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UML DIAGRAMS CLASSIFICATION WITH MIMO AND SISO
NEURAL NETWORKS

Irina-Gabriela NEDELCU?, Simona luliana CARAMIHAI?, Stefan MOCANU?,
Anca Daniela IONITA*

The benefits of artificial intelligence techniques have begun to be
investigated for software modeling, as for other fields, but there is still a lot to
explore. The standard Unified Modeling Language has been used for a long time, so
that representative data sets have been produced to allow neural network training.
The goal of this paper is to provide a multi-label classification with two neural
network techniques, aiming to identify if an image contains a UML diagram or not,
and to determine its type. The evaluated architectures are Multi Input Multi Output
(MIMO) and Single Input Single Output (SISO). The paper also presents their
evaluation, performance metrics results, and several examples.
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1. Introduction

The application of machine learning to modeling has the potential to drive
increased adoption of model-based software engineering. Artificial intelligence
techniques and image classification have benefited during recent years from many
improvements in regard to the aspects, or the specific criteria that needed to be
considered prior to classifying. For problems solved using machine learning or
deep learning, the data feeding the training algorithms is more important than the
algorithm itself.

In terms of combining the field of software modeling with artificial
intelligence techniques, there are many aspects to be explored. Based on Unified
Modeling Language (UML), many examples of diagrams might be similar, as
some application domains follow a standard set of elements that are found in each
project. Thus, an area of research may be software maintenance, as explored in
[12]. Additionally, an application may be useful in the educational field, to
automate certain processes. For example, the software can check whether a certain
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diagram has similarities with others, meaning the diagram could have been
initially conceived by some other student. An easy way to trick a visual system
concerning the UML diagrams is to arrange the components differently, so the
diagram would look different even if the logic is the same. Based on this example,
the feature extraction algorithms can be used so they can identify common
elements and tell the similarity between two diagrams even if they are not
arranged in the same manner in the image [13]. However, some applications based
on machine learning might face challenges to provide a dataset with enough data.
Throughout time, many techniques have been proposed to deal with small
datasets, such as under-sampling, over-sampling, or augmentation [6].

The purpose of this paper is to determine if an image contains a UML
diagram or not, then, if the image is marked as a UML diagram, to determine what
kind of diagram it is. Nonetheless, our research evaluates the performance of a
model trained with a small dataset, and specific tools considered in the
architecture of the model to make it perform well. The research objectives are
summarized in Fig. 1. Section 2 presents related work and what use cases have
been identified based on it. Section 3 follows by describing the used dataset and
processing of the data. It includes the processing of the labels as well. Next, the
paper describes the applied architectures, how they were built and a comparison
between them (Section 4). Section 5 presents testing results and examples. The
paper concludes with achievements and next steps.

Evaluate the performance
of a trained model with a
Determine whether the . . small dataset and specific
image contains a UML j::ssr;ﬁéthe el Al tools that were considered
diagram or not 9 in the architecture of the
model to make it perform
well.

Fig. 1. Research objectives
2. Related Work

A challenge of many research projects is to find techniques that help
obtaining models that perform well even for training with small datasets. In
computer vision, using artificial intelligence approaches, convolutional neural
networks (CNNs) are still the ones being the most used and providing the best
results. On the other hand, a new architecture has recently been proposed, Vision
Transformer (ViT) [3], which has many differences in comparison with CNNSs. It
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offers a very good performance in computer vision; it is robust and has a
simplified design [4]. Considering the research paper using ViT [3], they used this
architecture given a large-scale dataset and part of pre-training.

The usage of machine learning in combination with UML faces challenges
even from the dataset creation. There are not may datasets publicly available and
many projects still need to go through the step of creating their own dataset given
the limited options currently offered. Examples of datasets concerning the UML
area are ModelSet [8] and a UML dataset publicly available in GitHub [10]. As
there are currently multiple opportunities to research the benefits of artificial
techniques into UML, expanding the variety of datasets are important as this is
one of the most time-consuming processes that takes place in projects concerning
machine learning techniques. The process of building a dataset is also complex in
terms of validating that the data is correct for the labels applied, which is still
done manually by a human operator in most of the cases.

Another subject of interest is exploring the benefits of artificial
intelligence techniques into UML diagrams. As class diagrams are the most well-
known according to [7], most of the articles combine the two topics, such as using
machine learning or deep learning to determine if an image is a class diagram or
not. An example used a dataset that was manually built and validated by
professionals, which does not consider the textual content of the diagram to
classify [4]. Additionally, other UML diagrams have been used to determine if the
image contains a diagram or not. Other research focus on semantic elements of the
diagrams. The extraction of semantic elements helps to better understand how a
diagram is realized and what it takes to build a new one that is useful for the end
user [1].

3. Dataset with UML Diagrams Images Used for Machine Learning

The most analyzed UML model kinds are class diagrams [7], as they are
often considered the most popular ones [10]. For the scope of our research, we
selected class, sequence, and state machine diagrams to be used for diagram type
classification. Section 3.1. describes gathering the data and deciding on the
amount in consideration with imbalanced classes problems. Section 3.2 provides
information about the dataset processing, to be ready for the training process.

3.1. Building the Dataset

To build the dataset for this research, the main source was a public
database in GitHub provided by [10]. The database was built especially because
previously there was no source with a wide range of image diagrams that can be
used for future research problems with UML. This repository contains UML
diagrams in various formats, collected from other related research projects, web
crawling and diagram extraction, based on the type or donations from the
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community to help future development in the domain. An important requirement
of this database was that during its construction, duplicates were removed. This
detail is already a significant win for the training model, as it will not face
performance issues due to actual lack of data caused by identical samples.

After filtering the initial results, the dataset contains 57,822 UML images /
models. As previously mentioned, we extracted 3 of the most used UML diagrams
separately, labeled a category for other kinds of UML diagrams and added a
category for non-UML images. Table 1 contains details about images count per
class from the source dataset.

Table 1
Data obtained for this project per diagram category
Category Number of images
Class Diagram 7123
Sequence Diagram 540
State Diagram 173
Other UML Diagrams 1882
Non-UML Images 225 [downloaded outside the main dataset]

To increase the number for the small samples and to get the non-UML
images, we used a Google images downloader python script, which extracts
images from Google Images, given certain keywords, such as “Sequence
Diagram” or “Sequence UML”. Additionally, the initial dataset described above
provides the image using a URL, so we built a custom script to download the
images provided in the URLs. As a result, the state diagram, which has the
smallest number or samples as stated in Table 2, was increased to 227 images.

3.2. Processing the Dataset

The most used approach for dataset expansion in computer vision is
augmentation. However, for UML diagrams as samples, they are always straight
in the picture and most of the times only black and white. Thus, rotating the image
or adjusting the colors do not apply to extend the dataset. An important aspect is
that each dataset class is very specific in their content, so the features might be
easily extracted and learned. Thus, each class was reduced to 225 images,
meaning the down-sampling process was applied to fix the class imbalance
problems.

After setting the amount of data per class, the images were processed to a
matrix of numbers. To validate that data quality is not impacted in the image, the
number matrix was also processed backwards, to an image (see Fig. 2). Standard
deviation and mean were the metrics used to confirm data was not lost, given they
were under zero respectively 0.5 which were the set thresholds.
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[(228, 135, 126),
* (226, 136, 126),
(226, 137, 125), ...

Fig. 2. Image to matrix and backwards processing

In terms of labels processing, the model has 2 tasks: to say if the image
contains a UML diagram or not, and to determine what kind of diagram it is).
Thus, the model needs to provide two outputs. Each set of labels was processed
with the binarization technique that is highlighted in Fig. 3.

[class, array ([[1, 0, 0, 0, 0],
sequence, (o, 1,0,0,0],
state, # [0, 0, 1, 0, 0],
other, [OI 0/ Or 1! 0]!
non-UML] [0,0,0,0,11])

Fig. 3. Label binarization process
4. Architectures’ performance comparison

For this research paper, we analyzed two neural network architectures.
One approach was to design the architecture as multiple inputs and outputs and
the other approach was to explore single input and output classification and
investigate the performance if each approach. The following chapters cover the
architecture proposed for each one and an overall analysis on the results.

Each model was trained using Google Colab resources in Jupyter
notebooks, so we could run the code in steps and investigate or fix separate parts
of the whole project. It is important to note that if the notebook disconnects each
step needs to run again. As a workaround, wherever possible, we saved the results
offline so we could load them later and advance faster with the project.

For example, after processing the images as 3-rank tensor, which means a
matrix of numbers representing RGB code, we saved the results in a serialized
object that got deserialized before any new notebook run. A similar technique was
applied for labels binarization. Such an approach saved approximately 30 minutes
for each run.

For better comparison, wherever possible, we tried to use the exact
techniques or hyper-parameters so we could conclude which approach has a better
performance for our problem. Thus, each neural network used the ADAM
(Adaptive Moment Estimation) optimization algorithm [2] with the hyper-
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parameters learning rate 10-3 and decay rate betal 0.9, decay rate beta2 0.999 and
epsilon 10-8. For multi-class classification, we applied the Visual Geometry
Group VGG neural network architecture [11].

4.1. Multi input multi output (MIMO) neural network

As stated previously, the output expected from the model is to say whether
the image contains a UML diagram and which type of diagram. Because of this,
the model is a multi-output one. Additionally, each output falls into a different
type of classification, one is binary classification while the other one is multi-
class. For each type, the input is specific, so the neural network will get separate
inputs to learn from the data differently. Thus, the model is a multi-input one as
well. These kinds of architectures are called multi-input multi-output (MIMO)
neural networks, one example being [9].

Such tasks need to be designed and monitored carefully during the
training. The model performs complex processes in parallel and there is a high
risk the processing is not properly prepared, and performing the training process
will not lead to a model able to offer the expected results. In current research there
are not many MIMO architectures proposed for neural networks and none of them
has been widely used to get a better overview on the performance of such an
architecture.

As a general presentation, the whole process will be split into 4 main
steps. First, we apply feed forward for loss calculation. Then, the optimizer is
initialized, for this project, the optimizer used is ADAM (Adaptive Moment
Estimation) with the learning rate 10-3. Then, the training process starts which
calculates the loss using feed forward, used backpropagation to calculate the
gradients and updates the weights and biases using the ADAM optimizer. Last,
through a feed forward the validation process takes place by checking if the loss
was reduced and how well the model predicts the correct values.

The input was loaded all together, and it was split using the labels added in
the naming of the images or directories. The project required 2 inputs, a subset of
classified types of UML diagrams and a subset of UML and non-UML diagrams.
To distinguish which set of data belongs to each neural net problem we used
directory and file naming conventions and identified the right output by
processing it through the code. Then each input will go through a sub-network
during training. Each sub-network has a different purpose that can also be
modelled differently from one to another.

For binary-class classification the project also used a CNN and a VGG as
well. We defined the loss as binary cross entropy, and the number of layers was
smaller than the one needed for multi class

For the multi-class classification problem, the architecture or the sub-
network followed the structure of a VGG, a convolutional neural network that is
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based on AlexNet with the specification that it contains smaller receptive fields,
and the number of parameters is significantly smaller in comparison with
AlexNet.

After each sub-network trains for the specific problem that needs to be
solved, the architecture contains a concatenation layer that unites the two resulting
outputs so new data can be classified with multiple labels at once.

4.2. Single input single output (SISO) neural network

In comparison with the MIMO architecture, we start with one single input
which is formed by the following categories class diagram, sequence diagram,
state diagram, other UML diagrams and non-UML diagram images. Similarly, to
the MIMO architecture, we loaded the directories and images, then split it based
on the naming to fit the categories listed above.

Such an input applies to multi-class classification and here we also use the
exact same VGG architecture we applied for the sub-network of MIMO neural
network. As mentioned in the beginning of the chapter we kept as many
similarities as we could between the two investigated neural network designs so
we could compare which approach provides better performance. To accommodate
the multi-labeling of new data sets, meaning, whether the image contains a UML
diagram or not and what kind of diagram it is, after the model predicted to which
category the model belongs to, if the image was classified as class diagram,
sequence diagram, state diagram or other UML diagrams we processed the result
to display that the image represents a UML diagram or not and what kind it is
through the code using the neural network’s result.

5. Comparison Results

5.1. Accuracy and Loss Evaluation

For each project we used the same platform and the same configuration to
compare the results. The MIMO neural network was trained for 20 hours, while
the SISO neural work trained for 14 hours. During training we monitored the
accuracy and loss of the trained model to identify possible issues when the model
was built. No issue was faced in any of the two cases, even if one epoch showed
values that were not going as expected the neural network calibrated with the next
epoch runs. The data was saved to be displayed as a plot for evaluation.

Fig. 4 a) displays the accuracy collected from the MIMO architecture
during training. By looking at the accuracy plot, we understand the training went
as desired, with one spike between epochs 50 and 60. The spike indicates that the
model is not well structured at that step, and this could have caused an issue if the
training was stopped at that epoch. However, in our case, the model recovered fast
to a good structure until the end of the training.
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Fig. 4. Results for MIMO training: a) accuracy; b) loss

Fig. 4 b) displays the loss collected from the MIMO architecture during
training. The loss plot will indicate a higher loss during the spike, which is
expected, the fact that the training and validation loss have slightly different
points means that the model does very well on classifying data used for the
training but does not meet the same performance on validation data. However, the
difference is not a concern, as the difference is very low in the end; this indicates a
high rate of correct classifications, and manual testing also proved that.

Fig. 5 a) displays the accuracy collected from the SISO architecture during
training. By looking at the accuracy plot, we understand the training went as
desired. Data points impacting the curve can be observed, but the difference is so
small it cannot indicate a badly structured model.
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Fig. 5. Results for MIMO training: a) accuracy; b) loss

According to the plot, the structure was well determined throughout the
training and an early stopping could have been allowed.

Fig. 5 b) displays the loss collected from the SISO architecture during
training. The loss plot indicates a similar behavior as it was described for the
MIMO loss evaluation. This means the model performs very well on training data,
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well on validation data, but not with the same performance for the training data.
Similarly, the difference does not indicate any concern.

Each plot indicates that the resulting model will have a good structure and
will be able to reach is goal. No significant issues were identified by checking this
data. In addition to the resulting metrics, we investigated the resulting models by
checking the exact same set of input data and evaluating the results.

The training of the SISO model is more stable than the training of the
MIMO one. Both architectures have reached good accuracy on validation data
which indicates how the model will perform on new data. Similarly, the loss has
been low, concluding most of the samples were correct.

5.2. Examples

We selected 25 inputs for testing and evaluated how many reached a
correct classification. By correct classification we expect both labels, if an image
is a UML diagram or not and what kind of diagram, if applicable, to be classified.
The MIMO model matched both labels correctly for 19 out of 25 testing inputs.
The SISO model matched 17 out of 25 exact same testing inputs. Additionally, the
results of the MIMO take longer to be offered than the SISO ones. The MIMO
outputs were displayed on average in 1 minute and 12 seconds. The SISO
displayed the results on average in 48 seconds.

Table 1, example 1 represents a UML diagram that is not part of the three
specific ones that were selected. On the left the output is provided by the MIMO
neural network with a prediction score of 81% and on the right, the output is
provided by the SISO neural network with a prediction score of 83%.

Example 1 does contain a UML diagram. The image was classified as a
UML diagram by the MIMO neural network with a prediction score of 88% and
by the SISO neural network with a prediction score of 87%.

Example 2 represents a UML diagram that is part of the three specific ones
that were selected, in this case a class diagram. The MIMO neural network has a
prediction score of 89% as UML and 87% as class diagram. The SISO neural
network has a prediction score of 87% as UML and 89% as a class diagram.

Example 3 is a UML diagram that is part of the three specific ones that
were selected, in this case a state diagram. The MIMO neural network has a
prediction score of 86% as UML and 82% as state diagram. The SISO neural
network has a prediction score of 84% as UML and 79% as a state diagram.
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6. Conclusions

The goal of the research was to investigate the techniques of artificial
intelligence and use them in conjunction with UML modeling. As a starting point,
we investigated what is the state of the art in combining these two domains, and
which use cases have been highlighted. As a starting point, we identified existing
datasets available, and we used one to solve a classification problem with multiple
outputs required.

We built two neural networks following different architectures to see
which one would perform better. Both can be used based on the type of
application that applies for a certain problem. In our case, each model provides
good accuracy, though the MIMO model performed better in our experiments.

For the 25 samples that were tested MIMO classified correctly 76% of the
samples and SISO classified correctly 68% of the samples. In addition to correct
classification, prediction score is an important metric that outlines how confident
the model is into the classification. Most machine learning project experiments
highlight that 80% accuracy is considered to state the model is highly performant
as mentioned in [14]. Among the samples that were classified correctly with a
prediction score of 80% or more, 84% matched the criteria for MIMO approach
and 77% matched the criteria for SISO approach.

The next step for this research is to decrease the number of wrong
classifications and improve accuracy, so the model is highly confident on correct
outputs. We will explore expanding the dataset and evaluate techniques for small
datasets where performant models were obtained. Additionally, will explore
methods to validate the performance as well as other metrics that are highly
trusted in literature to support a model that is ready to be used.
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