and used next by Erlicher and Point to prove the thermodynamic 
admissibility of the Bouc–Wen model.  

This paper discusses the behavior of a SDOF oscillator for two measures 
for the intrinsic time. In the first example, a generalization for continuum cable in 
the Stockbridge damper is developed. The results are referred to the behavior of 
the non-symmetrical hysteretic loops, the softening and hardening aspects, 
respectively. The second example analyses the time-varying behavior with 
uncertainties. Here, the time varying disturbances tends to unstable motion and 
chaotic behavior.  The intrinsic time method can be applied to a wide variety of 
the hysteretic systems in order to extend the understanding of the complex 
behavior of dynamical systems beyond the classical approaches. New aspects of 
the inelastic load-displacement law without distinct yield point, stiffness 
degradation, strength degradation and pinching are developed.  

 
Acknowledgement  
The authors gratefully acknowledge the financial support of the National 

Authority for Scientific Research ANCS/UEFISCDI through the project PN-II-ID-PCE-
2012-4-0023, Contract nr. 3/2013. This work was elaborated during the doctoral studies 
of the main author.  

R E F E R E N C E S 
[1]. Y.I.Kadashevich, A.B.Mosolov, "Endochronic theory of plasticity: Fundamentals and outlook", 

Izv. Akad. Nauk SSSR. Mekhanika Tverd. Tela, vol. 1, 1989, pp. 161-168. 
[2]. A.B.Mosolov, "Endochronic theory of plasticity", Preprint No. 353, Institute for Problems of 

Mechanics Academy of Sciences of the USSR, Moscow, 1988. 
[3]. A.B.Mosolov, "Endochronic theory of plasticity. 2. Time effects under complex loading", 

Preprint No. 443, Institute for Problems of Mechanics, Academy of Sciences of the USSR, 
Moscow, 1990. 



38                             Marius Ionescu, Tudor Sireteanu, Veturia Chiroiu 

[4]. Y.I.Kadashevich, A.B.Mosolov, "Endochronic theory of plasticity: Current state", Probl 
Prochn., vol. 6, 1991, pp.3-12. 

[5]. N.K.Kucher, "Endochronic theory of plasticity: Prediction of nonproportional cyclic 
deformation of materials", Strength of Meterials, vol. 30, no. 3, 1998. 

[6]. N.K.Kucher, "A version of the endochronic theory of plasticity to describe the asymmetrical 
cyclic loading of materials", Strength of Meterials, vol. 31, no. 1, 1999. 

[7]. G.C.Foliente, "Stochastic dynamic response of wood structural systems, PhD thesis", Virginia 
Polytechnic Institute and State University, Blacksburg, 1993. 

[8]. T.T.Baber, M.N.Noori, "Modelling General Hysteresis Behaviour and Random Vibration 
Application", Journal of Vibration, Acoustics, Stress, and Reliability in Design. 
Transactions of the ASME, vol. 108, 1986, pp. 411-420. 

[9]. N.K.Kucher, M.V.Borodii, "A version of the endochronic theory of plasticity for describing 
non-proportional cyclic deformation", lnt. J. Nonlinear Mechanics, vol. 28, no. 2, pp. 267-
278, 1993. 

[10]. M.V.Borodii, "Application of the endochronic theory of plasticity to simulation of 
nonproportional repeated variable strain-controlled loading", Probl. Prochn., vol. 5, 1994, 
pp. 3-10. 

[11]. M.V.Borodii, N.K.Kucher, V.A.Stryzhalo, "Development of a constitutive model for biaxial 
low-cycle fatigue", Fatigue & Fracture of Eng. Mater. and Struct., vol. 19, no. 10, 1996, pp. 
1169-1179. 

[12]. S.Erlicher, N.Point, "Thermodynamic admissibility of Bouc-Wen type hysteresis models", 
Comptes Rendus Mecanique, vol. 332, 2004, pp. 51-57. 

[13]. K.C.Valanis, "A theory of viscoplasticity without a yield surface. Part I: General theory", 
Arch. Mech., vol. 23, no. 4, 1971, pp. 517–533. 

[14]. R.Bouc, "Modèle mathématique d’hystérésis", Acustica, vol. 24, 1971, pp. 16–25. 
[15]. R.Bouc, "Forced vibrations of a mechanical system with hysteresis", in: Proc. 4th Conf. on 

Nonlinear Oscillations, Prague, Czechoslovakia, 1967. 
[16]. Y.K.Wen, "Method for random vibration of hysteretic systems", J. Eng. Mech. Div. ASCE,  

vol. 102, 1976, pp. 249–263. 
[17]. T.T.Baber, Y.K.Wen, "Random vibrations of hysteretic, degrading systems", J. Eng. Mech. 

Div. ASCE, vol. 107, no. 6, 1981, pp. 1069–1087. 
[18]. F.Ikhouane, J.Rodellar, Systems with hysteresis, Analysis, Identification and Control using 

the Bouc-Wen Model,  John Wiley& Sons, Ltd, 2007. 
[19]. N.Okuizumi, K.Kimura, "Multiple time scale analysis of hysteretic systems subjected to 

harmonic excitation", Journal of Sound and Vibration, vol. 272, 2004, pp. 675–701. 
[20]. V.Preda,, M.F.Ionescu, V.Chiroiu, D.Dumitriu, "A Preisach model for the analysis of the 

hysteretic phenomena", Revue Roumaine des Sciences Techniques – Série de Mécanique 
Appliquée, vol. 55, no. 3, 2010. 

[21]. C.W.Stammers, T.Sireteanu, "Vibration control of machines by use of semi-active dry 
friction damping", Journal of Sound and Vibration, vol. 209, 1998, pp. 671-684. 

[22]. Wei Zhu, Dai-Hua Wang, "Non-symmetrical Bouc-Wen model for piezoelectric ceramic 
actuators", Sensors and Actuators A, vol. 181, 2012, pp. 51-60. 

[23]. I.Pivovarov, O.G.Vinogradov, "One application of Bouc’s model for non-linear hysteresis", 
Journal of Sound and Vibration, vol. 118, no. 2, 1987, pp. 209-216. 

[24]. D.Sauter, P.Hagedorn, "On the hysteresis of wire cables in Stockbridge dampers", 
International Journal of Non-Linear Mechanics, vol. 37, 2002, pp. 1453- 1459. 

[25]. V.Chiroiu, L.Munteanu, I.Ursu, "On chaos control in uncertain systems", CMES: Computer 
Modeling in Engineering & Sciences, vol. 72, no. 3, 2011, pp.229-246. 


